fix imports

This commit is contained in:
OlivierDehaene 2023-05-12 15:47:57 +02:00
parent f9e3a3bb91
commit e7826855a3
4 changed files with 139 additions and 138 deletions

View File

@ -18,10 +18,7 @@ from text_generation_server.models.types import (
GeneratedText, GeneratedText,
) )
from text_generation_server.pb import generate_pb2 from text_generation_server.pb import generate_pb2
from text_generation_server.utils import ( from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
StoppingCriteria,
HeterogeneousNextTokenChooser
)
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
@ -228,7 +225,7 @@ class FlashCausalLMBatch(Batch):
# Slice from past # Slice from past
past_key_values.append( past_key_values.append(
self.past_key_values[:, self.cu_seqlens[idx]: self.cu_seqlens[idx + 1]] self.past_key_values[:, self.cu_seqlens[idx] : self.cu_seqlens[idx + 1]]
) )
all_input_ids.append(self.all_input_ids[idx]) all_input_ids.append(self.all_input_ids[idx])
@ -630,8 +627,8 @@ class FlashCausalLM(Model):
# Copy batch.input_ids to prefill_token_indices # Copy batch.input_ids to prefill_token_indices
if len(batch) > 1: if len(batch) > 1:
prefill_tokens_indices[ prefill_tokens_indices[
start_index: end_index - 1 start_index : end_index - 1
] = batch.input_ids[start_index + 1: end_index] ] = batch.input_ids[start_index + 1 : end_index]
else: else:
# Set prefill_tokens_indices to the correct slice # Set prefill_tokens_indices to the correct slice
prefill_tokens_indices = batch.input_ids prefill_tokens_indices = batch.input_ids
@ -717,7 +714,7 @@ class FlashCausalLM(Model):
if stop: if stop:
# Decode generated tokens # Decode generated tokens
output_text = self.decode( output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens:] all_input_ids[-stopping_criteria.current_tokens :]
) )
generated_text = GeneratedText( generated_text = GeneratedText(
output_text, output_text,
@ -732,7 +729,7 @@ class FlashCausalLM(Model):
if prefill: if prefill:
# Remove generated token to only have prefill and add nan for first prompt token # Remove generated token to only have prefill and add nan for first prompt token
request_prefill_logprobs = [float("nan")] + prefill_logprobs[ request_prefill_logprobs = [float("nan")] + prefill_logprobs[
start_index: end_index - 1 start_index : end_index - 1
] ]
prefill_token_ids = all_input_ids[:-1] prefill_token_ids = all_input_ids[:-1]
prefill_texts = self.tokenizer.batch_decode( prefill_texts = self.tokenizer.batch_decode(

View File

@ -14,8 +14,9 @@ from text_generation_server.utils.tokens import (
StoppingCriteria, StoppingCriteria,
StopSequenceCriteria, StopSequenceCriteria,
FinishReason, FinishReason,
Sampling,
Greedy,
) )
from text_generation_server.utils.logits_process import Sampling, Greedy
__all__ = [ __all__ = [
"convert_file", "convert_file",

View File

@ -14,25 +14,6 @@ from transformers import (
) )
class Sampling:
def __init__(self, seed: int, device: str = "cpu"):
self.generator = torch.Generator(device)
self.generator.manual_seed(seed)
self.seed = seed
def __call__(self, logits):
probs = torch.nn.functional.softmax(logits, -1)
# Avoid GPU<->CPU sync done by torch multinomial
# See: https://github.com/pytorch/pytorch/blob/925a3788ec5c06db62ca732a0e9425a26a00916f/aten/src/ATen/native/Distributions.cpp#L631-L637
q = torch.empty_like(probs).exponential_(1, generator=self.generator)
return probs.div_(q).argmax()
class Greedy:
def __call__(self, logits):
return logits.argmax(dim=-1)
class StaticWarper: class StaticWarper:
def __init__( def __init__(
self, self,
@ -329,46 +310,3 @@ class HeterogeneousTypicalLogitsWarper(LogitsWarper):
def filter(self, indices): def filter(self, indices):
self.mass = self.mass[indices] self.mass = self.mass[indices]
return self return self
class HeterogeneousSampling:
r"""
Mixed greedy and probabilistic sampling. Compute both and pick the right one for each sample.
"""
def __init__(self, do_sample: List[bool], seeds: List[int], device: torch.device):
self.seeds = seeds
self.greedy_indices = []
self.sampling_mapping = {}
for i, (sample, seed) in enumerate(zip(do_sample, seeds)):
if sample:
self.sampling_mapping[i] = Sampling(seed, device)
else:
self.greedy_indices.append(i)
self.greedy = Greedy()
def __call__(self, logits):
out = torch.empty(logits.shape[0], dtype=torch.int64, device=logits.device)
if self.greedy_indices:
out[self.greedy_indices] = torch.argmax(logits[self.greedy_indices], -1)
for i, sampling in self.sampling_mapping.items():
out[i] = sampling(logits[i])
return out
def filter(self, indices):
new_greedy_indices = []
new_sampling_mapping = {}
for i, idx in enumerate(indices):
if idx in self.sampling_mapping:
new_sampling_mapping[i] = self.sampling_mapping[idx]
else:
new_greedy_indices.append(i)
self.greedy_indices = new_greedy_indices
self.sampling_mapping = new_sampling_mapping
return self

View File

@ -3,17 +3,22 @@ import torch
from transformers import ( from transformers import (
RepetitionPenaltyLogitsProcessor, RepetitionPenaltyLogitsProcessor,
PreTrainedTokenizerBase, LogitsProcessorList, PreTrainedTokenizerBase,
LogitsProcessorList,
) )
from typing import List, Tuple, Optional from typing import List, Tuple, Optional
from text_generation_server.pb import generate_pb2 from text_generation_server.pb import generate_pb2
from text_generation_server.pb.generate_pb2 import FinishReason from text_generation_server.pb.generate_pb2 import FinishReason
from text_generation_server.utils.watermark import WatermarkLogitsProcessor from text_generation_server.utils.watermark import WatermarkLogitsProcessor
from text_generation_server.utils import Sampling, Greedy from text_generation_server.utils.logits_process import (
from text_generation_server.utils.logits_process import static_warper, HeterogeneousRepetitionPenaltyLogitsProcessor, \ static_warper,
HeterogeneousTemperatureLogitsWarper, HeterogeneousTopKLogitsWarper, HeterogeneousTopPLogitsWarper, \ HeterogeneousRepetitionPenaltyLogitsProcessor,
HeterogeneousTypicalLogitsWarper, HeterogeneousSampling HeterogeneousTemperatureLogitsWarper,
HeterogeneousTopKLogitsWarper,
HeterogeneousTopPLogitsWarper,
HeterogeneousTypicalLogitsWarper,
)
class NextTokenChooser: class NextTokenChooser:
@ -240,3 +245,63 @@ class HeterogeneousNextTokenChooser:
device=device, device=device,
dtype=dtype, dtype=dtype,
) )
class Sampling:
def __init__(self, seed: int, device: str = "cpu"):
self.generator = torch.Generator(device)
self.generator.manual_seed(seed)
self.seed = seed
def __call__(self, logits):
probs = torch.nn.functional.softmax(logits, -1)
# Avoid GPU<->CPU sync done by torch multinomial
# See: https://github.com/pytorch/pytorch/blob/925a3788ec5c06db62ca732a0e9425a26a00916f/aten/src/ATen/native/Distributions.cpp#L631-L637
q = torch.empty_like(probs).exponential_(1, generator=self.generator)
return probs.div_(q).argmax()
class Greedy:
def __call__(self, logits):
return logits.argmax(dim=-1)
class HeterogeneousSampling:
r"""
Mixed greedy and probabilistic sampling. Compute both and pick the right one for each sample.
"""
def __init__(self, do_sample: List[bool], seeds: List[int], device: torch.device):
self.seeds = seeds
self.greedy_indices = []
self.sampling_mapping = {}
for i, (sample, seed) in enumerate(zip(do_sample, seeds)):
if sample:
self.sampling_mapping[i] = Sampling(seed, device)
else:
self.greedy_indices.append(i)
self.greedy = Greedy()
def __call__(self, logits):
out = torch.empty(logits.shape[0], dtype=torch.int64, device=logits.device)
if self.greedy_indices:
out[self.greedy_indices] = torch.argmax(logits[self.greedy_indices], -1)
for i, sampling in self.sampling_mapping.items():
out[i] = sampling(logits[i])
return out
def filter(self, indices):
new_greedy_indices = []
new_sampling_mapping = {}
for i, idx in enumerate(indices):
if idx in self.sampling_mapping:
new_sampling_mapping[i] = self.sampling_mapping[idx]
else:
new_greedy_indices.append(i)
self.greedy_indices = new_greedy_indices
self.sampling_mapping = new_sampling_mapping
return self