feat(server): load santacoder/starcoder models with safetensors

This commit is contained in:
OlivierDehaene 2023-06-01 10:55:26 +02:00
parent db2ebe3947
commit f6438ac352
2 changed files with 76 additions and 90 deletions

View File

@ -546,11 +546,7 @@ enum LauncherError {
WebserverCannotStart,
}
fn download_convert_model(
args: &Args,
auto_convert: bool,
running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
let mut download_argv = vec![
"text-generation-server".to_string(),
"download-weights".to_string(),
@ -562,11 +558,6 @@ fn download_convert_model(
"--json-output".to_string(),
];
// Auto convert weights to safetensors
if auto_convert {
download_argv.push("--auto-convert".to_string());
}
// Model optional revision
if let Some(revision) = &args.revision {
download_argv.push("--revision".to_string());
@ -932,11 +923,8 @@ fn main() -> Result<(), LauncherError> {
})
.expect("Error setting Ctrl-C handler");
// auto_convert is only needed for sharded models as we do not require safetensors in
// single shard mode
let auto_convert = num_shard > 1;
// Download and convert model weights
download_convert_model(&args, auto_convert, running.clone())?;
download_convert_model(&args, running.clone())?;
// Shared shutdown bool
let shutdown = Arc::new(Mutex::new(false));

View File

@ -54,12 +54,7 @@ class FlashSantacoder(FlashCausalLM):
)
# We do not use from_pretrained as we modified the model internal module layout
try:
filenames = weight_files(model_id, revision, ".bin")
# Local files not found
except LocalEntryNotFoundError:
hub_files = weight_hub_files(model_id, revision, ".bin")
filenames = download_weights(hub_files, model_id, revision)
filenames = weight_files(model_id, revision, ".safetensors")
with init_empty_weights():
model = FlashSantacoderForCausalLM(config)
@ -91,8 +86,11 @@ class FlashSantacoder(FlashCausalLM):
transpose: bool,
):
for filename in filenames:
state_dict = torch.load(filename, map_location="cpu")
for key, value in state_dict.items():
with safe_open(
filename, framework="pt", device=str(device) if quantize is None else "cpu"
) as f:
for key in f.keys():
value = f.get_slice(key)
value = value.to(device if quantize is None else "cpu").to(dtype)
layer_name = ".".join(key.split(".")[:4])