feat: add docs and address syntax tweaks

This commit is contained in:
drbh 2024-02-27 16:54:29 +00:00
parent 7a37655d8e
commit f72155ae46
3 changed files with 441 additions and 13 deletions

420
docs/source/guidance.md Normal file
View File

@ -0,0 +1,420 @@
# Guidance
Text Generation Inference (TGI) now supports the Messages API, which is fully compatible with the OpenAI Chat Completion API. This feature is available starting from version `1.4.3`. You can use OpenAI's client libraries or third-party libraries expecting OpenAI schema to interact with TGI's Messages API. Below are some examples of how to utilize this compatibility.
Whether you're a developer, a data scientist, or just a curious mind, we've made it super easy (and fun!) to start integrating advanced text generation capabilities into your applications.
### Quick Start
Before we jump into the deep end, ensure your system is rocking TGI version `1.4.3` or later to access all the cool new features we're about to explore.
If you're not up to date, grab the latest version and let's roll!
## Table of Contents 📚
#### Grammar and Constraints
- [The Grammar Parameter](#the-grammar-parameter): Shape your AI's responses with precision.
- [Constrain with Pydantic](#constrain-with-pydantic): Define a grammar using Pydantic models.
- [JSON Schema Integration](#json-schema-integration): Fine grain control over your requests via JSON schema.
- [Using the client](#using-the-client): Use TGI's client libraries to shape the AI's responses.
#### Tools and Functions
- [The Tools Parameter](#the-tools-parameter): Enhance the AI's capabilities with predefined functions.
- [Via the client](#text-generation-inference-client): Use TGI's client libraries to interact with the Messages API and Tool functions.
- [OpenAI integration](#openai-integration): Use OpenAI's client libraries to interact with TGI's Messages API and Tool functions.
## Grammar and Constraints 🛣️
### The Grammar Parameter
In TGI `1.4.3`, we've introduced the grammar parameter, which allows you to specify the format of the response you want from the AI. This is a game-changer for those who need precise control over the AI's output.
Using curl, you can make a request to TGI's Messages API with the grammar parameter. This is the most primitive way to interact with the API and using [Pydantic](#constrain-with-pydantic) is recommended for ease of use and readability.
```json
curl localhost:3000/generate \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"inputs": "I saw a puppy a cat and a raccoon during my bike ride in the park",
"parameters": {
"repetition_penalty": 1.3,
"grammar": {
"type": "json",
"value": {
"properties": {
"location": {
"type": "string"
},
"activity": {
"type": "string"
},
"animals_seen": {
"type": "integer",
"minimum": 1,
"maximum": 5
},
"animals": {
"type": "array",
"items": {
"type": "string"
}
}
},
"required": ["location", "activity", "animals_seen", "animals"]
}
}
}
}'
// {"generated_text":"{ \n\n\"activity\": \"biking\",\n\"animals\": [\"puppy\",\"cat\",\"raccoon\"],\n\"animals_seen\": 3,\n\"location\": \"park\"\n}"}
```
A grammar can be defined using Pydantic models, JSON schema, or regular expressions. The AI will then generate a response that conforms to the specified grammar.
> Note: A grammar must compile to a intermediate representation to constrain the output. Grammar compliation is a computationally expensive and may take a few seconds to complete on the first request. Subsequent requests will use the cached grammar and will be much faster.
### Constrain with Pydantic
Pydantic is a powerful library for data validation and settings management. It's the perfect tool for crafting the a specific response format.
Using Pydantic models we can define a similar grammar as the previous example in a shorter and more readable way.
```python
import requests
from pydantic import BaseModel, conint
from typing import List
class Animals(BaseModel):
location: str
activity: str
animals_seen: conint(ge=1, le=5) # Constrained integer type
animals: List[str]
prompt = "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park"
data = {
"inputs": prompt,
"parameters": {
"repetition_penalty": 1.3,
"grammar": {
"type": "json",
"value": Animals.schema()
}
}
}
headers = {
"Content-Type": "application/json",
}
response = requests.post(
'http://127.0.0.1:3000/generate',
headers=headers,
json=data
)
print(response.json())
# {'generated_text': '{ "activity": "bike riding", "animals": ["puppy","cat","raccoon"],"animals_seen": 3, "location":"park" }'}
```
### JSON Schema Integration
If Pydantic's not your style, go raw with direct JSON Schema integration. It's like having a conversation with the AI in its own language. This is simliar to the first example but with programmatic control.
```python
import requests
json_schema = {
"properties": {
"location": {
"type": "string"
},
"activity": {
"type": "string"
},
"animals_seen": {
"type": "integer",
"minimum": 1,
"maximum": 5
},
"animals": {
"type": "array",
"items": {
"type": "string"
}
}
},
"required": ["location", "activity", "animals_seen", "animals"]
}
data = {
"inputs": "[INST]convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park [/INST]",
"parameters": {
"max_new_tokens": 200,
"repetition_penalty": 1.3,
"grammar": {
"type": "json",
"value": json_schema
}
}
}
headers = {
"Content-Type": "application/json",
}
response = requests.post(
'http://127.0.0.1:3000/generate',
headers=headers,
json=data
)
print(response.json())
# {'generated_text': '{\n"activity": "biking",\n"animals": ["puppy","cat","raccoon"]\n , "animals_seen": 3,\n "location":"park"}'}
```
### Using the client
TGI provides a client library to that make it easy to send requests with all of the parameters we've discussed above. Here's an example of how to use the client to send a request with a grammar parameter.
```python
from text_generation import AsyncClient
from text_generation.types import GrammarType
# NOTE: tools defined above and removed for brevity
# Define an async function to encapsulate the async operation
async def main():
client = AsyncClient(base_url="http://localhost:3000")
# Use 'await' to wait for the async method 'chat' to complete
response = await client.generate(
"Whats Googles DNS",
max_new_tokens=10,
decoder_input_details=True,
seed=1,
grammar={
"type": GrammarType.Regex,
"value": "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)",
},
)
# Once the response is received, you can process it
print(response.generated_text)
# Ensure the main async function is run in the event loop
if __name__ == "__main__":
import asyncio
asyncio.run(main())
# 118.8.0.84
```
## Tools and Functions 🛠️
### The Tools Parameter
In addition to the grammar parameter, we've also introduced a set of tools and functions to help you get the most out of the Messages API.
Tools are a set of user defined functions that can be used in tandem with the chat functionality to enhance the AI's capabilities. You can use these tools to perform a variety of tasks, such as data manipulation, formatting, and more.
Functions, similar to grammar are defined as JSON schema and can be passed as part of the parameters to the Messages API.
```json
curl localhost:3000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"model": "tgi",
"messages": [
{
"role": "user",
"content": "What is the weather like in New York?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location."
}
},
"required": ["location", "format"]
}
}
}
],
"tool_choice": "get_current_weather"
}'
// {"id":"","object":"text_completion","created":1709051640,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.2-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":19,"total_tokens":176}}
```
<details>
<summary>Tools used in example below</summary>
```python
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
},
},
{
"type": "function",
"function": {
"name": "get_n_day_weather_forecast",
"description": "Get an N-day weather forecast",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
"num_days": {
"type": "integer",
"description": "The number of days to forecast",
},
},
"required": ["location", "format", "num_days"],
},
},
}
]
```
</details>
### Text Generation Inference Client
TGI provides a client library to interact with the Messages API and Tool functions. The client library is available in both synchronous and asynchronous versions.
```python
from text_generation import AsyncClient
# NOTE: tools defined above and removed for brevity
# Define an async function to encapsulate the async operation
async def main():
client = AsyncClient(base_url="http://localhost:3000")
# Use 'await' to wait for the async method 'chat' to complete
response = await client.chat(
max_tokens=100,
seed=1,
tools=tools,
presence_penalty=-1.1,
messages=[
{
"role": "system",
"content": "You're a helpful assistant! Answer the users question best you can.",
},
{
"role": "user",
"content": "What is the weather like in Brooklyn, New York?",
},
],
)
# Once the response is received, you can process it
print(response.choices[0].message.tool_calls)
# Ensure the main async function is run in the event loop
if __name__ == "__main__":
import asyncio
asyncio.run(main())
# {"id":"","object":"text_completion","created":1709051942,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.2-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":20,"total_tokens":177}}
```
### OpenAI integration
TGI exposes an OpenAI-compatible API, which means you can use OpenAI's client libraries to interact with TGI's Messages API and Tool functions.
However there are some minor differences in the API, for example `tool_choice="auto"` will ALWAYS choose the tool for you. This is different from OpenAI's API where `tool_choice="auto"` will choose a tool if the model thinks it's necessary.
```python
from openai import OpenAI
# Initialize the client, pointing it to one of the available models
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="_",
)
# NOTE: tools defined above and removed for brevity
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{
"role": "system",
"content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
},
{
"role": "user",
"content": "What's the weather like the next 3 days in San Francisco, CA?",
},
],
tools=tools,
tool_choice="auto", # tool selected by model
max_tokens=500,
)
called = chat_completion.choices[0].message.tool_calls
print(called)
# {
# "id": 0,
# "type": "function",
# "function": {
# "description": None,
# "name": "tools",
# "parameters": {
# "format": "celsius",
# "location": "San Francisco, CA",
# "num_days": 3,
# },
# },
# }
```

View File

@ -531,6 +531,10 @@ pub(crate) struct ChatRequest {
/// A prompt to be appended before the tools /// A prompt to be appended before the tools
#[serde(default = "default_tool_prompt")] #[serde(default = "default_tool_prompt")]
#[schema(
nullable = true,
example = "\"Based on the conversation, please choose the most appropriate tool to use: \""
)]
pub tool_prompt: Option<String>, pub tool_prompt: Option<String>,
/// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter. /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
@ -663,6 +667,7 @@ pub(crate) struct ToolCall {
pub(crate) struct Message { pub(crate) struct Message {
#[schema(example = "user")] #[schema(example = "user")]
pub role: String, pub role: String,
#[serde(skip_serializing_if = "Option::is_none")]
#[schema(example = "My name is David and I")] #[schema(example = "My name is David and I")]
pub content: Option<String>, pub content: Option<String>,
#[serde(default, skip_serializing_if = "Option::is_none")] #[serde(default, skip_serializing_if = "Option::is_none")]

View File

@ -583,16 +583,6 @@ async fn chat_completions(
let logprobs = req.logprobs.unwrap_or(false); let logprobs = req.logprobs.unwrap_or(false);
let seed = req.seed; let seed = req.seed;
if stream && req.tools.is_some() {
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: "Tools are not supported with stream".to_string(),
error_type: "Input validation error".to_string(),
}),
));
}
// apply chat template to flatten the request into a single input // apply chat template to flatten the request into a single input
let mut inputs = match infer.apply_chat_template(req.messages) { let mut inputs = match infer.apply_chat_template(req.messages) {
Ok(inputs) => inputs, Ok(inputs) => inputs,
@ -620,8 +610,8 @@ async fn chat_completions(
( (
StatusCode::UNPROCESSABLE_ENTITY, StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse { Json(ErrorResponse {
error: "Input validation error".to_string(), error: "Tool choice not found in tool names".to_string(),
error_type: "Input validation error".to_string(), error_type: "Tool not found".to_string(),
}), }),
) )
})? })?
@ -765,7 +755,20 @@ async fn chat_completions(
function: Function { function: Function {
description: None, description: None,
name: "tools".to_string(), name: "tools".to_string(),
parameters: gen_text_value.get("function").unwrap().clone(), parameters: gen_text_value.get("function").map_or_else(
|| {
serde_json::from_str(&generation.generated_text).map_err(|e| {
(
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: e.to_string(),
error_type: "Input validation error".to_string(),
}),
)
})
},
|f| Ok(f.clone()),
)?,
}, },
}); });
(tool_call, None) (tool_call, None)