Adding Idefics multi modal model.

Co-Authored-By: Victor Sanh <victorsanh@gmail.com>
This commit is contained in:
Nicolas Patry 2023-08-14 16:05:47 +00:00
parent 05dd14fdb9
commit eaf9448b48
8 changed files with 3039 additions and 6 deletions

View File

@ -18,6 +18,8 @@ from text_generation_server.models.galactica import GalacticaSharded
from text_generation_server.models.santacoder import SantaCoder from text_generation_server.models.santacoder import SantaCoder
from text_generation_server.models.t5 import T5Sharded from text_generation_server.models.t5 import T5Sharded
from text_generation_server.models.gpt_neox import GPTNeoxSharded from text_generation_server.models.gpt_neox import GPTNeoxSharded
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
from text_generation_server.models.idefics import IDEFICSSharded
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False # The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later. # in PyTorch 1.12 and later.
@ -40,6 +42,7 @@ __all__ = [
"OPTSharded", "OPTSharded",
"T5Sharded", "T5Sharded",
"get_model", "get_model",
"IDEFICSSharded",
] ]
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models." FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
@ -248,6 +251,14 @@ def get_model(
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
elif model_type == "idefics":
return IDEFICSSharded(
model_id,
revision,
quantize=quantize,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if sharded: if sharded:
raise ValueError("sharded is not supported for AutoModel") raise ValueError("sharded is not supported for AutoModel")

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,246 @@
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
#
# MIT License
#
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
References:
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
"""
from typing import Optional, Tuple
import torch
import torch.nn as nn
from transformers import IdeficsConfig
from text_generation_server.utils.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
EPS=1e-5
class IdeficsPerceiverResampler(nn.Module):
def __init__(
self,
prefix,
config: IdeficsConfig,
embed_dim: int,
depth: int,
n_heads: int,
head_dim: int,
n_latents: int,
weights,
) -> None:
"""
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
Could be e.g., VIT embed_dim, ResNet pool dim, and so on.
Args:
config (`IdeficsConfig`): config object
embed_dim (`int`): The size of each embedding vector
depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
head_dim (`int`): Dimensionality of each head projection in the Transformer block.
n_latents (`int`):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
# Create Latents for Perceiver
self.latents = nn.Parameter(weights.get_tensor(f"{prefix}.latents"))
self.intermediate_dim = (
self.embed_dim * 4
if not hasattr(config.vision_config, "embed_dim")
else config.vision_config.embed_dim * 4
)
# Create Transformer Blocks
self.blocks = nn.ModuleList(
[
nn.ModuleList(
[
IdeficsPerceiverAttention(
prefix=f"{prefix}.blocks.{layer_id}.0",
config=config,
embed_dim=self.embed_dim,
n_heads=self.n_heads,
head_dim=self.head_dim,
qk_layer_norms=self.qk_layer_norms,
weights=weights,
),
IdeficsMLP(
prefix=f"{prefix}.blocks.{layer_id}.1",
intermediate_size=self.intermediate_dim,
config=config,
weights=weights
),
]
)
for layer_id in range(depth)
]
)
self.layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.layer_norm", weights=weights, eps=EPS)
def forward(self, context: torch.Tensor) -> torch.Tensor:
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
# einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
latents = self.latents.repeat(context.shape[0], 1, 1)
# Feed through Perceiver Attention blocks...
for attn, ff in self.blocks:
latents = attn(context, latents) + latents
latents = ff(latents) + latents
return self.layer_norm(latents)
class IdeficsPerceiverAttention(nn.Module):
def __init__(self,
prefix,
config,
embed_dim: int,
n_heads: int,
head_dim: int,
qk_layer_norms: bool,
weights
) -> None:
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
self.qk_layer_norms = qk_layer_norms
# Normalization & Scaling
self.context_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.context_layer_norm", weights=weights, eps=EPS)
self.latents_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.latents_layer_norm", weights=weights, eps=EPS)
if self.qk_layer_norms:
self.q_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.q_layer_norm", weights=weights, eps=EPS)
self.k_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.k_layer_norm", weights=weights, eps=EPS)
self.qk_scale = self.head_dim**-0.5
process_group = weights.process_group
if n_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {n_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
self.q_proj = TensorParallelColumnLinear.load(
config=config, prefix=f"{prefix}.q_proj", weights=weights, bias=False
)
self.k_proj = TensorParallelColumnLinear.load(
config=config, prefix=f"{prefix}.k_proj", weights=weights, bias=False
)
self.v_proj = TensorParallelColumnLinear.load(
config=config, prefix=f"{prefix}.v_proj", weights=weights, bias=False
)
self.output_proj = TensorParallelRowLinear.load(
config=config, prefix=f"{prefix}.output_proj", weights=weights, bias=False
)
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
"""
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
Args:
context (`torch.Tensor`):
Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
latents (`torch.Tensor`):
Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.
Returns:
`torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
from context.
"""
context = self.context_layer_norm(context)
latents = self.latents_layer_norm(latents)
batch_size, seq_length, embed_dim = context.shape[:3]
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
q = self.q_proj(latents)
k = self.k_proj(torch.cat([context, latents], dim=-2))
v = self.v_proj(torch.cat([context, latents], dim=-2))
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
# einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads)
q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)]
if self.qk_layer_norms:
q = self.q_layer_norm(q)
k = self.k_layer_norm(k)
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
attn = stabilized_scores.softmax(dim=-1)
# Attend & project back to output...
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
# einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
return self.output_proj(resampled.transpose(1, 2).flatten(-2))
class IdeficsMLP(nn.Module):
def __init__(self,
prefix,
intermediate_size,
config: IdeficsConfig,
weights,
):
"""Simple MLP block with intermediate_size and embedding size"""
super().__init__()
self.embed_dim = config.vision_config.embed_dim
self.ln = nn.LayerNorm.load(prefix=f"{prefix}.ln", weights=weights, eps=EPS)
self.fc = TensorParallelColumnLinear.load(
config=config, prefix=f"{prefix}.fc", weights=weights, bias=False,
)
self.act = nn.ReLU()
self.c_proj = TensorParallelRowLinear.load(
config=config, prefix=f"{prefix}.c_proj", weights=weights, bias=False,
)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
hidden_states = self.fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states

View File

@ -0,0 +1,474 @@
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch IdeficsVision model: a copy of CLIPVisionModel using a simpler config object"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.utils import (
ModelOutput,
logging,
)
from transformers.models.idefics.configuration_idefics import IdeficsVisionConfig
from text_generation_server.utils.layers import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
TensorParallelEmbedding,
)
logger = logging.get_logger(__name__)
@dataclass
class IdeficsVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Idefics
class IdeficsVisionEmbeddings(nn.Module):
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(weights.get_tensor(f"{prefix}.class_embedding"))
self.patch_embedding = nn.Conv2d.load_no_bias(
prefix=f"{prefix}.patch_embedding",
weights=weights,
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
# self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.position_embedding = TensorParallelEmbedding(
prefix="model.vision_model.embeddings.position_embedding", weights=weights
)
# self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
self.position_ids = weights.get_tensor(f"{prefix}.position_ids")
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->IdeficsVision
class IdeficsVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
process_group = weights.process_group
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.k_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.k_proj", weights=weights, bias=True
)
self.v_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.v_proj", weights=weights, bias=True
)
self.q_proj = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.q_proj", weights=weights, bias=True
)
self.out_proj = TensorParallelRowLinear.load(
config, prefix=f"{prefix}.out_proj", weights=weights, bias=True
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->IdeficsVision
class IdeficsVisionMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.fc1", weights=weights, bias=True
)
self.fc2 = TensorParallelRowLinear.load(
config, prefix=f"{prefix}.fc2", weights=weights, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->IdeficsVision
class IdeficsVisionEncoderLayer(nn.Module):
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = IdeficsVisionAttention(prefix=f"{prefix}.self_attn", config=config, weights=weights)
self.layer_norm1 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
)
self.mlp = IdeficsVisionMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->IdeficsVision
class IdeficsVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`IdeficsVisionEncoderLayer`].
Args:
config: IdeficsVisionConfig
"""
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
IdeficsVisionEncoderLayer(prefix=f"{prefix}.encoder.layers.{layer_id}", config=config, weights=weights)
for layer_id in range(config.num_hidden_layers)
]
)
# self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# if self.gradient_checkpointing and self.training:
# def create_custom_forward(module):
# def custom_forward(*inputs):
# return module(*inputs, output_attentions)
# return custom_forward
# layer_outputs = torch.utils.checkpoint.checkpoint(
# create_custom_forward(encoder_layer),
# hidden_states,
# attention_mask,
# causal_attention_mask,
# )
# else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer
class IdeficsVisionTransformer(nn.Module):
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = IdeficsVisionEmbeddings(prefix=f"{prefix}.embeddings", config=config, weights=weights)
self.pre_layrnorm = nn.LayerNorm.load(
prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps
)
self.encoder = IdeficsVisionEncoder(prefix=prefix, config=config, weights=weights)
self.post_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_layernorm", weights=weights, eps=config.layer_norm_eps
)
# copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)

View File

@ -0,0 +1,112 @@
import torch
import torch.distributed
from typing import List, Optional, Tuple
from transformers import (
AutoTokenizer,
AutoConfig,
AutoProcessor,
)
from text_generation_server.models import IdeficsCausalLM
from text_generation_server.models.custom_modeling.idefics_modeling import (
IdeficsForVisionText2Text,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
class IDEFICSSharded(IdeficsCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.float32
self.device, self.dtype = device, dtype
config = AutoConfig.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
)
config.quantize = quantize
config.vision_config.quantize = quantize
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
self.processor = AutoProcessor.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(
filenames,
device=device,
dtype=dtype,
process_group=self.process_group,
)
model = IdeficsForVisionText2Text(config, weights)
torch.distributed.barrier(group=self.process_group)
super(IdeficsCausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
def forward(
self,
input_ids,
attention_mask,
position_ids,
pixel_values: Optional = None,
image_attention_mask: Optional = None,
past_key_values: Optional = None,
) -> Tuple[
torch.Tensor,
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
]:
# Model Forward
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
image_attention_mask=image_attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
return (
outputs.logits,
outputs.past_key_values,
)

View File

@ -0,0 +1,837 @@
import torch
import inspect
import re
from io import BytesIO
import base64
from PIL import Image
import json
from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, ProcessorMixin, IdeficsForVisionText2Text
from typing import Optional, Tuple, List, Type, Dict
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
tracer = trace.get_tracer(__name__)
# UTILS
def base64_to_pil(encoded_image):
decoded_image = base64.b64decode(encoded_image)
pil_image = Image.open(BytesIO(decoded_image))
return pil_image
def im_markdown_to_pil(im_markdown_str):
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
match = re.search(pattern, im_markdown_str)
img_b64_str = match.group(1)
return base64_to_pil(img_b64_str)
def split_str_on_im_markdown(string_with_potential_im_markdown):
"""
Extract from a string (typically the user prompt string) the potentional images saved as a base64 representation
inside a markdown.
"""
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
parts = re.split(pattern, string_with_potential_im_markdown)
result = []
for i, part in enumerate(parts):
if i % 2 == 0:
result.append(part)
else:
img_tag = f'<img src="data:image/png;base64,{part.strip()}" />'
result.append(img_tag)
return result
@dataclass
class IdeficsCausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
position_ids: torch.Tensor
pixel_values: Optional[torch.Tensor]
image_attention_mask: Optional[torch.Tensor]
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[int]
read_offsets: List[int]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
# Metadata used for padding
max_input_length: int
padding_right_offset: int
# Maximum number of tokens this batch will grow to
max_tokens: int
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
processor: ProcessorMixin, # Hack
dtype: torch.dtype,
device: torch.device,
) -> "IdeficsCausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
# Parse batch
max_truncation = 0
padding_right_offset = 0
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py {i=} {r=}")
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
stopping_criterias.append(stopping_criteria)
max_truncation = max(max_truncation, r.truncate) #TODO: understand that
max_decode_tokens += stopping_criteria.max_new_tokens # TODO: I think it is just the maximum of tokens to generate in the WHOLE batch
padding_right_offset = max(
padding_right_offset, stopping_criteria.max_new_tokens
)
prompts = []
for inp in inputs:
# Each input is encoded into a list, where each element of this input list is either a string or a URL
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py {inp=}")
if isinstance(inp, str):
prompts.append([inp])
elif isinstance(inp, list):
if not all(isinstance(item, str) for item in inp):
raise ValueError("All elements in the list must be strings (text string or image URL)")
prompts.append(
json.load(inp)
)
else:
raise ValueError("Unsupported type of input")
# I initially wanted to send the images in string base64 but they are too big to send in a consistent way...
# So resorting to uploading the image to a server and pulling them back
# splitted_inp = split_str_on_im_markdown(inp)
# prompts.append(
# [
# im_markdown_to_pil(s) if s.startswith('<img src="data:image/png;base64,') else s
# for s in splitted_inp
# if s != ""
# ]
# )
# The processor replaces the call to tokenizer, and
# a/ takes care of fetching images from the URL
# b/ generate the correct input_ids, attention_mask, pixel_values, image_attention_mask to feed to the model
tokenized_inputs = processor(
prompts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_truncation,
add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token
).to(device)
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py - {tokenized_inputs['input_ids']=}")
# from loguru import logger; logger.info({k: v.size() for k,v in processed_inputs.items()})
# {'input_ids': torch.Size([4, 5]), 'attention_mask': torch.Size([4, 5]), 'pixel_values': torch.Size([4, num_images, 3, 224, 224]), 'image_attention_mask': torch.Size([4, 5, num_images])}
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1]
prefix_offsets.append(input_len - 5) # To decode without potential fallbacks errors
read_offsets.append(input_len) # To decode without potential fallbacks errors
input_lengths = tokenized_inputs["attention_mask"].sum(1)
max_input_length = input_lengths.max()
input_ids = tokenized_inputs["input_ids"]
pixel_values = tokenized_inputs["pixel_values"]
# Allocate maximum attention_mask
attention_mask = input_ids.new_zeros(
(pb.size, max_input_length + padding_right_offset)
)
# Copy tokenizer attention_mask into fully allocated attention_mask
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
# Do the same for image_attention_mask - I CHANGED THINGS HERE - mostly testing for now
image_attention_mask = input_ids.new_zeros(
(pb.size, max_input_length + padding_right_offset, tokenized_inputs["pixel_values"].size(1))
)
# image_attention_mask = tokenized_inputs["image_attention_mask"]
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py - image_attention_mask {image_attention_mask.size()}")
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1) # It's input_ids but splitted into a tuple of tensors where each tensor is (seq_len, 1) size. It is then transformed into a list
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
image_attention_mask=image_attention_mask,
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths.tolist(),
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length.item(),
padding_right_offset=padding_right_offset,
max_tokens=max_tokens,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]) -> Optional["IdeficsCausalLMBatch"]:
from loguru import logger; logger.info(f"filter in idefics_causal_lm.py")
# It deletes requests from the batch. For instance when client lost connection
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
if len(request_ids) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
requests = []
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
max_input_length = 0
next_token_choosers = []
stopping_criterias = []
total_remaining_decode_tokens = 0
new_padding_right_offset = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
requests_idx_mapping[request_id] = i
keep_indices.append(idx)
requests.append(self.requests[idx])
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
next_token_choosers.append(self.next_token_choosers[idx])
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
remaining_decode_tokens = (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
total_remaining_decode_tokens += remaining_decode_tokens
new_padding_right_offset = max(
new_padding_right_offset, remaining_decode_tokens
)
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
position_ids = self.position_ids[keep_indices]
self.attention_mask = self.attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
]
# Do the same for pixel_values and image_attention_mask
pixel_values = self.pixel_values[keep_indices]
self.image_attention_mask = self.image_attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.image_attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
:
]
# Ensure that past_key_values tensors can be updated in-place
if type(self.past_key_values[0]) == tuple:
self.past_key_values = [list(layer) for layer in self.past_key_values]
# Update tensors in-place to allow incremental garbage collection
past_kv_length = max_input_length - 1
for layer in self.past_key_values:
past_keys, past_values = layer
if len(past_keys.shape) == 3:
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
if self.keys_head_dim_last:
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
else:
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
del past_keys
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
del past_values
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
self.requests = requests
self.requests_idx_mapping = requests_idx_mapping
self.input_ids = input_ids
self.pixel_values = pixel_values
self.position_ids = position_ids
self.all_input_ids = all_input_ids
self.input_lengths = input_lengths
self.prefix_offsets = prefix_offsets
self.read_offsets = read_offsets
self.next_token_choosers = next_token_choosers
self.stopping_criterias = stopping_criterias
self.max_input_length = max_input_length
self.padding_right_offset = new_padding_right_offset
self.max_tokens = max_tokens
return self
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["IdeficsCausalLMBatch"]) -> "IdeficsCausalLMBatch":
from loguru import logger; logger.info(f"concatenate in idefics_causal_lm.py")
# It adds new requests to the batch
# Used for padding
total_batch_size = 0
max_input_length = 0
max_num_images = 0
padding_right_offset = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
max_num_images = max(max_num_images, batch.pixel_values.size(1))
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
# Batch attributes
requests = []
requests_idx_mapping = {}
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
max_tokens = 0
# Batch tensors
input_ids = None
attention_mask = None
position_ids = None
pixel_values = None
image_attention_mask = None
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
curr_batch_max_num_images = batch.pixel_values.size(1)
if pixel_values is None:
pixel_values = batch.pixel_values.new_zeros((total_batch_size, max_num_images, 3, 224, 224))
pixel_values[start_index:end_index, :curr_batch_max_num_images] = batch.pixel_values
if image_attention_mask is None:
image_attention_mask = batch.image_attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset, max_num_images)
)
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = (
batch.attention_mask.shape[1]
- batch.max_input_length
- batch.padding_right_offset
)
attention_mask[
start_index:end_index,
left_offset:-padding_right_offset,
] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
from loguru import logger; logger.info(f"concatenate in idefics_causal_lm.py - image_attention_mask {image_attention_mask.size()}")
from loguru import logger; logger.info(f"concatenate in idefics_causal_lm.py - batch.image_attention_mask {batch.image_attention_mask.size()}")
image_attention_mask[
start_index:end_index,
left_offset:-padding_right_offset,
:curr_batch_max_num_images
] = batch.image_attention_mask[
:,
batch_left_offset : - batch.padding_right_offset,
:
]
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
# And ensure that we can update tensors in-place
if type(batch.past_key_values[0]) == tuple:
batch.past_key_values = [
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
for layer in batch.past_key_values
]
elif len(batch.past_key_values[0][0].shape) == 3:
for layer in batch.past_key_values:
for k, t in enumerate(layer):
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
# Add eventual padding tokens that were added while concatenating
max_tokens += batch.max_tokens + (
max_input_length - batch.max_input_length
) * len(batch)
start_index = end_index
first_past_kvs = batches[0].past_key_values
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
padded_past_values_shape = (
total_batch_size,
num_heads,
max_input_length - 1,
head_dim,
)
if batches[0].keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
max_input_length - 1,
)
# Iterate over attention layers
# Concatenate past key values layer by layer to allow incremental garbage collection
for j in range(len(first_past_kvs)):
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
start_index = 0
for batch in batches:
past_keys = batch.past_key_values[j][0]
# Clear reference to the original tensor
batch.past_key_values[j][0] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the keys to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
if batch.keys_head_dim_last:
padded_past_keys[
start_index:end_index, :, -past_seq_len:, :
] = past_keys[:, :, -past_seq_len:, :]
else:
# BLOOM case
padded_past_keys[
start_index:end_index, :, :, -past_seq_len:
] = past_keys[:, :, :, -past_seq_len:]
del past_keys
start_index = end_index
padded_past_values = first_past_kvs[j][1].new_zeros(
padded_past_values_shape
)
start_index = 0
for batch in batches:
past_values = batch.past_key_values[j][1]
# Clear reference to the original tensor
batch.past_key_values[j][1] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the past values to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
padded_past_values[
start_index:end_index, :, -past_seq_len:, :
] = past_values[:, :, -past_seq_len:, :]
del past_values
# Update values
start_index = end_index
past_key_values.append([padded_past_keys, padded_past_values])
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
image_attention_mask=image_attention_mask,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
keys_head_dim_last=batches[0].keys_head_dim_last,
max_tokens=max_tokens,
)
def __len__(self):
return len(self.requests)
class IdeficsCausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16 if dtype is None else dtype
else:
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
self.processor = AutoProcessor.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
model = IdeficsForVisionText2Text.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
device_map="auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1
else None,
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
)
if torch.cuda.is_available() and torch.cuda.device_count() == 1:
model = model.cuda()
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "<unk>"})
super(IdeficsCausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
)
@property
def batch_type(self) -> Type[IdeficsCausalLMBatch]:
return IdeficsCausalLMBatch
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
def forward(
self,
input_ids,
attention_mask,
position_ids,
pixel_values,
image_attention_mask,
past_key_values: Optional = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"image_attention_mask": image_attention_mask,
"past_key_values": past_key_values,
"use_cache": True,
"return_dict": True,
}
if self.has_position_ids:
kwargs["position_ids"] = position_ids
outputs = self.model.forward(**kwargs)
return outputs.logits, outputs.past_key_values
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: IdeficsCausalLMBatch
) -> Tuple[List[Generation], Optional[IdeficsCausalLMBatch]]:
from loguru import logger; logger.info("generate_token in idefics_causal_lm.py - enter")
# slice the attention mask to the correct shape
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
if batch.input_ids.size(1) == 1:
# THIS is a hack: when calling idefics.generate, the first time, we need the whole image_attention_mask (size bs x max_seq_len x max_num_images),
# but the subsequent times, we only need the last attention mask along the `max_seq_len` dimension
# this is due to the nature IDEFICS: it's an encoder decoder, and so when decoding, only the currently generated
# token need to attend to the encoder hidden states (i.e. the vision encoder)
# Also see seq2seq_lm.Seq2SeqLM.generate_token which has roughly the same logic
image_attention_mask = batch.image_attention_mask[:, -batch.padding_right_offset].unsqueeze(1) #TODO: verify that index. i have a doubt whether there is +1 hanging around
else:
image_attention_mask = batch.image_attention_mask[:, : -batch.padding_right_offset]
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.padding_right_offset=}")
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.attention_mask.size()=}")
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {attention_mask.size()=}")
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.image_attention_mask=}")
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.image_attention_mask.size()=}")
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {image_attention_mask.size()=}")
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {image_attention_mask=}")
logits, past = self.forward(
input_ids=batch.input_ids,
attention_mask=attention_mask,
position_ids=batch.position_ids,
pixel_values=batch.pixel_values,
image_attention_mask=image_attention_mask,
past_key_values=batch.past_key_values,
)
# Results
generations: List[Generation] = []
stopped = True
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
logits,
next_token_chooser,
stopping_criteria,
all_input_ids,
) in enumerate(iterator):
# Select next token
next_token_id, logprobs = next_token_chooser(
all_input_ids.view(1, -1), logits[-1:, :]
)
# Append next token to all tokens
all_input_ids = torch.cat([all_input_ids, next_token_id])
new_input_length = input_length + 1
# Generated token
next_token_logprob = logprobs[-1, next_token_id]
next_token_id_squeezed = next_token_id.squeeze()
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[:, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id_squeezed,
next_token_text,
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens :, 0]
)
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
seed = next_token_chooser.choice.seed
else:
seed = None
generated_text = GeneratedText(
output_text, stopping_criteria.current_tokens, reason, seed
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + torch.log_softmax(
logits, -1
).gather(1, all_input_ids[1:]).squeeze(1)[
-new_input_length:-1
].tolist()
prefill_token_ids = all_input_ids[-new_input_length:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, prefill_logprobs, prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id_squeezed,
next_token_logprob,
next_token_text,
next_token_id_squeezed.item() in self.all_special_ids,
generated_text,
)
generations.append(generation)
# Update values
batch.input_ids[i, 0] = next_token_id
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - batch.input_ids 1 {batch.input_ids.size()}")
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.max_input_length = max(batch.max_input_length, new_input_length)
# We finished all generations in the batch; there is no next batch
if stopped:
return generations, None
# Slice unused values from prefill
batch.input_ids = batch.input_ids[:, :1]
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - batch.input_ids 2 {batch.input_ids.size()}")
# Update attention_mask as we added a new token to input_ids
batch.attention_mask[:, -batch.padding_right_offset] = 1
batch.image_attention_mask[:, -batch.padding_right_offset, :] = batch.image_attention_mask[:, -(batch.padding_right_offset+1), :]
# Decrease right offset
batch.padding_right_offset -= 1
# Update position_ids
batch.position_ids = batch.position_ids[:, -1:] + 1
# Update past key values
batch.past_key_values = past
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {stopped=}")
return generations, batch

View File

@ -14,6 +14,7 @@ from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model from text_generation_server.models import Model, get_model
from text_generation_server.pb import generate_pb2_grpc, generate_pb2 from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer): class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
@ -54,9 +55,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb()) return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
async def Warmup(self, request, context): async def Warmup(self, request, context):
batch = self.model.batch_type.from_pb( if self.model.batch_type == IdeficsCausalLMBatch: #Hack, i would rather use kwargs in the `from_pb` call
request.batch, self.model.tokenizer, self.model.dtype, self.model.device batch = self.model.batch_type.from_pb(
) request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
max_supported_total_tokens = self.model.warmup(batch) max_supported_total_tokens = self.model.warmup(batch)
return generate_pb2.WarmupResponse( return generate_pb2.WarmupResponse(
@ -64,9 +70,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
) )
async def Prefill(self, request, context): async def Prefill(self, request, context):
batch = self.model.batch_type.from_pb( if self.model.batch_type == IdeficsCausalLMBatch: #Hack, i would rather use kwargs in the `from_pb` call
request.batch, self.model.tokenizer, self.model.dtype, self.model.device batch = self.model.batch_type.from_pb(
) request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
generations, next_batch = self.model.generate_token(batch) generations, next_batch = self.model.generate_token(batch)
self.cache.set(next_batch) self.cache.set(next_batch)

View File

@ -51,7 +51,31 @@ def load_layer_norm_no_bias(cls, prefix, weights, eps):
ln.bias = None ln.bias = None
return ln return ln
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)
conv2d.weight = nn.Parameter(weight)
conv2d.bias = nn.Parameter(bias)
return conv2d
@classmethod
def load_conv2d_no_bias(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)
conv2d.weight = nn.Parameter(weight)
conv2d.bias = None
return conv2d
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
torch.nn.LayerNorm.load = load_layer_norm torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias