mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 20:34:54 +00:00
Fixing legacy and CPU configs.
This commit is contained in:
parent
2f243a1a15
commit
f48b6109fd
@ -21,10 +21,38 @@ use tracing_subscriber::EnvFilter;
|
||||
|
||||
mod env_runtime;
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct RawConfig {
|
||||
max_position_embeddings: Option<usize>,
|
||||
n_positions: Option<usize>,
|
||||
max_seq_len: Option<usize>,
|
||||
}
|
||||
|
||||
#[derive(Deserialize)]
|
||||
struct Config {
|
||||
max_position_embeddings: Option<usize>,
|
||||
max_seq_len: Option<usize>,
|
||||
}
|
||||
|
||||
impl From<RawConfig> for Config {
|
||||
fn from(other: RawConfig) -> Self {
|
||||
if other.max_position_embeddings.is_some() {
|
||||
Config {
|
||||
max_position_embeddings: other.max_position_embeddings,
|
||||
}
|
||||
} else if other.max_seq_len.is_some() {
|
||||
Config {
|
||||
max_position_embeddings: other.max_seq_len,
|
||||
}
|
||||
} else if other.n_positions.is_some() {
|
||||
Config {
|
||||
max_position_embeddings: other.n_positions,
|
||||
}
|
||||
} else {
|
||||
Config {
|
||||
max_position_embeddings: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, ValueEnum)]
|
||||
@ -1309,13 +1337,13 @@ fn main() -> Result<(), LauncherError> {
|
||||
};
|
||||
|
||||
let content = std::fs::read_to_string(filename)?;
|
||||
let config: Config = serde_json::from_str(&content)?;
|
||||
let config: RawConfig = serde_json::from_str(&content)?;
|
||||
let config: Config = config.into();
|
||||
|
||||
// Quantization usually means you're even more RAM constrained.
|
||||
let max_default = 4096;
|
||||
|
||||
let max_position_embeddings = match (config.max_position_embeddings, config.max_seq_len) {
|
||||
(Some(max_position_embeddings), _) | (None, Some(max_position_embeddings)) => {
|
||||
if let Some(max_position_embeddings) = config.max_position_embeddings {
|
||||
if max_position_embeddings > max_default {
|
||||
let max = max_position_embeddings;
|
||||
if args.max_input_tokens.is_none()
|
||||
@ -1324,18 +1352,15 @@ fn main() -> Result<(), LauncherError> {
|
||||
{
|
||||
tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
|
||||
}
|
||||
max_default
|
||||
Ok(max_default)
|
||||
} else {
|
||||
max_position_embeddings
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
return Err(Box::new(LauncherError::ArgumentValidation(
|
||||
"no max defined".to_string(),
|
||||
)));
|
||||
}
|
||||
};
|
||||
Ok(max_position_embeddings)
|
||||
}
|
||||
} else {
|
||||
Err(Box::new(LauncherError::ArgumentValidation(
|
||||
"no max defined".to_string(),
|
||||
)))
|
||||
}
|
||||
};
|
||||
let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);
|
||||
|
||||
|
@ -472,6 +472,7 @@ def get_model(
|
||||
)
|
||||
elif model_type == GPT2:
|
||||
if FLASH_ATTENTION:
|
||||
try:
|
||||
return FlashGPT2(
|
||||
model_id,
|
||||
revision,
|
||||
@ -480,6 +481,17 @@ def get_model(
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
except RuntimeError as e:
|
||||
# Lots of legacy models with various weight names.
|
||||
logger.warning(f"Couldn't load flash gpt2 variant: {e}")
|
||||
return CausalLM(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
|
||||
else:
|
||||
|
@ -14,13 +14,20 @@ from typing import List, Optional
|
||||
from text_generation_server.cache import Cache
|
||||
from text_generation_server.interceptor import ExceptionInterceptor
|
||||
from text_generation_server.models import Model, get_model
|
||||
from text_generation_server.models.pali_gemma import PaliGemmaBatch
|
||||
from text_generation_server.models.vlm_causal_lm import (
|
||||
|
||||
try:
|
||||
from text_generation_server.models.pali_gemma import PaliGemmaBatch
|
||||
from text_generation_server.models.vlm_causal_lm import (
|
||||
VlmCausalLMBatch,
|
||||
)
|
||||
)
|
||||
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
|
||||
|
||||
VLM_BATCH_TYPES = {PaliGemmaBatch, VlmCausalLMBatch, IdeficsCausalLMBatch}
|
||||
except (ImportError, NotImplementedError):
|
||||
VLM_BATCH_TYPES = set()
|
||||
|
||||
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
|
||||
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
|
||||
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
|
||||
from text_generation_server.models.globals import set_model_id
|
||||
|
||||
|
||||
@ -96,11 +103,9 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
if self.model.batch_type in {
|
||||
IdeficsCausalLMBatch,
|
||||
VlmCausalLMBatch,
|
||||
PaliGemmaBatch,
|
||||
}: # Hack, i would rather use kwargs in the `from_pb` call
|
||||
if (
|
||||
self.model.batch_type in VLM_BATCH_TYPES
|
||||
): # Hack, i would rather use kwargs in the `from_pb` call
|
||||
batch = self.model.batch_type.from_pb_processor(
|
||||
request.batch,
|
||||
self.model.tokenizer,
|
||||
@ -121,11 +126,9 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||
|
||||
async def Prefill(self, request, context):
|
||||
start = time.time_ns()
|
||||
if self.model.batch_type in {
|
||||
IdeficsCausalLMBatch,
|
||||
VlmCausalLMBatch,
|
||||
PaliGemmaBatch,
|
||||
}: # Hack, i would rather use kwargs in the `from_pb` call
|
||||
if (
|
||||
self.model.batch_type in VLM_BATCH_TYPES
|
||||
): # Hack, i would rather use kwargs in the `from_pb` call
|
||||
batch = self.model.batch_type.from_pb_processor(
|
||||
request.batch,
|
||||
self.model.tokenizer,
|
||||
|
Loading…
Reference in New Issue
Block a user