mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 20:04:52 +00:00
Adding Idefics multi modal model.
Co-Authored-By: Victor Sanh <victorsanh@gmail.com>
This commit is contained in:
parent
05dd14fdb9
commit
eaf9448b48
@ -18,6 +18,8 @@ from text_generation_server.models.galactica import GalacticaSharded
|
|||||||
from text_generation_server.models.santacoder import SantaCoder
|
from text_generation_server.models.santacoder import SantaCoder
|
||||||
from text_generation_server.models.t5 import T5Sharded
|
from text_generation_server.models.t5 import T5Sharded
|
||||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||||
|
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
|
||||||
|
from text_generation_server.models.idefics import IDEFICSSharded
|
||||||
|
|
||||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||||
# in PyTorch 1.12 and later.
|
# in PyTorch 1.12 and later.
|
||||||
@ -40,6 +42,7 @@ __all__ = [
|
|||||||
"OPTSharded",
|
"OPTSharded",
|
||||||
"T5Sharded",
|
"T5Sharded",
|
||||||
"get_model",
|
"get_model",
|
||||||
|
"IDEFICSSharded",
|
||||||
]
|
]
|
||||||
|
|
||||||
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
|
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
|
||||||
@ -248,6 +251,14 @@ def get_model(
|
|||||||
dtype=dtype,
|
dtype=dtype,
|
||||||
trust_remote_code=trust_remote_code,
|
trust_remote_code=trust_remote_code,
|
||||||
)
|
)
|
||||||
|
elif model_type == "idefics":
|
||||||
|
return IDEFICSSharded(
|
||||||
|
model_id,
|
||||||
|
revision,
|
||||||
|
quantize=quantize,
|
||||||
|
dtype=dtype,
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
)
|
||||||
|
|
||||||
if sharded:
|
if sharded:
|
||||||
raise ValueError("sharded is not supported for AutoModel")
|
raise ValueError("sharded is not supported for AutoModel")
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,246 @@
|
|||||||
|
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
|
||||||
|
#
|
||||||
|
# MIT License
|
||||||
|
#
|
||||||
|
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
|
||||||
|
#
|
||||||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
# of this software and associated documentation files (the "Software"), to deal
|
||||||
|
# in the Software without restriction, including without limitation the rights
|
||||||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
# copies of the Software, and to permit persons to whom the Software is
|
||||||
|
# furnished to do so, subject to the following conditions:
|
||||||
|
#
|
||||||
|
# The above copyright notice and this permission notice shall be included in all
|
||||||
|
# copies or substantial portions of the Software.
|
||||||
|
#
|
||||||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
# SOFTWARE.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
|
||||||
|
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
|
||||||
|
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
|
||||||
|
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
|
||||||
|
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
|
||||||
|
|
||||||
|
References:
|
||||||
|
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
|
||||||
|
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
|
||||||
|
|
||||||
|
"""
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from transformers import IdeficsConfig
|
||||||
|
from text_generation_server.utils.layers import (
|
||||||
|
TensorParallelColumnLinear,
|
||||||
|
TensorParallelRowLinear,
|
||||||
|
)
|
||||||
|
|
||||||
|
EPS=1e-5
|
||||||
|
|
||||||
|
class IdeficsPerceiverResampler(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
prefix,
|
||||||
|
config: IdeficsConfig,
|
||||||
|
embed_dim: int,
|
||||||
|
depth: int,
|
||||||
|
n_heads: int,
|
||||||
|
head_dim: int,
|
||||||
|
n_latents: int,
|
||||||
|
weights,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
|
||||||
|
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
|
||||||
|
returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
|
||||||
|
to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
|
||||||
|
Could be e.g., VIT embed_dim, ResNet pool dim, and so on.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
config (`IdeficsConfig`): config object
|
||||||
|
embed_dim (`int`): The size of each embedding vector
|
||||||
|
depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
|
||||||
|
n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
|
||||||
|
head_dim (`int`): Dimensionality of each head projection in the Transformer block.
|
||||||
|
n_latents (`int`):
|
||||||
|
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
||||||
|
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
|
||||||
|
self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
|
||||||
|
|
||||||
|
# Create Latents for Perceiver
|
||||||
|
self.latents = nn.Parameter(weights.get_tensor(f"{prefix}.latents"))
|
||||||
|
|
||||||
|
self.intermediate_dim = (
|
||||||
|
self.embed_dim * 4
|
||||||
|
if not hasattr(config.vision_config, "embed_dim")
|
||||||
|
else config.vision_config.embed_dim * 4
|
||||||
|
)
|
||||||
|
# Create Transformer Blocks
|
||||||
|
self.blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
nn.ModuleList(
|
||||||
|
[
|
||||||
|
IdeficsPerceiverAttention(
|
||||||
|
prefix=f"{prefix}.blocks.{layer_id}.0",
|
||||||
|
config=config,
|
||||||
|
embed_dim=self.embed_dim,
|
||||||
|
n_heads=self.n_heads,
|
||||||
|
head_dim=self.head_dim,
|
||||||
|
qk_layer_norms=self.qk_layer_norms,
|
||||||
|
weights=weights,
|
||||||
|
),
|
||||||
|
IdeficsMLP(
|
||||||
|
prefix=f"{prefix}.blocks.{layer_id}.1",
|
||||||
|
intermediate_size=self.intermediate_dim,
|
||||||
|
config=config,
|
||||||
|
weights=weights
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
for layer_id in range(depth)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
self.layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.layer_norm", weights=weights, eps=EPS)
|
||||||
|
|
||||||
|
def forward(self, context: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
|
||||||
|
# einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
|
||||||
|
latents = self.latents.repeat(context.shape[0], 1, 1)
|
||||||
|
|
||||||
|
# Feed through Perceiver Attention blocks...
|
||||||
|
for attn, ff in self.blocks:
|
||||||
|
latents = attn(context, latents) + latents
|
||||||
|
latents = ff(latents) + latents
|
||||||
|
|
||||||
|
return self.layer_norm(latents)
|
||||||
|
|
||||||
|
|
||||||
|
class IdeficsPerceiverAttention(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
prefix,
|
||||||
|
config,
|
||||||
|
embed_dim: int,
|
||||||
|
n_heads: int,
|
||||||
|
head_dim: int,
|
||||||
|
qk_layer_norms: bool,
|
||||||
|
weights
|
||||||
|
) -> None:
|
||||||
|
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
|
||||||
|
self.qk_layer_norms = qk_layer_norms
|
||||||
|
# Normalization & Scaling
|
||||||
|
self.context_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.context_layer_norm", weights=weights, eps=EPS)
|
||||||
|
self.latents_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.latents_layer_norm", weights=weights, eps=EPS)
|
||||||
|
if self.qk_layer_norms:
|
||||||
|
self.q_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.q_layer_norm", weights=weights, eps=EPS)
|
||||||
|
self.k_layer_norm = nn.LayerNorm.load(prefix=f"{prefix}.k_layer_norm", weights=weights, eps=EPS)
|
||||||
|
|
||||||
|
self.qk_scale = self.head_dim**-0.5
|
||||||
|
|
||||||
|
process_group = weights.process_group
|
||||||
|
if n_heads % weights.process_group.size() != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {n_heads} "
|
||||||
|
f"and `num_shards`: {weights.process_group.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
|
||||||
|
self.q_proj = TensorParallelColumnLinear.load(
|
||||||
|
config=config, prefix=f"{prefix}.q_proj", weights=weights, bias=False
|
||||||
|
)
|
||||||
|
self.k_proj = TensorParallelColumnLinear.load(
|
||||||
|
config=config, prefix=f"{prefix}.k_proj", weights=weights, bias=False
|
||||||
|
)
|
||||||
|
self.v_proj = TensorParallelColumnLinear.load(
|
||||||
|
config=config, prefix=f"{prefix}.v_proj", weights=weights, bias=False
|
||||||
|
)
|
||||||
|
|
||||||
|
self.output_proj = TensorParallelRowLinear.load(
|
||||||
|
config=config, prefix=f"{prefix}.output_proj", weights=weights, bias=False
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
|
||||||
|
|
||||||
|
Args:
|
||||||
|
context (`torch.Tensor`):
|
||||||
|
Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
|
||||||
|
latents (`torch.Tensor`):
|
||||||
|
Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
|
||||||
|
from context.
|
||||||
|
"""
|
||||||
|
context = self.context_layer_norm(context)
|
||||||
|
latents = self.latents_layer_norm(latents)
|
||||||
|
batch_size, seq_length, embed_dim = context.shape[:3]
|
||||||
|
|
||||||
|
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
|
||||||
|
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
|
||||||
|
q = self.q_proj(latents)
|
||||||
|
k = self.k_proj(torch.cat([context, latents], dim=-2))
|
||||||
|
v = self.v_proj(torch.cat([context, latents], dim=-2))
|
||||||
|
|
||||||
|
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
|
||||||
|
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
|
||||||
|
# einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads)
|
||||||
|
q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)]
|
||||||
|
|
||||||
|
if self.qk_layer_norms:
|
||||||
|
q = self.q_layer_norm(q)
|
||||||
|
k = self.k_layer_norm(k)
|
||||||
|
|
||||||
|
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
|
||||||
|
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
|
||||||
|
attn = stabilized_scores.softmax(dim=-1)
|
||||||
|
|
||||||
|
# Attend & project back to output...
|
||||||
|
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
|
||||||
|
# einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
|
||||||
|
return self.output_proj(resampled.transpose(1, 2).flatten(-2))
|
||||||
|
|
||||||
|
|
||||||
|
class IdeficsMLP(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
prefix,
|
||||||
|
intermediate_size,
|
||||||
|
config: IdeficsConfig,
|
||||||
|
weights,
|
||||||
|
):
|
||||||
|
"""Simple MLP block with intermediate_size and embedding size"""
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = config.vision_config.embed_dim
|
||||||
|
self.ln = nn.LayerNorm.load(prefix=f"{prefix}.ln", weights=weights, eps=EPS)
|
||||||
|
self.fc = TensorParallelColumnLinear.load(
|
||||||
|
config=config, prefix=f"{prefix}.fc", weights=weights, bias=False,
|
||||||
|
)
|
||||||
|
self.act = nn.ReLU()
|
||||||
|
self.c_proj = TensorParallelRowLinear.load(
|
||||||
|
config=config, prefix=f"{prefix}.c_proj", weights=weights, bias=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
||||||
|
hidden_states = self.ln(hidden_states)
|
||||||
|
hidden_states = self.fc(hidden_states)
|
||||||
|
hidden_states = self.act(hidden_states)
|
||||||
|
hidden_states = self.c_proj(hidden_states)
|
||||||
|
|
||||||
|
return hidden_states
|
@ -0,0 +1,474 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" PyTorch IdeficsVision model: a copy of CLIPVisionModel using a simpler config object"""
|
||||||
|
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Optional, Tuple, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.utils.checkpoint
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from transformers.activations import ACT2FN
|
||||||
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||||||
|
from transformers.utils import (
|
||||||
|
ModelOutput,
|
||||||
|
logging,
|
||||||
|
)
|
||||||
|
from transformers.models.idefics.configuration_idefics import IdeficsVisionConfig
|
||||||
|
from text_generation_server.utils.layers import (
|
||||||
|
TensorParallelColumnLinear,
|
||||||
|
TensorParallelRowLinear,
|
||||||
|
TensorParallelEmbedding,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class IdeficsVisionModelOutput(ModelOutput):
|
||||||
|
"""
|
||||||
|
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
||||||
|
The image embeddings obtained by applying the projection layer to the pooler_output.
|
||||||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||||||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||||
|
|
||||||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||||||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||||||
|
sequence_length)`.
|
||||||
|
|
||||||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||||
|
heads.
|
||||||
|
"""
|
||||||
|
|
||||||
|
image_embeds: Optional[torch.FloatTensor] = None
|
||||||
|
last_hidden_state: torch.FloatTensor = None
|
||||||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Idefics
|
||||||
|
class IdeficsVisionEmbeddings(nn.Module):
|
||||||
|
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.embed_dim = config.hidden_size
|
||||||
|
self.image_size = config.image_size
|
||||||
|
self.patch_size = config.patch_size
|
||||||
|
|
||||||
|
self.class_embedding = nn.Parameter(weights.get_tensor(f"{prefix}.class_embedding"))
|
||||||
|
|
||||||
|
self.patch_embedding = nn.Conv2d.load_no_bias(
|
||||||
|
prefix=f"{prefix}.patch_embedding",
|
||||||
|
weights=weights,
|
||||||
|
in_channels=config.num_channels,
|
||||||
|
out_channels=self.embed_dim,
|
||||||
|
kernel_size=self.patch_size,
|
||||||
|
stride=self.patch_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
||||||
|
self.num_positions = self.num_patches + 1
|
||||||
|
# self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
||||||
|
self.position_embedding = TensorParallelEmbedding(
|
||||||
|
prefix="model.vision_model.embeddings.position_embedding", weights=weights
|
||||||
|
)
|
||||||
|
# self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
||||||
|
self.position_ids = weights.get_tensor(f"{prefix}.position_ids")
|
||||||
|
|
||||||
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||||||
|
batch_size = pixel_values.shape[0]
|
||||||
|
target_dtype = self.patch_embedding.weight.dtype
|
||||||
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||||||
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||||||
|
|
||||||
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
||||||
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||||||
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->IdeficsVision
|
||||||
|
class IdeficsVisionAttention(nn.Module):
|
||||||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||||
|
|
||||||
|
def __init__(self, prefix, config, weights):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.embed_dim = config.hidden_size
|
||||||
|
self.num_heads = config.num_attention_heads
|
||||||
|
self.head_dim = self.embed_dim // self.num_heads
|
||||||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||||||
|
raise ValueError(
|
||||||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||||||
|
f" {self.num_heads})."
|
||||||
|
)
|
||||||
|
self.scale = self.head_dim**-0.5
|
||||||
|
self.dropout = config.attention_dropout
|
||||||
|
|
||||||
|
process_group = weights.process_group
|
||||||
|
if self.num_heads % weights.process_group.size() != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||||
|
f"and `num_shards`: {weights.process_group.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
self.k_proj = TensorParallelColumnLinear.load(
|
||||||
|
config, prefix=f"{prefix}.k_proj", weights=weights, bias=True
|
||||||
|
)
|
||||||
|
self.v_proj = TensorParallelColumnLinear.load(
|
||||||
|
config, prefix=f"{prefix}.v_proj", weights=weights, bias=True
|
||||||
|
)
|
||||||
|
self.q_proj = TensorParallelColumnLinear.load(
|
||||||
|
config, prefix=f"{prefix}.q_proj", weights=weights, bias=True
|
||||||
|
)
|
||||||
|
self.out_proj = TensorParallelRowLinear.load(
|
||||||
|
config, prefix=f"{prefix}.out_proj", weights=weights, bias=True
|
||||||
|
)
|
||||||
|
|
||||||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
output_attentions: Optional[bool] = False,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
"""Input shape: Batch x Time x Channel"""
|
||||||
|
|
||||||
|
bsz, tgt_len, embed_dim = hidden_states.size()
|
||||||
|
|
||||||
|
# get query proj
|
||||||
|
query_states = self.q_proj(hidden_states) * self.scale
|
||||||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||||||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||||||
|
|
||||||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||||||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||||||
|
key_states = key_states.view(*proj_shape)
|
||||||
|
value_states = value_states.view(*proj_shape)
|
||||||
|
|
||||||
|
src_len = key_states.size(1)
|
||||||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||||||
|
|
||||||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||||||
|
raise ValueError(
|
||||||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||||||
|
f" {attn_weights.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# apply the causal_attention_mask first
|
||||||
|
if causal_attention_mask is not None:
|
||||||
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||||
|
raise ValueError(
|
||||||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
||||||
|
f" {causal_attention_mask.size()}"
|
||||||
|
)
|
||||||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
||||||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||||||
|
raise ValueError(
|
||||||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||||||
|
)
|
||||||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||||||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||||||
|
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
# this operation is a bit akward, but it's required to
|
||||||
|
# make sure that attn_weights keeps its gradient.
|
||||||
|
# In order to do so, attn_weights have to reshaped
|
||||||
|
# twice and have to be reused in the following
|
||||||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||||||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||||||
|
else:
|
||||||
|
attn_weights_reshaped = None
|
||||||
|
|
||||||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||||||
|
|
||||||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||||||
|
|
||||||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||||||
|
raise ValueError(
|
||||||
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||||||
|
f" {attn_output.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||||||
|
attn_output = attn_output.transpose(1, 2)
|
||||||
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
||||||
|
|
||||||
|
attn_output = self.out_proj(attn_output)
|
||||||
|
|
||||||
|
return attn_output, attn_weights_reshaped
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->IdeficsVision
|
||||||
|
class IdeficsVisionMLP(nn.Module):
|
||||||
|
def __init__(self, prefix, config, weights):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.activation_fn = ACT2FN[config.hidden_act]
|
||||||
|
self.fc1 = TensorParallelColumnLinear.load(
|
||||||
|
config, prefix=f"{prefix}.fc1", weights=weights, bias=True
|
||||||
|
)
|
||||||
|
self.fc2 = TensorParallelRowLinear.load(
|
||||||
|
config, prefix=f"{prefix}.fc2", weights=weights, bias=True
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||||
|
hidden_states = self.fc1(hidden_states)
|
||||||
|
hidden_states = self.activation_fn(hidden_states)
|
||||||
|
hidden_states = self.fc2(hidden_states)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->IdeficsVision
|
||||||
|
class IdeficsVisionEncoderLayer(nn.Module):
|
||||||
|
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
|
||||||
|
super().__init__()
|
||||||
|
self.embed_dim = config.hidden_size
|
||||||
|
self.self_attn = IdeficsVisionAttention(prefix=f"{prefix}.self_attn", config=config, weights=weights)
|
||||||
|
self.layer_norm1 = nn.LayerNorm.load(
|
||||||
|
prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
|
||||||
|
)
|
||||||
|
self.mlp = IdeficsVisionMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
||||||
|
self.layer_norm2 = nn.LayerNorm.load(
|
||||||
|
prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: torch.Tensor,
|
||||||
|
causal_attention_mask: torch.Tensor,
|
||||||
|
output_attentions: Optional[bool] = False,
|
||||||
|
) -> Tuple[torch.FloatTensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||||||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||||||
|
`(config.encoder_attention_heads,)`.
|
||||||
|
output_attentions (`bool`, *optional*):
|
||||||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||||
|
returned tensors for more detail.
|
||||||
|
"""
|
||||||
|
residual = hidden_states
|
||||||
|
|
||||||
|
hidden_states = self.layer_norm1(hidden_states)
|
||||||
|
hidden_states, attn_weights = self.self_attn(
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
causal_attention_mask=causal_attention_mask,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.layer_norm2(hidden_states)
|
||||||
|
hidden_states = self.mlp(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
|
||||||
|
outputs = (hidden_states,)
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
outputs += (attn_weights,)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
|
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->IdeficsVision
|
||||||
|
class IdeficsVisionEncoder(nn.Module):
|
||||||
|
"""
|
||||||
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||||||
|
[`IdeficsVisionEncoderLayer`].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
config: IdeficsVisionConfig
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.layers = nn.ModuleList(
|
||||||
|
[
|
||||||
|
IdeficsVisionEncoderLayer(prefix=f"{prefix}.encoder.layers.{layer_id}", config=config, weights=weights)
|
||||||
|
for layer_id in range(config.num_hidden_layers)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
# self.gradient_checkpointing = False
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
inputs_embeds,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutput]:
|
||||||
|
r"""
|
||||||
|
Args:
|
||||||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||||||
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||||
|
than the model's internal embedding lookup matrix.
|
||||||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||||||
|
|
||||||
|
- 1 for tokens that are **not masked**,
|
||||||
|
- 0 for tokens that are **masked**.
|
||||||
|
|
||||||
|
[What are attention masks?](../glossary#attention-mask)
|
||||||
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||||
|
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
||||||
|
|
||||||
|
- 1 for tokens that are **not masked**,
|
||||||
|
- 0 for tokens that are **masked**.
|
||||||
|
|
||||||
|
[What are attention masks?](../glossary#attention-mask)
|
||||||
|
output_attentions (`bool`, *optional*):
|
||||||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||||
|
returned tensors for more detail.
|
||||||
|
output_hidden_states (`bool`, *optional*):
|
||||||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||||||
|
for more detail.
|
||||||
|
return_dict (`bool`, *optional*):
|
||||||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||||||
|
"""
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
encoder_states = () if output_hidden_states else None
|
||||||
|
all_attentions = () if output_attentions else None
|
||||||
|
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
for idx, encoder_layer in enumerate(self.layers):
|
||||||
|
if output_hidden_states:
|
||||||
|
encoder_states = encoder_states + (hidden_states,)
|
||||||
|
# if self.gradient_checkpointing and self.training:
|
||||||
|
|
||||||
|
# def create_custom_forward(module):
|
||||||
|
# def custom_forward(*inputs):
|
||||||
|
# return module(*inputs, output_attentions)
|
||||||
|
|
||||||
|
# return custom_forward
|
||||||
|
|
||||||
|
# layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||||
|
# create_custom_forward(encoder_layer),
|
||||||
|
# hidden_states,
|
||||||
|
# attention_mask,
|
||||||
|
# causal_attention_mask,
|
||||||
|
# )
|
||||||
|
# else:
|
||||||
|
layer_outputs = encoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask,
|
||||||
|
causal_attention_mask,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||||||
|
|
||||||
|
if output_hidden_states:
|
||||||
|
encoder_states = encoder_states + (hidden_states,)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||||||
|
return BaseModelOutput(
|
||||||
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer
|
||||||
|
class IdeficsVisionTransformer(nn.Module):
|
||||||
|
def __init__(self, prefix, config: IdeficsVisionConfig, weights):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
embed_dim = config.hidden_size
|
||||||
|
|
||||||
|
self.embeddings = IdeficsVisionEmbeddings(prefix=f"{prefix}.embeddings", config=config, weights=weights)
|
||||||
|
self.pre_layrnorm = nn.LayerNorm.load(
|
||||||
|
prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps
|
||||||
|
)
|
||||||
|
self.encoder = IdeficsVisionEncoder(prefix=prefix, config=config, weights=weights)
|
||||||
|
self.post_layernorm = nn.LayerNorm.load(
|
||||||
|
prefix=f"{prefix}.post_layernorm", weights=weights, eps=config.layer_norm_eps
|
||||||
|
)
|
||||||
|
|
||||||
|
# copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||||||
|
r"""
|
||||||
|
Returns:
|
||||||
|
|
||||||
|
"""
|
||||||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
if pixel_values is None:
|
||||||
|
raise ValueError("You have to specify pixel_values")
|
||||||
|
|
||||||
|
hidden_states = self.embeddings(pixel_values)
|
||||||
|
hidden_states = self.pre_layrnorm(hidden_states)
|
||||||
|
|
||||||
|
encoder_outputs = self.encoder(
|
||||||
|
inputs_embeds=hidden_states,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
last_hidden_state = encoder_outputs[0]
|
||||||
|
pooled_output = last_hidden_state[:, 0, :]
|
||||||
|
pooled_output = self.post_layernorm(pooled_output)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||||||
|
|
||||||
|
return BaseModelOutputWithPooling(
|
||||||
|
last_hidden_state=last_hidden_state,
|
||||||
|
pooler_output=pooled_output,
|
||||||
|
hidden_states=encoder_outputs.hidden_states,
|
||||||
|
attentions=encoder_outputs.attentions,
|
||||||
|
)
|
112
server/text_generation_server/models/idefics.py
Normal file
112
server/text_generation_server/models/idefics.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
import torch
|
||||||
|
import torch.distributed
|
||||||
|
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
from transformers import (
|
||||||
|
AutoTokenizer,
|
||||||
|
AutoConfig,
|
||||||
|
AutoProcessor,
|
||||||
|
)
|
||||||
|
|
||||||
|
from text_generation_server.models import IdeficsCausalLM
|
||||||
|
from text_generation_server.models.custom_modeling.idefics_modeling import (
|
||||||
|
IdeficsForVisionText2Text,
|
||||||
|
)
|
||||||
|
from text_generation_server.utils import (
|
||||||
|
initialize_torch_distributed,
|
||||||
|
weight_files,
|
||||||
|
Weights,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class IDEFICSSharded(IdeficsCausalLM):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_id: str,
|
||||||
|
revision: Optional[str] = None,
|
||||||
|
quantize: Optional[str] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
trust_remote_code: bool = False,
|
||||||
|
):
|
||||||
|
self.process_group, rank, world_size = initialize_torch_distributed()
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device(f"cuda:{rank}")
|
||||||
|
dtype = torch.float16 if dtype is None else dtype
|
||||||
|
else:
|
||||||
|
device = torch.device("cpu")
|
||||||
|
dtype = torch.float32
|
||||||
|
self.device, self.dtype = device, dtype
|
||||||
|
|
||||||
|
config = AutoConfig.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision=revision,
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
)
|
||||||
|
config.quantize = quantize
|
||||||
|
config.vision_config.quantize = quantize
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision=revision,
|
||||||
|
padding_side="left",
|
||||||
|
truncation_side="left",
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
)
|
||||||
|
self.processor = AutoProcessor.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision=revision,
|
||||||
|
padding_side="left",
|
||||||
|
truncation_side="left",
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
)
|
||||||
|
|
||||||
|
torch.distributed.barrier(group=self.process_group)
|
||||||
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||||
|
weights = Weights(
|
||||||
|
filenames,
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
process_group=self.process_group,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = IdeficsForVisionText2Text(config, weights)
|
||||||
|
|
||||||
|
torch.distributed.barrier(group=self.process_group)
|
||||||
|
super(IdeficsCausalLM, self).__init__(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
requires_padding=True,
|
||||||
|
dtype=dtype,
|
||||||
|
device=device,
|
||||||
|
rank=rank,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
pixel_values: Optional = None,
|
||||||
|
image_attention_mask: Optional = None,
|
||||||
|
past_key_values: Optional = None,
|
||||||
|
) -> Tuple[
|
||||||
|
torch.Tensor,
|
||||||
|
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
|
||||||
|
]:
|
||||||
|
# Model Forward
|
||||||
|
outputs = self.model.forward(
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
pixel_values=pixel_values,
|
||||||
|
image_attention_mask=image_attention_mask,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
use_cache=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
return (
|
||||||
|
outputs.logits,
|
||||||
|
outputs.past_key_values,
|
||||||
|
)
|
837
server/text_generation_server/models/idefics_causal_lm.py
Normal file
837
server/text_generation_server/models/idefics_causal_lm.py
Normal file
@ -0,0 +1,837 @@
|
|||||||
|
import torch
|
||||||
|
import inspect
|
||||||
|
import re
|
||||||
|
from io import BytesIO
|
||||||
|
import base64
|
||||||
|
from PIL import Image
|
||||||
|
import json
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from opentelemetry import trace
|
||||||
|
from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase, ProcessorMixin, IdeficsForVisionText2Text
|
||||||
|
from typing import Optional, Tuple, List, Type, Dict
|
||||||
|
|
||||||
|
from text_generation_server.models import Model
|
||||||
|
from text_generation_server.models.types import (
|
||||||
|
Batch,
|
||||||
|
PrefillTokens,
|
||||||
|
Generation,
|
||||||
|
GeneratedText,
|
||||||
|
)
|
||||||
|
from text_generation_server.pb import generate_pb2
|
||||||
|
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
|
||||||
|
|
||||||
|
tracer = trace.get_tracer(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
# UTILS
|
||||||
|
def base64_to_pil(encoded_image):
|
||||||
|
decoded_image = base64.b64decode(encoded_image)
|
||||||
|
pil_image = Image.open(BytesIO(decoded_image))
|
||||||
|
return pil_image
|
||||||
|
|
||||||
|
def im_markdown_to_pil(im_markdown_str):
|
||||||
|
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
|
||||||
|
match = re.search(pattern, im_markdown_str)
|
||||||
|
img_b64_str = match.group(1)
|
||||||
|
return base64_to_pil(img_b64_str)
|
||||||
|
|
||||||
|
def split_str_on_im_markdown(string_with_potential_im_markdown):
|
||||||
|
"""
|
||||||
|
Extract from a string (typically the user prompt string) the potentional images saved as a base64 representation
|
||||||
|
inside a markdown.
|
||||||
|
"""
|
||||||
|
pattern = r'<img src="data:image/png;base64,([^"]+)" />'
|
||||||
|
parts = re.split(pattern, string_with_potential_im_markdown)
|
||||||
|
result = []
|
||||||
|
for i, part in enumerate(parts):
|
||||||
|
if i % 2 == 0:
|
||||||
|
result.append(part)
|
||||||
|
else:
|
||||||
|
img_tag = f'<img src="data:image/png;base64,{part.strip()}" />'
|
||||||
|
result.append(img_tag)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class IdeficsCausalLMBatch(Batch):
|
||||||
|
batch_id: int
|
||||||
|
requests: List[generate_pb2.Request]
|
||||||
|
requests_idx_mapping: Dict[int, int]
|
||||||
|
|
||||||
|
# Decoder values
|
||||||
|
input_ids: torch.Tensor
|
||||||
|
attention_mask: torch.Tensor
|
||||||
|
position_ids: torch.Tensor
|
||||||
|
pixel_values: Optional[torch.Tensor]
|
||||||
|
image_attention_mask: Optional[torch.Tensor]
|
||||||
|
past_key_values: Optional[List[Tuple]]
|
||||||
|
|
||||||
|
# All tokens
|
||||||
|
all_input_ids: List[torch.Tensor]
|
||||||
|
|
||||||
|
# Lengths of all generations present in the batch
|
||||||
|
input_lengths: List[int]
|
||||||
|
prefix_offsets: List[int]
|
||||||
|
read_offsets: List[int]
|
||||||
|
|
||||||
|
# Generation helpers
|
||||||
|
next_token_choosers: List[NextTokenChooser]
|
||||||
|
stopping_criterias: List[StoppingCriteria]
|
||||||
|
|
||||||
|
# Metadata used for padding
|
||||||
|
max_input_length: int
|
||||||
|
padding_right_offset: int
|
||||||
|
|
||||||
|
# Maximum number of tokens this batch will grow to
|
||||||
|
max_tokens: int
|
||||||
|
|
||||||
|
# Past metadata
|
||||||
|
keys_head_dim_last: bool = True
|
||||||
|
|
||||||
|
def to_pb(self) -> generate_pb2.CachedBatch:
|
||||||
|
return generate_pb2.CachedBatch(
|
||||||
|
id=self.batch_id,
|
||||||
|
request_ids=[r.id for r in self.requests],
|
||||||
|
size=len(self),
|
||||||
|
max_tokens=self.max_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pb(
|
||||||
|
cls,
|
||||||
|
pb: generate_pb2.Batch,
|
||||||
|
tokenizer: PreTrainedTokenizerBase,
|
||||||
|
processor: ProcessorMixin, # Hack
|
||||||
|
dtype: torch.dtype,
|
||||||
|
device: torch.device,
|
||||||
|
) -> "IdeficsCausalLMBatch":
|
||||||
|
inputs = []
|
||||||
|
next_token_choosers = []
|
||||||
|
stopping_criterias = []
|
||||||
|
prefix_offsets = []
|
||||||
|
read_offsets = []
|
||||||
|
requests_idx_mapping = {}
|
||||||
|
|
||||||
|
# Parse batch
|
||||||
|
max_truncation = 0
|
||||||
|
padding_right_offset = 0
|
||||||
|
max_decode_tokens = 0
|
||||||
|
for i, r in enumerate(pb.requests):
|
||||||
|
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py {i=} {r=}")
|
||||||
|
requests_idx_mapping[r.id] = i
|
||||||
|
inputs.append(r.inputs)
|
||||||
|
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||||
|
stopping_criteria = StoppingCriteria.from_pb(
|
||||||
|
r.stopping_parameters, tokenizer
|
||||||
|
)
|
||||||
|
stopping_criterias.append(stopping_criteria)
|
||||||
|
max_truncation = max(max_truncation, r.truncate) #TODO: understand that
|
||||||
|
max_decode_tokens += stopping_criteria.max_new_tokens # TODO: I think it is just the maximum of tokens to generate in the WHOLE batch
|
||||||
|
padding_right_offset = max(
|
||||||
|
padding_right_offset, stopping_criteria.max_new_tokens
|
||||||
|
)
|
||||||
|
|
||||||
|
prompts = []
|
||||||
|
for inp in inputs:
|
||||||
|
# Each input is encoded into a list, where each element of this input list is either a string or a URL
|
||||||
|
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py {inp=}")
|
||||||
|
if isinstance(inp, str):
|
||||||
|
prompts.append([inp])
|
||||||
|
elif isinstance(inp, list):
|
||||||
|
if not all(isinstance(item, str) for item in inp):
|
||||||
|
raise ValueError("All elements in the list must be strings (text string or image URL)")
|
||||||
|
prompts.append(
|
||||||
|
json.load(inp)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError("Unsupported type of input")
|
||||||
|
# I initially wanted to send the images in string base64 but they are too big to send in a consistent way...
|
||||||
|
# So resorting to uploading the image to a server and pulling them back
|
||||||
|
# splitted_inp = split_str_on_im_markdown(inp)
|
||||||
|
# prompts.append(
|
||||||
|
# [
|
||||||
|
# im_markdown_to_pil(s) if s.startswith('<img src="data:image/png;base64,') else s
|
||||||
|
# for s in splitted_inp
|
||||||
|
# if s != ""
|
||||||
|
# ]
|
||||||
|
# )
|
||||||
|
|
||||||
|
# The processor replaces the call to tokenizer, and
|
||||||
|
# a/ takes care of fetching images from the URL
|
||||||
|
# b/ generate the correct input_ids, attention_mask, pixel_values, image_attention_mask to feed to the model
|
||||||
|
tokenized_inputs = processor(
|
||||||
|
prompts,
|
||||||
|
return_tensors="pt",
|
||||||
|
padding=True,
|
||||||
|
truncation=True,
|
||||||
|
max_length=max_truncation,
|
||||||
|
add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token
|
||||||
|
).to(device)
|
||||||
|
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py - {tokenized_inputs['input_ids']=}")
|
||||||
|
# from loguru import logger; logger.info({k: v.size() for k,v in processed_inputs.items()})
|
||||||
|
# {'input_ids': torch.Size([4, 5]), 'attention_mask': torch.Size([4, 5]), 'pixel_values': torch.Size([4, num_images, 3, 224, 224]), 'image_attention_mask': torch.Size([4, 5, num_images])}
|
||||||
|
for _ in pb.requests:
|
||||||
|
input_len = tokenized_inputs["input_ids"].shape[1]
|
||||||
|
prefix_offsets.append(input_len - 5) # To decode without potential fallbacks errors
|
||||||
|
read_offsets.append(input_len) # To decode without potential fallbacks errors
|
||||||
|
|
||||||
|
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
||||||
|
max_input_length = input_lengths.max()
|
||||||
|
|
||||||
|
input_ids = tokenized_inputs["input_ids"]
|
||||||
|
pixel_values = tokenized_inputs["pixel_values"]
|
||||||
|
# Allocate maximum attention_mask
|
||||||
|
attention_mask = input_ids.new_zeros(
|
||||||
|
(pb.size, max_input_length + padding_right_offset)
|
||||||
|
)
|
||||||
|
# Copy tokenizer attention_mask into fully allocated attention_mask
|
||||||
|
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
|
||||||
|
# Do the same for image_attention_mask - I CHANGED THINGS HERE - mostly testing for now
|
||||||
|
image_attention_mask = input_ids.new_zeros(
|
||||||
|
(pb.size, max_input_length + padding_right_offset, tokenized_inputs["pixel_values"].size(1))
|
||||||
|
)
|
||||||
|
# image_attention_mask = tokenized_inputs["image_attention_mask"]
|
||||||
|
from loguru import logger; logger.info(f"from_pb in idefics_causal_lm.py - image_attention_mask {image_attention_mask.size()}")
|
||||||
|
|
||||||
|
|
||||||
|
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
||||||
|
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
||||||
|
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1) # It's input_ids but splitted into a tuple of tensors where each tensor is (seq_len, 1) size. It is then transformed into a list
|
||||||
|
|
||||||
|
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
|
||||||
|
|
||||||
|
return cls(
|
||||||
|
batch_id=pb.id,
|
||||||
|
requests=pb.requests,
|
||||||
|
requests_idx_mapping=requests_idx_mapping,
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
pixel_values=pixel_values,
|
||||||
|
image_attention_mask=image_attention_mask,
|
||||||
|
past_key_values=None,
|
||||||
|
all_input_ids=list(all_input_ids),
|
||||||
|
input_lengths=input_lengths.tolist(),
|
||||||
|
prefix_offsets=prefix_offsets,
|
||||||
|
read_offsets=read_offsets,
|
||||||
|
next_token_choosers=next_token_choosers,
|
||||||
|
stopping_criterias=stopping_criterias,
|
||||||
|
max_input_length=max_input_length.item(),
|
||||||
|
padding_right_offset=padding_right_offset,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
@tracer.start_as_current_span("filter")
|
||||||
|
def filter(self, request_ids: List[int]) -> Optional["IdeficsCausalLMBatch"]:
|
||||||
|
from loguru import logger; logger.info(f"filter in idefics_causal_lm.py")
|
||||||
|
# It deletes requests from the batch. For instance when client lost connection
|
||||||
|
if len(request_ids) == 0:
|
||||||
|
raise ValueError("Batch must have at least one request")
|
||||||
|
if len(request_ids) == len(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
keep_indices = []
|
||||||
|
|
||||||
|
# New values after filtering
|
||||||
|
requests_idx_mapping = {}
|
||||||
|
requests = []
|
||||||
|
input_lengths = []
|
||||||
|
prefix_offsets = []
|
||||||
|
read_offsets = []
|
||||||
|
all_input_ids = []
|
||||||
|
max_input_length = 0
|
||||||
|
|
||||||
|
next_token_choosers = []
|
||||||
|
stopping_criterias = []
|
||||||
|
|
||||||
|
total_remaining_decode_tokens = 0
|
||||||
|
new_padding_right_offset = 0
|
||||||
|
|
||||||
|
for i, request_id in enumerate(request_ids):
|
||||||
|
idx = self.requests_idx_mapping[request_id]
|
||||||
|
requests_idx_mapping[request_id] = i
|
||||||
|
keep_indices.append(idx)
|
||||||
|
|
||||||
|
requests.append(self.requests[idx])
|
||||||
|
prefix_offsets.append(self.prefix_offsets[idx])
|
||||||
|
read_offsets.append(self.read_offsets[idx])
|
||||||
|
all_input_ids.append(self.all_input_ids[idx])
|
||||||
|
|
||||||
|
request_input_length = self.input_lengths[idx]
|
||||||
|
input_lengths.append(request_input_length)
|
||||||
|
max_input_length = max(max_input_length, request_input_length)
|
||||||
|
|
||||||
|
next_token_choosers.append(self.next_token_choosers[idx])
|
||||||
|
stopping_criteria = self.stopping_criterias[idx]
|
||||||
|
stopping_criterias.append(stopping_criteria)
|
||||||
|
remaining_decode_tokens = (
|
||||||
|
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
||||||
|
)
|
||||||
|
total_remaining_decode_tokens += remaining_decode_tokens
|
||||||
|
new_padding_right_offset = max(
|
||||||
|
new_padding_right_offset, remaining_decode_tokens
|
||||||
|
)
|
||||||
|
|
||||||
|
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
|
||||||
|
input_ids = self.input_ids[keep_indices]
|
||||||
|
position_ids = self.position_ids[keep_indices]
|
||||||
|
self.attention_mask = self.attention_mask[
|
||||||
|
keep_indices,
|
||||||
|
-(self.padding_right_offset + max_input_length) : (
|
||||||
|
self.attention_mask.shape[1] - self.padding_right_offset
|
||||||
|
)
|
||||||
|
+ new_padding_right_offset,
|
||||||
|
]
|
||||||
|
# Do the same for pixel_values and image_attention_mask
|
||||||
|
pixel_values = self.pixel_values[keep_indices]
|
||||||
|
self.image_attention_mask = self.image_attention_mask[
|
||||||
|
keep_indices,
|
||||||
|
-(self.padding_right_offset + max_input_length) : (
|
||||||
|
self.image_attention_mask.shape[1] - self.padding_right_offset
|
||||||
|
)
|
||||||
|
+ new_padding_right_offset,
|
||||||
|
:
|
||||||
|
]
|
||||||
|
|
||||||
|
# Ensure that past_key_values tensors can be updated in-place
|
||||||
|
if type(self.past_key_values[0]) == tuple:
|
||||||
|
self.past_key_values = [list(layer) for layer in self.past_key_values]
|
||||||
|
|
||||||
|
# Update tensors in-place to allow incremental garbage collection
|
||||||
|
past_kv_length = max_input_length - 1
|
||||||
|
for layer in self.past_key_values:
|
||||||
|
past_keys, past_values = layer
|
||||||
|
if len(past_keys.shape) == 3:
|
||||||
|
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
|
||||||
|
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
|
||||||
|
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
|
||||||
|
if self.keys_head_dim_last:
|
||||||
|
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
|
||||||
|
else:
|
||||||
|
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
|
||||||
|
del past_keys
|
||||||
|
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
|
||||||
|
del past_values
|
||||||
|
|
||||||
|
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
|
||||||
|
|
||||||
|
self.requests = requests
|
||||||
|
self.requests_idx_mapping = requests_idx_mapping
|
||||||
|
self.input_ids = input_ids
|
||||||
|
self.pixel_values = pixel_values
|
||||||
|
self.position_ids = position_ids
|
||||||
|
self.all_input_ids = all_input_ids
|
||||||
|
self.input_lengths = input_lengths
|
||||||
|
self.prefix_offsets = prefix_offsets
|
||||||
|
self.read_offsets = read_offsets
|
||||||
|
self.next_token_choosers = next_token_choosers
|
||||||
|
self.stopping_criterias = stopping_criterias
|
||||||
|
self.max_input_length = max_input_length
|
||||||
|
self.padding_right_offset = new_padding_right_offset
|
||||||
|
self.max_tokens = max_tokens
|
||||||
|
|
||||||
|
return self
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@tracer.start_as_current_span("concatenate")
|
||||||
|
def concatenate(cls, batches: List["IdeficsCausalLMBatch"]) -> "IdeficsCausalLMBatch":
|
||||||
|
from loguru import logger; logger.info(f"concatenate in idefics_causal_lm.py")
|
||||||
|
# It adds new requests to the batch
|
||||||
|
# Used for padding
|
||||||
|
total_batch_size = 0
|
||||||
|
max_input_length = 0
|
||||||
|
max_num_images = 0
|
||||||
|
padding_right_offset = 0
|
||||||
|
for batch in batches:
|
||||||
|
total_batch_size += len(batch)
|
||||||
|
max_input_length = max(max_input_length, batch.max_input_length)
|
||||||
|
max_num_images = max(max_num_images, batch.pixel_values.size(1))
|
||||||
|
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
|
||||||
|
|
||||||
|
# Batch attributes
|
||||||
|
requests = []
|
||||||
|
requests_idx_mapping = {}
|
||||||
|
input_lengths = []
|
||||||
|
prefix_offsets = []
|
||||||
|
read_offsets = []
|
||||||
|
all_input_ids = []
|
||||||
|
next_token_choosers = []
|
||||||
|
stopping_criterias = []
|
||||||
|
max_tokens = 0
|
||||||
|
|
||||||
|
# Batch tensors
|
||||||
|
input_ids = None
|
||||||
|
attention_mask = None
|
||||||
|
position_ids = None
|
||||||
|
pixel_values = None
|
||||||
|
image_attention_mask = None
|
||||||
|
past_key_values = []
|
||||||
|
|
||||||
|
# Used for slicing correctly inside the tensors
|
||||||
|
# Equivalent to a cumsum on batch sizes
|
||||||
|
start_index = 0
|
||||||
|
for i, batch in enumerate(batches):
|
||||||
|
requests.extend(batch.requests)
|
||||||
|
input_lengths.extend(batch.input_lengths)
|
||||||
|
prefix_offsets.extend(batch.prefix_offsets)
|
||||||
|
read_offsets.extend(batch.read_offsets)
|
||||||
|
all_input_ids.extend(batch.all_input_ids)
|
||||||
|
next_token_choosers.extend(batch.next_token_choosers)
|
||||||
|
stopping_criterias.extend(batch.stopping_criterias)
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
requests_idx_mapping = batch.requests_idx_mapping
|
||||||
|
else:
|
||||||
|
# We need to offset the mapping for each batch by the cumulative batch size
|
||||||
|
for k, v in batch.requests_idx_mapping.items():
|
||||||
|
requests_idx_mapping[k] = v + start_index
|
||||||
|
|
||||||
|
# Slicing end index for this batch
|
||||||
|
end_index = start_index + len(batch)
|
||||||
|
|
||||||
|
# We only concatenate batches that did at least one step
|
||||||
|
if batch.past_key_values is None:
|
||||||
|
raise ValueError("only concatenate prefilled batches")
|
||||||
|
|
||||||
|
# Create empty tensor
|
||||||
|
# input_ids is always of shape [batch_size, 1]
|
||||||
|
# We do not need to pad it
|
||||||
|
if input_ids is None:
|
||||||
|
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
|
||||||
|
# Copy to correct indices
|
||||||
|
input_ids[start_index:end_index] = batch.input_ids
|
||||||
|
|
||||||
|
# Create padded tensor
|
||||||
|
if attention_mask is None:
|
||||||
|
attention_mask = batch.attention_mask.new_zeros(
|
||||||
|
(total_batch_size, max_input_length + padding_right_offset),
|
||||||
|
)
|
||||||
|
|
||||||
|
curr_batch_max_num_images = batch.pixel_values.size(1)
|
||||||
|
if pixel_values is None:
|
||||||
|
pixel_values = batch.pixel_values.new_zeros((total_batch_size, max_num_images, 3, 224, 224))
|
||||||
|
pixel_values[start_index:end_index, :curr_batch_max_num_images] = batch.pixel_values
|
||||||
|
|
||||||
|
if image_attention_mask is None:
|
||||||
|
image_attention_mask = batch.image_attention_mask.new_zeros(
|
||||||
|
(total_batch_size, max_input_length + padding_right_offset, max_num_images)
|
||||||
|
)
|
||||||
|
|
||||||
|
# We need to slice the attention mask to remove padding from previous steps
|
||||||
|
# and to remove unused allocated space
|
||||||
|
left_offset = max_input_length - batch.max_input_length
|
||||||
|
batch_left_offset = (
|
||||||
|
batch.attention_mask.shape[1]
|
||||||
|
- batch.max_input_length
|
||||||
|
- batch.padding_right_offset
|
||||||
|
)
|
||||||
|
attention_mask[
|
||||||
|
start_index:end_index,
|
||||||
|
left_offset:-padding_right_offset,
|
||||||
|
] = batch.attention_mask[
|
||||||
|
:,
|
||||||
|
batch_left_offset : -batch.padding_right_offset,
|
||||||
|
]
|
||||||
|
from loguru import logger; logger.info(f"concatenate in idefics_causal_lm.py - image_attention_mask {image_attention_mask.size()}")
|
||||||
|
from loguru import logger; logger.info(f"concatenate in idefics_causal_lm.py - batch.image_attention_mask {batch.image_attention_mask.size()}")
|
||||||
|
image_attention_mask[
|
||||||
|
start_index:end_index,
|
||||||
|
left_offset:-padding_right_offset,
|
||||||
|
:curr_batch_max_num_images
|
||||||
|
] = batch.image_attention_mask[
|
||||||
|
:,
|
||||||
|
batch_left_offset : - batch.padding_right_offset,
|
||||||
|
:
|
||||||
|
]
|
||||||
|
|
||||||
|
# Create empty tensor
|
||||||
|
# position_ids is always of shape [batch_size, 1]
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
|
||||||
|
position_ids[start_index:end_index] = batch.position_ids
|
||||||
|
|
||||||
|
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
|
||||||
|
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
|
||||||
|
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
|
||||||
|
# And ensure that we can update tensors in-place
|
||||||
|
if type(batch.past_key_values[0]) == tuple:
|
||||||
|
batch.past_key_values = [
|
||||||
|
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
|
||||||
|
for layer in batch.past_key_values
|
||||||
|
]
|
||||||
|
elif len(batch.past_key_values[0][0].shape) == 3:
|
||||||
|
for layer in batch.past_key_values:
|
||||||
|
for k, t in enumerate(layer):
|
||||||
|
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
|
||||||
|
|
||||||
|
# Add eventual padding tokens that were added while concatenating
|
||||||
|
max_tokens += batch.max_tokens + (
|
||||||
|
max_input_length - batch.max_input_length
|
||||||
|
) * len(batch)
|
||||||
|
|
||||||
|
start_index = end_index
|
||||||
|
|
||||||
|
first_past_kvs = batches[0].past_key_values
|
||||||
|
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
|
||||||
|
|
||||||
|
padded_past_values_shape = (
|
||||||
|
total_batch_size,
|
||||||
|
num_heads,
|
||||||
|
max_input_length - 1,
|
||||||
|
head_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
if batches[0].keys_head_dim_last:
|
||||||
|
padded_past_keys_shape = padded_past_values_shape
|
||||||
|
else:
|
||||||
|
# seq_length is last for BLOOM
|
||||||
|
padded_past_keys_shape = (
|
||||||
|
total_batch_size,
|
||||||
|
num_heads,
|
||||||
|
head_dim,
|
||||||
|
max_input_length - 1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Iterate over attention layers
|
||||||
|
# Concatenate past key values layer by layer to allow incremental garbage collection
|
||||||
|
for j in range(len(first_past_kvs)):
|
||||||
|
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
|
||||||
|
start_index = 0
|
||||||
|
for batch in batches:
|
||||||
|
past_keys = batch.past_key_values[j][0]
|
||||||
|
# Clear reference to the original tensor
|
||||||
|
batch.past_key_values[j][0] = None
|
||||||
|
|
||||||
|
# Slicing end index for this batch
|
||||||
|
end_index = start_index + len(batch)
|
||||||
|
# We slice the keys to remove the padding from previous batches
|
||||||
|
past_seq_len = batch.max_input_length - 1
|
||||||
|
if batch.keys_head_dim_last:
|
||||||
|
padded_past_keys[
|
||||||
|
start_index:end_index, :, -past_seq_len:, :
|
||||||
|
] = past_keys[:, :, -past_seq_len:, :]
|
||||||
|
else:
|
||||||
|
# BLOOM case
|
||||||
|
padded_past_keys[
|
||||||
|
start_index:end_index, :, :, -past_seq_len:
|
||||||
|
] = past_keys[:, :, :, -past_seq_len:]
|
||||||
|
del past_keys
|
||||||
|
|
||||||
|
start_index = end_index
|
||||||
|
|
||||||
|
padded_past_values = first_past_kvs[j][1].new_zeros(
|
||||||
|
padded_past_values_shape
|
||||||
|
)
|
||||||
|
start_index = 0
|
||||||
|
for batch in batches:
|
||||||
|
past_values = batch.past_key_values[j][1]
|
||||||
|
# Clear reference to the original tensor
|
||||||
|
batch.past_key_values[j][1] = None
|
||||||
|
|
||||||
|
# Slicing end index for this batch
|
||||||
|
end_index = start_index + len(batch)
|
||||||
|
# We slice the past values to remove the padding from previous batches
|
||||||
|
past_seq_len = batch.max_input_length - 1
|
||||||
|
padded_past_values[
|
||||||
|
start_index:end_index, :, -past_seq_len:, :
|
||||||
|
] = past_values[:, :, -past_seq_len:, :]
|
||||||
|
del past_values
|
||||||
|
|
||||||
|
# Update values
|
||||||
|
start_index = end_index
|
||||||
|
|
||||||
|
past_key_values.append([padded_past_keys, padded_past_values])
|
||||||
|
|
||||||
|
return cls(
|
||||||
|
batch_id=batches[0].batch_id,
|
||||||
|
requests=requests,
|
||||||
|
requests_idx_mapping=requests_idx_mapping,
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
pixel_values=pixel_values,
|
||||||
|
image_attention_mask=image_attention_mask,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
all_input_ids=all_input_ids,
|
||||||
|
input_lengths=input_lengths,
|
||||||
|
prefix_offsets=prefix_offsets,
|
||||||
|
read_offsets=read_offsets,
|
||||||
|
next_token_choosers=next_token_choosers,
|
||||||
|
stopping_criterias=stopping_criterias,
|
||||||
|
max_input_length=max_input_length,
|
||||||
|
padding_right_offset=padding_right_offset,
|
||||||
|
keys_head_dim_last=batches[0].keys_head_dim_last,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.requests)
|
||||||
|
|
||||||
|
|
||||||
|
class IdeficsCausalLM(Model):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_id: str,
|
||||||
|
revision: Optional[str] = None,
|
||||||
|
quantize: Optional[str] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
trust_remote_code: bool = False,
|
||||||
|
):
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda")
|
||||||
|
dtype = torch.float16 if dtype is None else dtype
|
||||||
|
else:
|
||||||
|
if quantize:
|
||||||
|
raise ValueError("quantization is not available on CPU")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
dtype = torch.float32
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision=revision,
|
||||||
|
padding_side="left",
|
||||||
|
truncation_side="left",
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
)
|
||||||
|
self.processor = AutoProcessor.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision=revision,
|
||||||
|
padding_side="left",
|
||||||
|
truncation_side="left",
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
)
|
||||||
|
model = IdeficsForVisionText2Text.from_pretrained(
|
||||||
|
model_id,
|
||||||
|
revision=revision,
|
||||||
|
torch_dtype=dtype,
|
||||||
|
device_map="auto"
|
||||||
|
if torch.cuda.is_available() and torch.cuda.device_count() > 1
|
||||||
|
else None,
|
||||||
|
load_in_8bit=quantize == "bitsandbytes",
|
||||||
|
trust_remote_code=trust_remote_code,
|
||||||
|
)
|
||||||
|
if torch.cuda.is_available() and torch.cuda.device_count() == 1:
|
||||||
|
model = model.cuda()
|
||||||
|
|
||||||
|
if tokenizer.pad_token_id is None:
|
||||||
|
if model.config.pad_token_id is not None:
|
||||||
|
tokenizer.pad_token_id = model.config.pad_token_id
|
||||||
|
elif model.config.eos_token_id is not None:
|
||||||
|
tokenizer.pad_token_id = model.config.eos_token_id
|
||||||
|
elif tokenizer.eos_token_id is not None:
|
||||||
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||||
|
else:
|
||||||
|
tokenizer.add_special_tokens({"pad_token": "<unk>"})
|
||||||
|
|
||||||
|
super(IdeficsCausalLM, self).__init__(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
requires_padding=True,
|
||||||
|
dtype=dtype,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def batch_type(self) -> Type[IdeficsCausalLMBatch]:
|
||||||
|
return IdeficsCausalLMBatch
|
||||||
|
|
||||||
|
def decode(self, generated_ids: List[int]) -> str:
|
||||||
|
return self.tokenizer.decode(
|
||||||
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
pixel_values,
|
||||||
|
image_attention_mask,
|
||||||
|
past_key_values: Optional = None,
|
||||||
|
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||||
|
# Model Forward
|
||||||
|
kwargs = {
|
||||||
|
"input_ids": input_ids,
|
||||||
|
"attention_mask": attention_mask,
|
||||||
|
"pixel_values": pixel_values,
|
||||||
|
"image_attention_mask": image_attention_mask,
|
||||||
|
"past_key_values": past_key_values,
|
||||||
|
"use_cache": True,
|
||||||
|
"return_dict": True,
|
||||||
|
}
|
||||||
|
if self.has_position_ids:
|
||||||
|
kwargs["position_ids"] = position_ids
|
||||||
|
|
||||||
|
outputs = self.model.forward(**kwargs)
|
||||||
|
return outputs.logits, outputs.past_key_values
|
||||||
|
|
||||||
|
@tracer.start_as_current_span("generate_token")
|
||||||
|
def generate_token(
|
||||||
|
self, batch: IdeficsCausalLMBatch
|
||||||
|
) -> Tuple[List[Generation], Optional[IdeficsCausalLMBatch]]:
|
||||||
|
from loguru import logger; logger.info("generate_token in idefics_causal_lm.py - enter")
|
||||||
|
# slice the attention mask to the correct shape
|
||||||
|
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
|
||||||
|
if batch.input_ids.size(1) == 1:
|
||||||
|
# THIS is a hack: when calling idefics.generate, the first time, we need the whole image_attention_mask (size bs x max_seq_len x max_num_images),
|
||||||
|
# but the subsequent times, we only need the last attention mask along the `max_seq_len` dimension
|
||||||
|
# this is due to the nature IDEFICS: it's an encoder decoder, and so when decoding, only the currently generated
|
||||||
|
# token need to attend to the encoder hidden states (i.e. the vision encoder)
|
||||||
|
# Also see seq2seq_lm.Seq2SeqLM.generate_token which has roughly the same logic
|
||||||
|
image_attention_mask = batch.image_attention_mask[:, -batch.padding_right_offset].unsqueeze(1) #TODO: verify that index. i have a doubt whether there is +1 hanging around
|
||||||
|
else:
|
||||||
|
image_attention_mask = batch.image_attention_mask[:, : -batch.padding_right_offset]
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.padding_right_offset=}")
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.attention_mask.size()=}")
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {attention_mask.size()=}")
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.image_attention_mask=}")
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {batch.image_attention_mask.size()=}")
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {image_attention_mask.size()=}")
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {image_attention_mask=}")
|
||||||
|
|
||||||
|
logits, past = self.forward(
|
||||||
|
input_ids=batch.input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=batch.position_ids,
|
||||||
|
pixel_values=batch.pixel_values,
|
||||||
|
image_attention_mask=image_attention_mask,
|
||||||
|
past_key_values=batch.past_key_values,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Results
|
||||||
|
generations: List[Generation] = []
|
||||||
|
stopped = True
|
||||||
|
|
||||||
|
# Zipped iterator
|
||||||
|
iterator = zip(
|
||||||
|
batch.requests,
|
||||||
|
batch.input_lengths,
|
||||||
|
batch.prefix_offsets,
|
||||||
|
batch.read_offsets,
|
||||||
|
logits,
|
||||||
|
batch.next_token_choosers,
|
||||||
|
batch.stopping_criterias,
|
||||||
|
batch.all_input_ids,
|
||||||
|
)
|
||||||
|
|
||||||
|
# For each member of the batch
|
||||||
|
for i, (
|
||||||
|
request,
|
||||||
|
input_length,
|
||||||
|
prefix_offset,
|
||||||
|
read_offset,
|
||||||
|
logits,
|
||||||
|
next_token_chooser,
|
||||||
|
stopping_criteria,
|
||||||
|
all_input_ids,
|
||||||
|
) in enumerate(iterator):
|
||||||
|
# Select next token
|
||||||
|
next_token_id, logprobs = next_token_chooser(
|
||||||
|
all_input_ids.view(1, -1), logits[-1:, :]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Append next token to all tokens
|
||||||
|
all_input_ids = torch.cat([all_input_ids, next_token_id])
|
||||||
|
new_input_length = input_length + 1
|
||||||
|
|
||||||
|
# Generated token
|
||||||
|
next_token_logprob = logprobs[-1, next_token_id]
|
||||||
|
next_token_id_squeezed = next_token_id.squeeze()
|
||||||
|
next_token_text, prefix_offset, read_offset = self.decode_token(
|
||||||
|
all_input_ids[:, 0], prefix_offset, read_offset
|
||||||
|
)
|
||||||
|
|
||||||
|
# Evaluate stopping criteria
|
||||||
|
stop, reason = stopping_criteria(
|
||||||
|
next_token_id_squeezed,
|
||||||
|
next_token_text,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not stop:
|
||||||
|
stopped = False
|
||||||
|
|
||||||
|
# Shard generations
|
||||||
|
# All generations will be appended in the rust sharded client
|
||||||
|
if i % self.world_size == self.rank:
|
||||||
|
if stop:
|
||||||
|
# Decode generated tokens
|
||||||
|
output_text = self.decode(
|
||||||
|
all_input_ids[-stopping_criteria.current_tokens :, 0]
|
||||||
|
)
|
||||||
|
# Get seed
|
||||||
|
if isinstance(next_token_chooser.choice, Sampling):
|
||||||
|
seed = next_token_chooser.choice.seed
|
||||||
|
else:
|
||||||
|
seed = None
|
||||||
|
|
||||||
|
generated_text = GeneratedText(
|
||||||
|
output_text, stopping_criteria.current_tokens, reason, seed
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
generated_text = None
|
||||||
|
|
||||||
|
# Prefill
|
||||||
|
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
|
||||||
|
# Remove generated token to only have prefill and add nan for first prompt token
|
||||||
|
prefill_logprobs = [float("nan")] + torch.log_softmax(
|
||||||
|
logits, -1
|
||||||
|
).gather(1, all_input_ids[1:]).squeeze(1)[
|
||||||
|
-new_input_length:-1
|
||||||
|
].tolist()
|
||||||
|
prefill_token_ids = all_input_ids[-new_input_length:-1]
|
||||||
|
prefill_texts = self.tokenizer.batch_decode(
|
||||||
|
prefill_token_ids,
|
||||||
|
clean_up_tokenization_spaces=False,
|
||||||
|
skip_special_tokens=False,
|
||||||
|
)
|
||||||
|
prefill_tokens = PrefillTokens(
|
||||||
|
prefill_token_ids, prefill_logprobs, prefill_texts
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
prefill_tokens = None
|
||||||
|
|
||||||
|
generation = Generation(
|
||||||
|
request.id,
|
||||||
|
prefill_tokens,
|
||||||
|
next_token_id_squeezed,
|
||||||
|
next_token_logprob,
|
||||||
|
next_token_text,
|
||||||
|
next_token_id_squeezed.item() in self.all_special_ids,
|
||||||
|
generated_text,
|
||||||
|
)
|
||||||
|
|
||||||
|
generations.append(generation)
|
||||||
|
|
||||||
|
# Update values
|
||||||
|
batch.input_ids[i, 0] = next_token_id
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - batch.input_ids 1 {batch.input_ids.size()}")
|
||||||
|
batch.all_input_ids[i] = all_input_ids
|
||||||
|
batch.input_lengths[i] = new_input_length
|
||||||
|
batch.prefix_offsets[i] = prefix_offset
|
||||||
|
batch.read_offsets[i] = read_offset
|
||||||
|
batch.max_input_length = max(batch.max_input_length, new_input_length)
|
||||||
|
|
||||||
|
# We finished all generations in the batch; there is no next batch
|
||||||
|
if stopped:
|
||||||
|
return generations, None
|
||||||
|
|
||||||
|
# Slice unused values from prefill
|
||||||
|
batch.input_ids = batch.input_ids[:, :1]
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - batch.input_ids 2 {batch.input_ids.size()}")
|
||||||
|
|
||||||
|
# Update attention_mask as we added a new token to input_ids
|
||||||
|
batch.attention_mask[:, -batch.padding_right_offset] = 1
|
||||||
|
batch.image_attention_mask[:, -batch.padding_right_offset, :] = batch.image_attention_mask[:, -(batch.padding_right_offset+1), :]
|
||||||
|
# Decrease right offset
|
||||||
|
batch.padding_right_offset -= 1
|
||||||
|
|
||||||
|
# Update position_ids
|
||||||
|
batch.position_ids = batch.position_ids[:, -1:] + 1
|
||||||
|
|
||||||
|
# Update past key values
|
||||||
|
batch.past_key_values = past
|
||||||
|
|
||||||
|
from loguru import logger; logger.info(f"generate_token in idefics_causal_lm.py - {stopped=}")
|
||||||
|
return generations, batch
|
@ -14,6 +14,7 @@ from text_generation_server.interceptor import ExceptionInterceptor
|
|||||||
from text_generation_server.models import Model, get_model
|
from text_generation_server.models import Model, get_model
|
||||||
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
|
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
|
||||||
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
|
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
|
||||||
|
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
|
||||||
|
|
||||||
|
|
||||||
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||||
@ -54,9 +55,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||||||
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
|
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
|
||||||
|
|
||||||
async def Warmup(self, request, context):
|
async def Warmup(self, request, context):
|
||||||
batch = self.model.batch_type.from_pb(
|
if self.model.batch_type == IdeficsCausalLMBatch: #Hack, i would rather use kwargs in the `from_pb` call
|
||||||
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
|
batch = self.model.batch_type.from_pb(
|
||||||
)
|
request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
batch = self.model.batch_type.from_pb(
|
||||||
|
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
|
||||||
|
)
|
||||||
max_supported_total_tokens = self.model.warmup(batch)
|
max_supported_total_tokens = self.model.warmup(batch)
|
||||||
|
|
||||||
return generate_pb2.WarmupResponse(
|
return generate_pb2.WarmupResponse(
|
||||||
@ -64,9 +70,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||||||
)
|
)
|
||||||
|
|
||||||
async def Prefill(self, request, context):
|
async def Prefill(self, request, context):
|
||||||
batch = self.model.batch_type.from_pb(
|
if self.model.batch_type == IdeficsCausalLMBatch: #Hack, i would rather use kwargs in the `from_pb` call
|
||||||
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
|
batch = self.model.batch_type.from_pb(
|
||||||
)
|
request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
batch = self.model.batch_type.from_pb(
|
||||||
|
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
|
||||||
|
)
|
||||||
|
|
||||||
generations, next_batch = self.model.generate_token(batch)
|
generations, next_batch = self.model.generate_token(batch)
|
||||||
self.cache.set(next_batch)
|
self.cache.set(next_batch)
|
||||||
|
@ -51,7 +51,31 @@ def load_layer_norm_no_bias(cls, prefix, weights, eps):
|
|||||||
ln.bias = None
|
ln.bias = None
|
||||||
return ln
|
return ln
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
|
||||||
|
weight = weights.get_tensor(f"{prefix}.weight")
|
||||||
|
bias = weights.get_tensor(f"{prefix}.bias")
|
||||||
|
with init_empty_weights():
|
||||||
|
conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)
|
||||||
|
|
||||||
|
conv2d.weight = nn.Parameter(weight)
|
||||||
|
conv2d.bias = nn.Parameter(bias)
|
||||||
|
return conv2d
|
||||||
|
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def load_conv2d_no_bias(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
|
||||||
|
weight = weights.get_tensor(f"{prefix}.weight")
|
||||||
|
with init_empty_weights():
|
||||||
|
conv2d = cls(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride)
|
||||||
|
|
||||||
|
conv2d.weight = nn.Parameter(weight)
|
||||||
|
conv2d.bias = None
|
||||||
|
return conv2d
|
||||||
|
|
||||||
|
|
||||||
|
torch.nn.Conv2d.load = load_conv2d
|
||||||
|
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
|
||||||
torch.nn.LayerNorm.load = load_layer_norm
|
torch.nn.LayerNorm.load = load_layer_norm
|
||||||
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
|
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user