Merge branch 'huggingface:main' into model_load_fix_for_qwen2_1.5B

This commit is contained in:
Matvey Kolbasov 2024-07-25 10:57:45 +03:00 committed by GitHub
commit e582eed62f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
20 changed files with 1415 additions and 1286 deletions

View File

@ -1607,6 +1607,10 @@ fn main() -> Result<(), LauncherError> {
// Download and convert lora adapters if any
if let Some(lora_adapters) = &args.lora_adapters {
for adapter in lora_adapters.split(',') {
// skip download if a path is provided
if adapter.contains('=') {
continue;
}
download_convert_model(
adapter,
None,

View File

@ -0,0 +1,187 @@
import pytest
from unittest.mock import Mock
from text_generation_server.utils.adapter import get_attn_weights, get_mlp_weights
def test_get_attn_weights():
# create a mock layer
mock_layer = Mock()
mock_layer.self_attn.query_key_value = Mock()
mock_layer.self_attn.o_proj = Mock()
# call the function
result = get_attn_weights(2, mock_layer)
# assert the result
expected = {
(2, "q_proj"): (
"model.layers.2.self_attn.q_proj",
mock_layer.self_attn.query_key_value,
),
(2, "k_proj"): (
"model.layers.2.self_attn.k_proj",
mock_layer.self_attn.query_key_value,
),
(2, "v_proj"): (
"model.layers.2.self_attn.v_proj",
mock_layer.self_attn.query_key_value,
),
(2, "o_proj"): ("model.layers.2.self_attn.o_proj", mock_layer.self_attn.o_proj),
}
assert result == expected
def test_get_mlp_weights_with_gate_up_proj():
# create a mock layer with gate_up_proj
mock_layer = Mock()
mock_layer.mlp.gate_up_proj = Mock()
mock_layer.mlp.down_proj = Mock()
# call the function
result = get_mlp_weights(3, mock_layer)
# assert the result
expected = {
(3, "gate_proj"): ("model.layers.3.mlp.gate_proj", mock_layer.mlp.gate_up_proj),
(3, "up_proj"): ("model.layers.3.mlp.up_proj", mock_layer.mlp.gate_up_proj),
(3, "down_proj"): ("model.layers.3.mlp.down_proj", mock_layer.mlp.down_proj),
}
assert result == expected
def test_get_mlp_weights_without_gate_up_proj():
# create a mock layer without gate_up_proj
mock_layer = Mock()
mock_layer.mlp = Mock(spec=[])
# call the function
result = get_mlp_weights(1, mock_layer)
# assert the result
assert result == {}
@pytest.mark.parametrize("layer_index", [0, 1, 5])
def test_get_attn_weights_different_layers(layer_index):
mock_layer = Mock()
mock_layer.self_attn.query_key_value = Mock()
mock_layer.self_attn.o_proj = Mock()
result = get_attn_weights(layer_index, mock_layer)
for k in ["q", "k", "v"]:
assert (layer_index, f"{k}_proj") in result
assert (
result[(layer_index, f"{k}_proj")][0]
== f"model.layers.{layer_index}.self_attn.{k}_proj"
)
assert (layer_index, "o_proj") in result
assert (
result[(layer_index, "o_proj")][0]
== f"model.layers.{layer_index}.self_attn.o_proj"
)
@pytest.mark.parametrize("layer_index", [0, 1, 5])
def test_get_mlp_weights_different_layers(layer_index):
mock_layer = Mock()
mock_layer.mlp.gate_up_proj = Mock()
mock_layer.mlp.down_proj = Mock()
result = get_mlp_weights(layer_index, mock_layer)
for k in ["gate", "up", "down"]:
assert (layer_index, f"{k}_proj") in result
assert (
result[(layer_index, f"{k}_proj")][0]
== f"model.layers.{layer_index}.mlp.{k}_proj"
)
def test_get_attn_weights_llama_compatibility():
mock_layer = Mock()
mock_layer.self_attn.query_key_value = Mock()
mock_layer.self_attn.o_proj = Mock()
result = get_attn_weights(2, mock_layer)
expected = {
(2, "q_proj"): (
"model.layers.2.self_attn.q_proj",
mock_layer.self_attn.query_key_value,
),
(2, "k_proj"): (
"model.layers.2.self_attn.k_proj",
mock_layer.self_attn.query_key_value,
),
(2, "v_proj"): (
"model.layers.2.self_attn.v_proj",
mock_layer.self_attn.query_key_value,
),
(2, "o_proj"): ("model.layers.2.self_attn.o_proj", mock_layer.self_attn.o_proj),
}
assert result == expected
def test_get_mlp_weights_llama_compatibility():
mock_layer = Mock()
mock_layer.mlp.gate_up_proj = Mock()
mock_layer.mlp.down_proj = Mock()
result = get_mlp_weights(3, mock_layer)
expected = {
(3, "gate_proj"): ("model.layers.3.mlp.gate_proj", mock_layer.mlp.gate_up_proj),
(3, "up_proj"): ("model.layers.3.mlp.up_proj", mock_layer.mlp.gate_up_proj),
(3, "down_proj"): ("model.layers.3.mlp.down_proj", mock_layer.mlp.down_proj),
}
assert result == expected
def test_get_attn_weights_gemma_compatibility():
mock_layer = Mock()
mock_layer.self_attn.query_key_value = Mock()
mock_layer.self_attn.o_proj = Mock()
result = get_attn_weights(2, mock_layer)
expected = {
(2, "q_proj"): (
"model.layers.2.self_attn.q_proj",
mock_layer.self_attn.query_key_value,
),
(2, "k_proj"): (
"model.layers.2.self_attn.k_proj",
mock_layer.self_attn.query_key_value,
),
(2, "v_proj"): (
"model.layers.2.self_attn.v_proj",
mock_layer.self_attn.query_key_value,
),
(2, "o_proj"): ("model.layers.2.self_attn.o_proj", mock_layer.self_attn.o_proj),
}
assert result == expected
def test_get_mlp_weights_gemma_compatibility():
mock_layer = Mock()
mock_layer.mlp.gate_proj = Mock()
mock_layer.mlp.up_proj = Mock()
mock_layer.mlp.down_proj = Mock()
# ensure that the mock_layer.mlp.gate_up_proj attribute does not exist.
# This is necessary because the use of `Mock` automatically creates any
# attributes that are accessed, even if they don't exist in the actual
# implementation. If `gate_up_proj` were created, `get_mlp_weights` might
# follow the wrong execution path and return an incorrect result.
del mock_layer.mlp.gate_up_proj
result = get_mlp_weights(3, mock_layer)
expected = {
(3, "gate_proj"): ("model.layers.3.mlp.gate_proj", mock_layer.mlp.gate_proj),
(3, "up_proj"): ("model.layers.3.mlp.up_proj", mock_layer.mlp.up_proj),
(3, "down_proj"): ("model.layers.3.mlp.down_proj", mock_layer.mlp.down_proj),
}
assert result == expected

View File

@ -8,7 +8,10 @@ from text_generation_server.utils.weights import (
)
from text_generation_server.layers.gptq import GPTQWeight, GPTQWeightsLoader
from text_generation_server.layers.exl2 import Exl2Weight, Exl2WeightsLoader
from text_generation_server.layers.marlin import MarlinWeight, MarlinWeightsLoader
from text_generation_server.layers.marlin.marlin import (
MarlinWeight,
MarlinWeightsLoader,
)
from types import SimpleNamespace
from typing import List, Optional, Dict, Union
from pathlib import Path

View File

@ -4,7 +4,7 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Optional, Set, Tuple
from typing import TYPE_CHECKING, Dict, Set, Tuple
import torch
@ -31,14 +31,3 @@ class AdapterConfig(ABC):
weight_names: Tuple[str],
) -> Tuple[ModuleMap, Set[str]]:
pass
@abstractmethod
def load_batched_adapter_weights(
self,
model: "Model",
module_map: ModuleMap,
layer_type: str,
unused_weight_names: Set[str],
dynamic: bool,
) -> Optional[AdapterWeights]:
pass

View File

@ -102,22 +102,6 @@ class LoraConfig(AdapterConfig):
adapter_weight_names.add(lora_b_name)
return module_map, adapter_weight_names
def load_batched_adapter_weights(
self,
model: "Model",
module_map: Dict[str, Dict],
layer_type: str,
unused_weight_names: Set[str],
dynamic: bool,
) -> Optional[AdapterWeights]:
return LoraWeights.load(
self,
model,
module_map,
layer_type,
unused_weight_names,
)
@classmethod
def load(cls, adapter_id: str, api_token: str) -> "LoraConfig":
hf_config = _LoraConfig.from_pretrained(adapter_id, token=api_token)
@ -192,22 +176,38 @@ class LoraWeights(AdapterWeights):
def get_batch_types(cls) -> List[Type[BatchAdapterWeights]]:
return [BatchLoraWeights]
# prepare pre-loaded lora weights for use in the model.
#
# this method processes and organizes lora weights for a specific layer type across all layers:
# - uses `config` (LoraConfig) to apply lora-specific settings like scaling factor.
# - retrieves weights from `module_map` based on the `layer_type`.
# - processes `nlayers` number of layers.
# - converts weights to the specified `dtype`.
# - shards weights across `world_size` number of processes using the `process_group`.
# - maps weights to specific layers using `target_to_layer`.
# - tracks `unused_weight_names` to identify any unused weights.
#
# the method handles weight transposition, scaling, and padding to ensure compatibility
# with SGMV or BGMV operations.
@classmethod
def load(
def prepare_weights(
cls,
config: LoraConfig,
model: "Model",
module_map: Dict[str, Dict],
layer_type: str,
unused_weight_names: Set[str],
nlayers: int,
dtype: torch.dtype,
world_size: int,
process_group: ProcessGroup,
target_to_layer: Dict[str, Tuple[str, torch.Tensor]],
) -> Optional[AdapterWeights]:
nlayers = model.get_num_layers_for_type(layer_type)
lora_a_list = [None] * nlayers
lora_b_list = [None] * nlayers
for layer_id in range(nlayers):
key = (layer_id, layer_type)
weight_name, layer = model.target_to_layer[key]
weight_name, layer = target_to_layer[key]
base_weight = layer.base_layer.linear.weight
base_device = base_weight.device
@ -216,10 +216,10 @@ class LoraWeights(AdapterWeights):
return None
lora_a, lora_a_name = module_map[weight_name]["lora_A"]
lora_a = lora_a.to(base_device, model.dtype)
lora_a = lora_a.to(base_device, dtype)
lora_b, lora_b_name = module_map[weight_name]["lora_B"]
lora_b = lora_b.to(base_device, model.dtype)
lora_b = lora_b.to(base_device, dtype)
scale = get_scaling_factor(
config.lora_alpha,
@ -236,12 +236,8 @@ class LoraWeights(AdapterWeights):
lora_b_list[layer_id] = lora_b.transpose(0, 1) * scale
# pad lora ranks to be compatible with sgmv
lora_a_list = [
pad_rank(w, dim=1, world_size=model.world_size) for w in lora_a_list
]
lora_b_list = [
pad_rank(w, dim=0, world_size=model.world_size) for w in lora_b_list
]
lora_a_list = [pad_rank(w, dim=1, world_size=world_size) for w in lora_a_list]
lora_b_list = [pad_rank(w, dim=0, world_size=world_size) for w in lora_b_list]
if lora_a_list:
# update rank if it was padded
@ -252,8 +248,8 @@ class LoraWeights(AdapterWeights):
*shard_lora_weights(
weights_a=lora_a_list,
weights_b=lora_b_list,
split_dim=0 if model.is_row_parallel(layer_type) else 1,
process_group=model.process_group,
split_dim=0 if layer_type in {"o_proj", "down_proj", "lm_head"} else 1,
process_group=process_group,
),
config,
)
@ -293,10 +289,6 @@ class BatchLoraWeights(BatchAdapterWeights):
for rank_data in self.rank_data.values()
)
@classmethod
def key(cls) -> str:
return "lora"
@classmethod
def load(
self,

View File

@ -42,10 +42,6 @@ class BatchAdapterWeights(ABC):
def has_adapter(self, adapter_index: int) -> bool:
pass
@abstractclassmethod
def key(cls) -> str:
pass
@abstractclassmethod
def load(
cls,
@ -71,13 +67,6 @@ class LayerAdapterWeights:
return
del self.adapter_weights[adapter_idx]
@property
def max_speculative_tokens(self) -> int:
return max(
adapter_weights.speculative_tokens
for adapter_weights in self.adapter_weights.values()
)
def is_empty(self) -> bool:
return len(self.adapter_weights) == 0
@ -101,7 +90,7 @@ class LayerAdapterWeights:
adapter_weights, meta, prefill, prefill_head_indices
)
if batched_weights is not None:
batch_data[batch_type.key()] = batched_weights
batch_data = batched_weights
return batch_data
@ -133,8 +122,7 @@ class AdapterBatchData:
def ranks(self) -> Set[int]:
# TODO(travis): refactor to be less coupled to lora implementation
ranks = set()
for layer_data in self.data.values():
lora_data = layer_data.get("lora")
for lora_data in self.data.values():
if lora_data is None:
continue

View File

@ -4,9 +4,10 @@ import typer
from pathlib import Path
from loguru import logger
from typing import Optional
from typing import Optional, List, Dict
from enum import Enum
from huggingface_hub import hf_hub_download
from text_generation_server.utils.adapter import parse_lora_adapters
from text_generation_server.utils.log import log_master
@ -80,25 +81,16 @@ def serve(
if otlp_endpoint is not None:
setup_tracing(otlp_service_name=otlp_service_name, otlp_endpoint=otlp_endpoint)
lora_adapter_ids = os.getenv("LORA_ADAPTERS", None)
# split on comma and strip whitespace
lora_adapter_ids = (
[x.strip() for x in lora_adapter_ids.split(",")] if lora_adapter_ids else []
)
if len(lora_adapter_ids) > 0:
log_master(
logger.warning,
f"LoRA adapters are enabled. This is an experimental feature and may not work as expected.",
)
lora_adapters = parse_lora_adapters(os.getenv("LORA_ADAPTERS"))
# TODO: enable lora with cuda graphs. for now disable cuda graphs if lora is enabled
# and warn the user
if len(lora_adapter_ids) > 0 and os.getenv("CUDA_GRAPHS", None) is not None:
log_master(
logger.warning,
f"LoRa adapter are not supported with CUDA Graphs. Disabling CUDA Graphs.",
if lora_adapters:
logger.warning("LoRA adapters enabled (experimental feature).")
if "CUDA_GRAPHS" in os.environ:
logger.warning(
"LoRA adapters incompatible with CUDA Graphs. Disabling CUDA Graphs."
)
global CUDA_GRAPHS
CUDA_GRAPHS = None
@ -117,7 +109,7 @@ def serve(
)
server.serve(
model_id,
lora_adapter_ids,
lora_adapters,
revision,
sharded,
quantize,

View File

@ -43,10 +43,7 @@ class LoraLinear(nn.Module):
) -> torch.Tensor:
if adapter_data is None:
return result
data = adapter_data.data.get(layer_type)
data: Optional["BatchLoraWeights"] = (
data.get("lora") if data is not None else None
)
data: Optional["BatchLoraWeights"] = adapter_data.data.get(layer_type)
if has_sgmv() and data is not None and data.can_vectorize(self.process_group):
# In tensor-parallel configurations, each GPU processes a specific segment of the output.

View File

@ -1,836 +0,0 @@
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.fp8 import fp8_quantize
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
try:
major, _minor = torch.cuda.get_device_capability()
has_sm_8_0 = major >= 8
except Exception:
has_sm_8_0 = False
GPTQ_MARLIN_BITS = [4, 8]
GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
MARLIN_TILE_SIZE = 16
class MarlinWeightsLoader(WeightsLoader):
"""Loader for Marlin-quantized weights."""
def __init__(self, *, bits: int, is_marlin_24: bool):
self.bits = bits
self.is_marlin_24 = is_marlin_24
def get_weights(self, weights: "Weights", prefix: str):
"""
Get weights at the given prefix and apply without tensor paralllism.
"""
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
if is_marlin_24:
try:
B = weights.get_tensor(f"{prefix}.B_24")
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
)
B_meta = weights.get_tensor(f"{prefix}.B_meta")
s = weights.get_tensor(f"{prefix}.s")
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = weights.get_tensor(f"{prefix}.B")
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized."
)
s = weights.get_tensor(f"{prefix}.s")
weight = MarlinWeight(B=B, s=s)
return weight
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
if self.is_marlin_24:
B = weights.get_packed_sharded(
f"{prefix}.B_24", dim=1, block_sizes=block_sizes
)
B_meta = weights.get_packed_sharded(
f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
)
s = weights.get_packed_sharded(
f"{prefix}.s", dim=1, block_sizes=block_sizes
)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
B = weights.get_packed_sharded(
f"{prefix}.B", dim=1, block_sizes=block_sizes
)
s = weights.get_packed_sharded(
f"{prefix}.s", dim=1, block_sizes=block_sizes
)
weight = MarlinWeight(B=B, s=s)
return weight
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
if self.is_marlin_24:
try:
B = torch.cat(
[weights.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `marlin` weight, make sure the model is already quantized"
)
B_meta = torch.cat(
[weights.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
)
s = torch.cat(
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = torch.cat(
[weights.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `marlin` weight, make sure the model is already quantized"
)
s = torch.cat(
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
)
weight = MarlinWeight(B=B, s=s)
return weight
def get_weights_row(self, weights: Weights, prefix: str):
if self.is_marlin_24:
try:
B = weights.get_sharded(f"{prefix}.B_24", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
)
B_meta = weights.get_sharded(f"{prefix}.B_meta", dim=0)
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
if num_groups == 1:
# The number of groups is 1 when groupsize == -1. share
# scales between all shards in this case.
s = weights.get_tensor(f"{prefix}.s")
else:
s = weights.get_sharded(f"{prefix}.s", dim=0)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = weights.get_sharded(f"{prefix}.B", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized."
)
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
if num_groups == 1:
# The number of groups is 1 when groupsize == -1. share
# scales between all shards in this case.
s = weights.get_tensor(f"{prefix}.s")
else:
s = weights.get_sharded(f"{prefix}.s", dim=0)
weight = MarlinWeight(B=B, s=s)
return weight
def can_use_gptq_marlin(
*, bits: int, groupsize: int, quant_method: str, quantize: str, sym: bool
) -> bool:
return (
SYSTEM == "cuda"
and marlin_kernels is not None
and has_sm_8_0
and quantize in {"awq", "gptq"}
and quant_method in {"awq", "gptq"}
and bits in GPTQ_MARLIN_BITS
and groupsize in GPTQ_MARLIN_GROUP_SIZES
# We only suppord asymmetric quantization for AWQ.
and (sym or quant_method == "awq")
)
def _check_marlin_kernels():
if not (SYSTEM == "cuda" and has_sm_8_0):
raise NotImplementedError(
"Using quantized Marlin models requires a GPU with CUDA capability 8.0 or later."
)
if marlin_kernels is None:
raise NotImplementedError(
"marlin is not installed, install it with: pip install server/marlin"
)
def _check_valid_shape(in_features: int, out_features: int):
if (in_features % 128 != 0 or out_features % 64 != 0) and (
in_features % 64 != 0 or out_features % 128 != 0
):
raise ValueError(
f"The GPTQ Marlin kernel does not have a valid thread configuration for weight matrix with shape ({out_features}, {in_features})."
" The shape elements must be divisible by (128, 64) or (64, 128)."
)
# https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54
def _get_perms() -> Tuple[List[int], List[int]]:
scale_perm = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single = []
for i in range(4):
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return scale_perm, scale_perm_single
_scale_perm, _scale_perm_single = _get_perms()
def permute_scales(scales: torch.Tensor):
out_features = scales.shape[1]
if scales.shape[0] == 1:
scales = scales.reshape((-1, len(_scale_perm_single)))[:, _scale_perm_single]
else:
scales = scales.reshape((-1, len(_scale_perm)))[:, _scale_perm]
return scales.reshape((-1, out_features)).contiguous()
@dataclass
class GPTQMarlinWeight(Weight):
"""
Repacked GPTQ Marlin weights.
"""
qweight: torch.Tensor
qzeros: torch.Tensor
scales: torch.Tensor
g_idx: torch.Tensor
perm: torch.Tensor
bits: int
is_full_k: bool
def __post_init__(self):
assert self.qweight.dtype == torch.int32
assert self.scales.dtype == torch.float16
assert self.g_idx.dtype == torch.int32
assert self.perm.dtype == torch.int32
def get_linear(self, bias: torch.Tensor):
return GPTQMarlinLinear(
weight=self,
bias=bias,
)
def repack_gptq_for_marlin(
*,
qweight: torch.Tensor,
qzeros: Optional[torch.Tensor],
scales: torch.Tensor,
g_idx: Optional[torch.Tensor],
bits: int,
desc_act: bool,
groupsize: int,
quant_method: str,
sym: bool,
sharded_infeatures: bool,
) -> GPTQMarlinWeight:
"""Convert GPTQ weights to a layout that's compatible with GPTQ-Marlin kernels."""
_check_marlin_kernels()
assert marlin_kernels is not None
if bits not in GPTQ_MARLIN_BITS:
supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
raise RuntimeError(
f"Repacking {bits}-bit GPTQ weights as Marlin is not supported, must be one of: {supported_bits}"
)
if groupsize not in GPTQ_MARLIN_GROUP_SIZES:
supported_sizes = ", ".join(str(b) for b in GPTQ_MARLIN_GROUP_SIZES)
raise RuntimeError(
f"Repacking GPTQ weights with group size {groupsize} as Marlin is not supported, must be one of: {supported_sizes}"
)
if not (sym or quant_method == "awq"):
raise RuntimeError(
"Repacking GPTQ weights with asymmetric quantization as Marlin is not supported."
)
log_once(logger.info, f"Converting {quant_method} model to Marlin packing format.")
weights_per_int = 32 // bits
in_features = qweight.shape[0]
out_features = qweight.shape[1]
# AWQ uses column packing, GPTQ uses row packing
if quant_method == "awq":
out_features *= weights_per_int
else:
in_features *= weights_per_int
if in_features % groupsize != 0:
raise ValueError(
f"Number of input features ({in_features}) not divisible by group size ({groupsize})"
)
if g_idx is not None and desc_act and groupsize != -1:
perm = torch.argsort(g_idx).to(torch.int)
g_idx = g_idx[perm]
else:
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
g_idx = torch.empty(0, dtype=torch.int, device=qweight.device)
if quant_method == "awq":
repacked = marlin_kernels.awq_marlin_repack(
qweight, in_features, out_features, bits
)
if qzeros is not None:
qzeros = awq_to_marlin_zero_points(
qzeros,
in_features // groupsize,
out_features,
bits,
)
else:
repacked = marlin_kernels.gptq_marlin_repack(
qweight, perm, in_features, out_features, bits
)
if qzeros is None:
qzeros = torch.empty(0, dtype=torch.int, device=qweight.device)
scales = permute_scales(scales)
is_full_k = not (desc_act and sharded_infeatures)
return GPTQMarlinWeight(
qweight=repacked,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
perm=perm,
bits=bits,
is_full_k=is_full_k,
)
class GPTQMarlinLinear(nn.Module):
"""
Linear layer for GPTQ weights that were converted for the GPTQ-Marlin
kernels.
"""
def __init__(
self,
*,
weight: GPTQMarlinWeight,
bias: Optional[torch.Tensor],
):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
in_features = weight.qweight.shape[0] * MARLIN_TILE_SIZE
out_features = weight.scales.shape[1]
_check_valid_shape(in_features=in_features, out_features=out_features)
self.bits = weight.bits
self.is_full_k = weight.is_full_k
self.qweight = weight.qweight
self.qzeros = weight.qzeros
self.scales = weight.scales
self.g_idx = weight.g_idx
self.perm = weight.perm
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=weight.qweight.device
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
A_flat = A.view(-1, A.shape[-1])
C = marlin_kernels.gptq_marlin_gemm(
A_flat,
self.qweight,
self.scales,
self.qzeros,
self.g_idx,
self.perm,
self.workspace,
self.bits,
A_flat.shape[0],
self.scales.shape[1],
A_flat.shape[1],
self.is_full_k,
self.qzeros.numel() > 0,
)
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
if self.bias is not None:
C += self.bias
return C
GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 64
GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]
@dataclass
class GPTQMarlin24Weight:
"""
GPTQ-Marlin 2:4 weights.
Attributes:
B (torch.Tensor): int4-quantized weights packed into int32.
B_meta (torch.Tensor): metadata for 2:4 sparsity.
s (torch.Tensor): float16 scales.
bits: quantized weight size.
"""
B: torch.Tensor
B_meta: torch.Tensor
s: torch.Tensor
bits: int
def __post_init__(self):
assert self.B.dtype == torch.int32
assert self.B_meta.dtype == torch.int16
assert self.s.dtype == torch.float16
def get_linear(self, bias: torch.Tensor):
return GPTQMarlin24Linear(
weight=self,
bias=bias,
)
class GPTQMarlin24Linear(nn.Module):
def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
if weight.bits not in GPTQ_MARLIN_BITS:
supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
raise RuntimeError(
f"{weight.bits}-bit GPTQ Sparse 2:4 Marlin is not supported, must be one of: {supported_bits}"
)
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE * 2
out_features = weight.s.shape[1]
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
if groupsize not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
supported_sizes = ", ".join(
str(b) for b in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
)
raise RuntimeError(
f"Group size {groupsize} is not supported, must be one of: {supported_sizes}"
)
self.bits = weight.bits
weights_per_int32 = 32 // self.bits
assert (
out_features % GPTQ_MARLIN_24_MIN_THREAD_N == 0
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_N} threads"
assert (
out_features % weights_per_int32 == 0
), f"Number of output features ({out_features}) not divisable by weights per int32 ({weights_per_int32})"
assert (
in_features % GPTQ_MARLIN_24_MIN_THREAD_K == 0
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_K} threads"
if groupsize != -1 and in_features % groupsize != 0:
raise ValueError(
f"Number of input features ({in_features}) not divisable by group size ({groupsize})"
)
self.B = weight.B
self.B_meta = weight.B_meta
self.s = weight.s
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
(out_features // GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL,
dtype=torch.int,
device=weight.B.device,
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
C = marlin_kernels.gptq_marlin_24_gemm(
A.view(-1, A.shape[-1]),
self.B,
self.B_meta,
self.s,
self.workspace,
self.bits,
A.shape[0],
self.s.shape[1],
A.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
if self.bias is not None:
C += self.bias
return C
class GPTQMarlinFP8Linear(nn.Module):
"""
FP8 GPTQ-Marlin linear layer.
"""
def __init__(
self,
qweight: torch.Tensor,
scales: torch.Tensor,
bias: Optional[torch.Tensor],
) -> None:
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
log_once(logger.info, "GPU does not support FP8, using Marlin FP8 kernel")
scales = scales.unsqueeze(0)
if scales.shape[1] == 1:
out_features, in_features = qweight.shape
scales = scales.repeat(1, out_features)
qweight, scales = repack_fp8_for_marlin(qweight, scales)
in_features = qweight.shape[0] * MARLIN_TILE_SIZE
out_features = scales.shape[1]
_check_valid_shape(in_features=in_features, out_features=out_features)
self.qweight = qweight
self.scales = scales
self.bias = bias if bias is not None else None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=qweight.device
)
@classmethod
def from_unquant(cls, weight, bias, dtype):
qweight, scales = fp8_quantize(weight)
return cls(qweight=qweight, scales=scales.to(dtype), bias=bias)
@classmethod
def from_fp8(cls, weight, scale, _input_scale, bias, dtype):
return cls(qweight=weight, scales=scale.to(dtype), bias=bias)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
A_flat = A.view(-1, A.shape[-1])
C = marlin_kernels.fp8_marlin_gemm(
A_flat,
self.qweight,
self.scales,
self.workspace,
8,
A_flat.shape[0],
self.scales.shape[1],
A_flat.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
if self.bias is not None:
C += self.bias
return C
def pack_fp8_as_int32(fp8_tensor: torch.Tensor) -> torch.Tensor:
"""
Repack FP8 weights to gptq format (packed int32 elements).
"""
assert fp8_tensor.dtype == torch.float8_e4m3fn
if fp8_tensor.shape[0] % 4 != 0:
raise ValueError(
f"Leading tensor dimension is not divisable by 4: {fp8_tensor.shape[0]}"
)
# Reshape to prepare for packing
reshaped = fp8_tensor.reshape(-1, 4, *fp8_tensor.shape[1:])
# Convert fp8 to uint8 (byte) representation
byte_tensor = reshaped.view(torch.uint8)
# Pack 4 uint8 values into one int32
packed = torch.zeros(
fp8_tensor.shape[0] // 4,
fp8_tensor.shape[1],
dtype=torch.int32,
device=fp8_tensor.device,
)
for i in range(4):
packed.bitwise_or_(byte_tensor[:, i].to(torch.int32) << i * 8)
return packed
def repack_fp8_for_marlin(weight: torch.Tensor, scales: torch.Tensor):
"""
Repack FP8 tensor for GPTQ-Marlin.
"""
out_features, in_features = weight.shape
# Torch linear layers weights with shape [out_features, in_features],
# GPTQ-quantized weights use [in_feateres/pack_factor, in_features],
# so transpose before packing.
qweight = pack_fp8_as_int32(weight.t())
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
repacked = marlin_kernels.gptq_marlin_repack(
qweight, perm, in_features, out_features, 8
)
scales = permute_scales(scales)
return repacked, scales
@dataclass
class MarlinWeight(Weight):
"""
Marlin weights.
Attributes:
B (torch.Tensor): int4-quantized weights packed into int32.
s (torch.Tensor): bfloat16/float16 scales.
"""
B: torch.Tensor
s: torch.Tensor
def __post_init__(self):
assert self.B.dtype == torch.int32
assert self.s.dtype in [torch.float16, torch.bfloat16]
def get_linear(self, bias: torch.Tensor):
return MarlinLinear(weight=self, bias=bias)
class MarlinLinear(nn.Module):
def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE
out_features = weight.s.shape[1]
assert (
in_features % 128 == 0
), f"Number of input features ({in_features}) not divisable by 128"
assert (
out_features % 256 == 0
), f"Number of output features ({out_features}) not divisable by 256"
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
assert groupsize in {
-1,
128,
}, f"Group size must be -1 or 128, was {groupsize}"
self.B = weight.B
self.s = weight.s
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=weight.B.device
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
C = marlin_kernels.marlin_gemm(
A.view(-1, A.shape[-1]),
self.B,
self.s,
self.workspace,
A.shape[0],
self.s.shape[1],
A.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
if self.bias is not None:
C += self.bias
return C
# Functions below are from vLLM
def get_pack_factor(bits: int) -> int:
if 32 % bits != 0:
raise ValueError(f"Cannot {bits} bit values into uint32")
return 32 // bits
def pack_cols(
q_w: torch.Tensor,
num_bits: int,
size_k: int,
size_n: int,
):
assert q_w.shape == (size_k, size_n)
pack_factor = get_pack_factor(num_bits)
assert size_n % pack_factor == 0
orig_device = q_w.device
q_w = q_w.cpu().numpy().astype(numpy.uint32)
q_res = numpy.zeros((size_k, size_n // pack_factor), dtype=numpy.uint32)
for i in range(pack_factor):
q_res |= q_w[:, i::pack_factor] << num_bits * i
q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
q_res = q_res.contiguous()
return q_res
def unpack_cols(
packed_q_w: torch.Tensor,
num_bits: int,
size_k: int,
size_n: int,
):
pack_factor = get_pack_factor(num_bits)
assert size_n % pack_factor == 0
assert packed_q_w.shape == (
size_k,
size_n // pack_factor,
), "packed_q_w.shape = {} size_k = {}, size_n = {} pack_Factor = {}".format(
packed_q_w.shape, size_k, size_n, pack_factor
)
orig_device = packed_q_w.device
packed_q_w_cpu = packed_q_w.cpu().numpy().astype(numpy.uint32)
q_res = numpy.zeros((size_k, size_n), dtype=numpy.uint32)
mask = (1 << num_bits) - 1
for i in range(pack_factor):
vals = packed_q_w_cpu & mask
packed_q_w_cpu >>= num_bits
q_res[:, i::pack_factor] = vals
q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
q_res = q_res.contiguous()
return q_res
def marlin_zero_points(
zp: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
# Permute zero-points in a similar way to scales, but do not use the
# "single" permutation, since zero-points are applied on every MMA
zp = zp.reshape((-1, len(_scale_perm)))[:, _scale_perm]
# Interleave column dim (for the dequantize code) and pack it to int32
if num_bits == 4:
interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
elif num_bits == 8:
interleave = numpy.array([0, 2, 1, 3])
else:
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
zp = zp.reshape((-1, len(interleave)))[:, interleave].ravel()
zp = zp.reshape((-1, size_n)).contiguous()
zp = pack_cols(zp, num_bits, size_k, size_n)
return zp
def awq_to_marlin_zero_points(
q_zp_packed: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
# AWQ zero-points are quantized and packed on the column dim.
# In addition, the values are permuted based on dequantizer.
# Here we undo both of these, and then apply marlin permutation
# and pack it back.
q_zp = unpack_cols(q_zp_packed, num_bits, size_k, size_n)
# Undo interleaving (use argsort(..) to get inverse perm)
if num_bits == 4:
undo_interleave = numpy.argsort(numpy.array([0, 2, 4, 6, 1, 3, 5, 7]))
elif num_bits == 8:
undo_interleave = numpy.argsort(numpy.array([0, 2, 1, 3]))
else:
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
q_zp = q_zp.reshape((-1, len(undo_interleave)))[:, undo_interleave].ravel()
q_zp = q_zp.reshape((-1, size_n)).contiguous()
marlin_zp = marlin_zero_points(q_zp, size_k, size_n, num_bits)
return marlin_zp

View File

@ -0,0 +1,20 @@
from typing import List, Tuple
import torch
from text_generation_server.layers.marlin.fp8 import GPTQMarlinFP8Linear
from text_generation_server.layers.marlin.gptq import (
GPTQMarlinLinear,
GPTQMarlinWeight,
can_use_gptq_marlin,
repack_gptq_for_marlin,
)
from text_generation_server.layers.marlin.marlin import MarlinWeightsLoader
__all__ = [
"GPTQMarlinFP8Linear",
"GPTQMarlinLinear",
"GPTQMarlinWeight",
"MarlinWeightsLoader",
"can_use_gptq_marlin",
"repack_gptq_for_marlin",
]

View File

@ -0,0 +1,140 @@
from typing import Optional
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.fp8 import fp8_quantize
from text_generation_server.layers.marlin.gptq import _check_valid_shape
from text_generation_server.layers.marlin.util import (
_check_marlin_kernels,
permute_scales,
)
from text_generation_server.utils.log import log_once
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
MARLIN_TILE_SIZE = 16
class GPTQMarlinFP8Linear(nn.Module):
"""
FP8 GPTQ-Marlin linear layer.
"""
def __init__(
self,
qweight: torch.Tensor,
scales: torch.Tensor,
bias: Optional[torch.Tensor],
) -> None:
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
log_once(logger.info, "GPU does not support FP8, using Marlin FP8 kernel")
scales = scales.unsqueeze(0)
if scales.shape[1] == 1:
out_features, in_features = qweight.shape
scales = scales.repeat(1, out_features)
qweight, scales = repack_fp8_for_marlin(qweight, scales)
in_features = qweight.shape[0] * MARLIN_TILE_SIZE
out_features = scales.shape[1]
_check_valid_shape(in_features=in_features, out_features=out_features)
self.qweight = qweight
self.scales = scales
self.bias = bias if bias is not None else None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=qweight.device
)
@classmethod
def from_unquant(cls, weight, bias, dtype):
qweight, scales = fp8_quantize(weight)
return cls(qweight=qweight, scales=scales.to(dtype), bias=bias)
@classmethod
def from_fp8(cls, weight, scale, _input_scale, bias, dtype):
return cls(qweight=weight, scales=scale.to(dtype), bias=bias)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
A_flat = A.view(-1, A.shape[-1])
C = marlin_kernels.fp8_marlin_gemm(
A_flat,
self.qweight,
self.scales,
self.workspace,
8,
A_flat.shape[0],
self.scales.shape[1],
A_flat.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
if self.bias is not None:
C += self.bias
return C
def pack_fp8_as_int32(fp8_tensor: torch.Tensor) -> torch.Tensor:
"""
Repack FP8 weights to gptq format (packed int32 elements).
"""
assert fp8_tensor.dtype == torch.float8_e4m3fn
if fp8_tensor.shape[0] % 4 != 0:
raise ValueError(
f"Leading tensor dimension is not divisable by 4: {fp8_tensor.shape[0]}"
)
# Reshape to prepare for packing
reshaped = fp8_tensor.reshape(-1, 4, *fp8_tensor.shape[1:])
# Convert fp8 to uint8 (byte) representation
byte_tensor = reshaped.view(torch.uint8)
# Pack 4 uint8 values into one int32
packed = torch.zeros(
fp8_tensor.shape[0] // 4,
fp8_tensor.shape[1],
dtype=torch.int32,
device=fp8_tensor.device,
)
for i in range(4):
packed.bitwise_or_(byte_tensor[:, i].to(torch.int32) << i * 8)
return packed
def repack_fp8_for_marlin(weight: torch.Tensor, scales: torch.Tensor):
"""
Repack FP8 tensor for GPTQ-Marlin.
"""
out_features, in_features = weight.shape
# Torch linear layers weights with shape [out_features, in_features],
# GPTQ-quantized weights use [in_feateres/pack_factor, in_features],
# so transpose before packing.
qweight = pack_fp8_as_int32(weight.t())
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
repacked = marlin_kernels.gptq_marlin_repack(
qweight, perm, in_features, out_features, 8
)
scales = permute_scales(scales)
return repacked, scales

View File

@ -0,0 +1,266 @@
from dataclasses import dataclass
from typing import Optional
import numpy
import torch
import torch.nn as nn
from loguru import logger
from text_generation_server.layers.marlin.util import (
_check_marlin_kernels,
marlin_zero_points,
permute_scales,
unpack_cols,
)
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
try:
major, _minor = torch.cuda.get_device_capability()
has_sm_8_0 = major >= 8
except Exception:
has_sm_8_0 = False
GPTQ_MARLIN_BITS = [4, 8]
GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
MARLIN_TILE_SIZE = 16
def can_use_gptq_marlin(
*, bits: int, groupsize: int, quant_method: str, quantize: str, sym: bool
) -> bool:
return (
SYSTEM == "cuda"
and marlin_kernels is not None
and has_sm_8_0
and quantize in {"awq", "gptq"}
and quant_method in {"awq", "gptq"}
and bits in GPTQ_MARLIN_BITS
and groupsize in GPTQ_MARLIN_GROUP_SIZES
# We only suppord asymmetric quantization for AWQ.
and (sym or quant_method == "awq")
)
@dataclass
class GPTQMarlinWeight(Weight):
"""
Repacked GPTQ Marlin weights.
"""
qweight: torch.Tensor
qzeros: torch.Tensor
scales: torch.Tensor
g_idx: torch.Tensor
perm: torch.Tensor
bits: int
is_full_k: bool
def __post_init__(self):
assert self.qweight.dtype == torch.int32
assert self.scales.dtype == torch.float16
assert self.g_idx.dtype == torch.int32
assert self.perm.dtype == torch.int32
def get_linear(self, bias: torch.Tensor):
return GPTQMarlinLinear(
weight=self,
bias=bias,
)
def repack_gptq_for_marlin(
*,
qweight: torch.Tensor,
qzeros: Optional[torch.Tensor],
scales: torch.Tensor,
g_idx: Optional[torch.Tensor],
bits: int,
desc_act: bool,
groupsize: int,
quant_method: str,
sym: bool,
sharded_infeatures: bool,
) -> GPTQMarlinWeight:
"""Convert GPTQ weights to a layout that's compatible with GPTQ-Marlin kernels."""
_check_marlin_kernels()
assert marlin_kernels is not None
if bits not in GPTQ_MARLIN_BITS:
supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
raise RuntimeError(
f"Repacking {bits}-bit GPTQ weights as Marlin is not supported, must be one of: {supported_bits}"
)
if groupsize not in GPTQ_MARLIN_GROUP_SIZES:
supported_sizes = ", ".join(str(b) for b in GPTQ_MARLIN_GROUP_SIZES)
raise RuntimeError(
f"Repacking GPTQ weights with group size {groupsize} as Marlin is not supported, must be one of: {supported_sizes}"
)
if not (sym or quant_method == "awq"):
raise RuntimeError(
"Repacking GPTQ weights with asymmetric quantization as Marlin is not supported."
)
log_once(logger.info, f"Converting {quant_method} model to Marlin packing format.")
weights_per_int = 32 // bits
in_features = qweight.shape[0]
out_features = qweight.shape[1]
# AWQ uses column packing, GPTQ uses row packing
if quant_method == "awq":
out_features *= weights_per_int
else:
in_features *= weights_per_int
if in_features % groupsize != 0:
raise ValueError(
f"Number of input features ({in_features}) not divisible by group size ({groupsize})"
)
if g_idx is not None and desc_act and groupsize != -1:
perm = torch.argsort(g_idx).to(torch.int)
g_idx = g_idx[perm]
else:
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
g_idx = torch.empty(0, dtype=torch.int, device=qweight.device)
if quant_method == "awq":
repacked = marlin_kernels.awq_marlin_repack(
qweight, in_features, out_features, bits
)
if qzeros is not None:
qzeros = awq_to_marlin_zero_points(
qzeros,
in_features // groupsize,
out_features,
bits,
)
else:
repacked = marlin_kernels.gptq_marlin_repack(
qweight, perm, in_features, out_features, bits
)
if qzeros is None:
qzeros = torch.empty(0, dtype=torch.int, device=qweight.device)
scales = permute_scales(scales)
is_full_k = not (desc_act and sharded_infeatures)
return GPTQMarlinWeight(
qweight=repacked,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
perm=perm,
bits=bits,
is_full_k=is_full_k,
)
class GPTQMarlinLinear(nn.Module):
"""
Linear layer for GPTQ weights that were converted for the GPTQ-Marlin
kernels.
"""
def __init__(
self,
*,
weight: GPTQMarlinWeight,
bias: Optional[torch.Tensor],
):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
in_features = weight.qweight.shape[0] * MARLIN_TILE_SIZE
out_features = weight.scales.shape[1]
_check_valid_shape(in_features=in_features, out_features=out_features)
self.bits = weight.bits
self.is_full_k = weight.is_full_k
self.qweight = weight.qweight
self.qzeros = weight.qzeros
self.scales = weight.scales
self.g_idx = weight.g_idx
self.perm = weight.perm
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=weight.qweight.device
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
A_flat = A.view(-1, A.shape[-1])
C = marlin_kernels.gptq_marlin_gemm(
A_flat,
self.qweight,
self.scales,
self.qzeros,
self.g_idx,
self.perm,
self.workspace,
self.bits,
A_flat.shape[0],
self.scales.shape[1],
A_flat.shape[1],
self.is_full_k,
self.qzeros.numel() > 0,
)
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
if self.bias is not None:
C += self.bias
return C
def awq_to_marlin_zero_points(
q_zp_packed: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
# AWQ zero-points are quantized and packed on the column dim.
# In addition, the values are permuted based on dequantizer.
# Here we undo both of these, and then apply marlin permutation
# and pack it back.
q_zp = unpack_cols(q_zp_packed, num_bits, size_k, size_n)
# Undo interleaving (use argsort(..) to get inverse perm)
if num_bits == 4:
undo_interleave = numpy.argsort(numpy.array([0, 2, 4, 6, 1, 3, 5, 7]))
elif num_bits == 8:
undo_interleave = numpy.argsort(numpy.array([0, 2, 1, 3]))
else:
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
q_zp = q_zp.reshape((-1, len(undo_interleave)))[:, undo_interleave].ravel()
q_zp = q_zp.reshape((-1, size_n)).contiguous()
marlin_zp = marlin_zero_points(q_zp, size_k, size_n, num_bits)
return marlin_zp
def _check_valid_shape(in_features: int, out_features: int):
if (in_features % 128 != 0 or out_features % 64 != 0) and (
in_features % 64 != 0 or out_features % 128 != 0
):
raise ValueError(
f"The GPTQ Marlin kernel does not have a valid thread configuration for weight matrix with shape ({out_features}, {in_features})."
" The shape elements must be divisible by (128, 64) or (64, 128)."
)

View File

@ -0,0 +1,346 @@
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from text_generation_server.layers.marlin.util import _check_marlin_kernels
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
class MarlinWeightsLoader(WeightsLoader):
"""Loader for Marlin-quantized weights."""
def __init__(self, *, bits: int, is_marlin_24: bool):
self.bits = bits
self.is_marlin_24 = is_marlin_24
def get_weights(self, weights: "Weights", prefix: str):
"""
Get weights at the given prefix and apply without tensor paralllism.
"""
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
if is_marlin_24:
try:
B = weights.get_tensor(f"{prefix}.B_24")
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
)
B_meta = weights.get_tensor(f"{prefix}.B_meta")
s = weights.get_tensor(f"{prefix}.s")
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = weights.get_tensor(f"{prefix}.B")
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized."
)
s = weights.get_tensor(f"{prefix}.s")
weight = MarlinWeight(B=B, s=s)
return weight
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
if self.is_marlin_24:
B = weights.get_packed_sharded(
f"{prefix}.B_24", dim=1, block_sizes=block_sizes
)
B_meta = weights.get_packed_sharded(
f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
)
s = weights.get_packed_sharded(
f"{prefix}.s", dim=1, block_sizes=block_sizes
)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
B = weights.get_packed_sharded(
f"{prefix}.B", dim=1, block_sizes=block_sizes
)
s = weights.get_packed_sharded(
f"{prefix}.s", dim=1, block_sizes=block_sizes
)
weight = MarlinWeight(B=B, s=s)
return weight
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
if self.is_marlin_24:
try:
B = torch.cat(
[weights.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `marlin` weight, make sure the model is already quantized"
)
B_meta = torch.cat(
[weights.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
)
s = torch.cat(
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = torch.cat(
[weights.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `marlin` weight, make sure the model is already quantized"
)
s = torch.cat(
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
)
weight = MarlinWeight(B=B, s=s)
return weight
def get_weights_row(self, weights: Weights, prefix: str):
if self.is_marlin_24:
try:
B = weights.get_sharded(f"{prefix}.B_24", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
)
B_meta = weights.get_sharded(f"{prefix}.B_meta", dim=0)
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
if num_groups == 1:
# The number of groups is 1 when groupsize == -1. share
# scales between all shards in this case.
s = weights.get_tensor(f"{prefix}.s")
else:
s = weights.get_sharded(f"{prefix}.s", dim=0)
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
else:
try:
B = weights.get_sharded(f"{prefix}.B", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized."
)
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
if num_groups == 1:
# The number of groups is 1 when groupsize == -1. share
# scales between all shards in this case.
s = weights.get_tensor(f"{prefix}.s")
else:
s = weights.get_sharded(f"{prefix}.s", dim=0)
weight = MarlinWeight(B=B, s=s)
return weight
@dataclass
class MarlinWeight(Weight):
"""
Marlin weights.
Attributes:
B (torch.Tensor): int4-quantized weights packed into int32.
s (torch.Tensor): bfloat16/float16 scales.
"""
B: torch.Tensor
s: torch.Tensor
def __post_init__(self):
assert self.B.dtype == torch.int32
assert self.s.dtype in [torch.float16, torch.bfloat16]
def get_linear(self, bias: torch.Tensor):
return MarlinLinear(weight=self, bias=bias)
class MarlinLinear(nn.Module):
def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE
out_features = weight.s.shape[1]
assert (
in_features % 128 == 0
), f"Number of input features ({in_features}) not divisable by 128"
assert (
out_features % 256 == 0
), f"Number of output features ({out_features}) not divisable by 256"
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
assert groupsize in {
-1,
128,
}, f"Group size must be -1 or 128, was {groupsize}"
self.B = weight.B
self.s = weight.s
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
out_features // 64 * 16, dtype=torch.int, device=weight.B.device
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
C = marlin_kernels.marlin_gemm(
A.view(-1, A.shape[-1]),
self.B,
self.s,
self.workspace,
A.shape[0],
self.s.shape[1],
A.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
if self.bias is not None:
C += self.bias
return C
GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 64
GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]
MARLIN_TILE_SIZE = 16
@dataclass
class GPTQMarlin24Weight:
"""
GPTQ-Marlin 2:4 weights.
Attributes:
B (torch.Tensor): int4-quantized weights packed into int32.
B_meta (torch.Tensor): metadata for 2:4 sparsity.
s (torch.Tensor): float16 scales.
bits: quantized weight size.
"""
B: torch.Tensor
B_meta: torch.Tensor
s: torch.Tensor
bits: int
def __post_init__(self):
assert self.B.dtype == torch.int32
assert self.B_meta.dtype == torch.int16
assert self.s.dtype == torch.float16
def get_linear(self, bias: torch.Tensor):
return GPTQMarlin24Linear(
weight=self,
bias=bias,
)
class GPTQMarlin24Linear(nn.Module):
def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
super().__init__()
_check_marlin_kernels()
assert marlin_kernels is not None
if weight.bits not in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS:
supported_bits = ", ".join(
str(b) for b in GPTQ_MARLIN_24_SUPPORTED_NUM_BITS
)
raise RuntimeError(
f"{weight.bits}-bit GPTQ Sparse 2:4 Marlin is not supported, must be one of: {supported_bits}"
)
in_features = weight.B.shape[0] * MARLIN_TILE_SIZE * 2
out_features = weight.s.shape[1]
groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
if groupsize not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
supported_sizes = ", ".join(
str(b) for b in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
)
raise RuntimeError(
f"Group size {groupsize} is not supported, must be one of: {supported_sizes}"
)
self.bits = weight.bits
weights_per_int32 = 32 // self.bits
assert (
out_features % GPTQ_MARLIN_24_MIN_THREAD_N == 0
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_N} threads"
assert (
out_features % weights_per_int32 == 0
), f"Number of output features ({out_features}) not divisable by weights per int32 ({weights_per_int32})"
assert (
in_features % GPTQ_MARLIN_24_MIN_THREAD_K == 0
), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_K} threads"
if groupsize != -1 and in_features % groupsize != 0:
raise ValueError(
f"Number of input features ({in_features}) not divisable by group size ({groupsize})"
)
self.B = weight.B
self.B_meta = weight.B_meta
self.s = weight.s
if bias is not None:
self.bias = bias
else:
self.bias = None
self.workspace = torch.zeros(
(out_features // GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL,
dtype=torch.int,
device=weight.B.device,
)
def forward(self, A: torch.Tensor) -> torch.Tensor:
assert marlin_kernels is not None
C = marlin_kernels.gptq_marlin_24_gemm(
A.view(-1, A.shape[-1]),
self.B,
self.B_meta,
self.s,
self.workspace,
self.bits,
A.shape[0],
self.s.shape[1],
A.shape[1],
)
C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
if self.bias is not None:
C += self.bias
return C

View File

@ -0,0 +1,141 @@
import functools
from typing import List, Tuple
import numpy
import torch
from text_generation_server.utils.import_utils import SYSTEM
try:
import marlin_kernels
except ImportError:
marlin_kernels = None
try:
major, _minor = torch.cuda.get_device_capability()
has_sm_8_0 = major >= 8
except Exception:
has_sm_8_0 = False
def _check_marlin_kernels():
if not (SYSTEM == "cuda" and has_sm_8_0):
raise NotImplementedError(
"Using quantized Marlin models requires a GPU with CUDA capability 8.0 or later."
)
if marlin_kernels is None:
raise NotImplementedError(
"marlin is not installed, install it with: pip install server/marlin"
)
# https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54
@functools.cache
def get_perms() -> Tuple[List[int], List[int]]:
scale_perm = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single = []
for i in range(4):
scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return scale_perm, scale_perm_single
def permute_scales(scales: torch.Tensor):
scale_perm, scale_perm_single = get_perms()
out_features = scales.shape[1]
if scales.shape[0] == 1:
scales = scales.reshape((-1, len(scale_perm_single)))[:, scale_perm_single]
else:
scales = scales.reshape((-1, len(scale_perm)))[:, scale_perm]
return scales.reshape((-1, out_features)).contiguous()
# Functions below are from vLLM
def get_pack_factor(bits: int) -> int:
if 32 % bits != 0:
raise ValueError(f"Cannot {bits} bit values into uint32")
return 32 // bits
def pack_cols(
q_w: torch.Tensor,
num_bits: int,
size_k: int,
size_n: int,
):
assert q_w.shape == (size_k, size_n)
pack_factor = get_pack_factor(num_bits)
assert size_n % pack_factor == 0
orig_device = q_w.device
q_w = q_w.cpu().numpy().astype(numpy.uint32)
q_res = numpy.zeros((size_k, size_n // pack_factor), dtype=numpy.uint32)
for i in range(pack_factor):
q_res |= q_w[:, i::pack_factor] << num_bits * i
q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
q_res = q_res.contiguous()
return q_res
def unpack_cols(
packed_q_w: torch.Tensor,
num_bits: int,
size_k: int,
size_n: int,
):
pack_factor = get_pack_factor(num_bits)
assert size_n % pack_factor == 0
assert packed_q_w.shape == (
size_k,
size_n // pack_factor,
), "packed_q_w.shape = {} size_k = {}, size_n = {} pack_Factor = {}".format(
packed_q_w.shape, size_k, size_n, pack_factor
)
orig_device = packed_q_w.device
packed_q_w_cpu = packed_q_w.cpu().numpy().astype(numpy.uint32)
q_res = numpy.zeros((size_k, size_n), dtype=numpy.uint32)
mask = (1 << num_bits) - 1
for i in range(pack_factor):
vals = packed_q_w_cpu & mask
packed_q_w_cpu >>= num_bits
q_res[:, i::pack_factor] = vals
q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
q_res = q_res.contiguous()
return q_res
def marlin_zero_points(
zp: torch.Tensor, size_k: int, size_n: int, num_bits: int
) -> torch.Tensor:
scale_perm, _ = get_perms()
# Permute zero-points in a similar way to scales, but do not use the
# "single" permutation, since zero-points are applied on every MMA
zp = zp.reshape((-1, len(scale_perm)))[:, scale_perm]
# Interleave column dim (for the dequantize code) and pack it to int32
if num_bits == 4:
interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
elif num_bits == 8:
interleave = numpy.array([0, 2, 1, 3])
else:
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))
zp = zp.reshape((-1, len(interleave)))[:, interleave].ravel()
zp = zp.reshape((-1, size_n)).contiguous()
zp = pack_cols(zp, num_bits, size_k, size_n)
return zp

View File

@ -6,7 +6,7 @@ from loguru import logger
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import modeling_auto
from huggingface_hub import hf_hub_download, HfApi
from typing import Optional, List
from typing import Optional, List, Dict
from pathlib import Path
from text_generation_server.utils.speculate import get_speculate, set_speculate
@ -33,6 +33,16 @@ from text_generation_server.models.custom_modeling.t5_modeling import (
T5ForConditionalGeneration,
)
from text_generation_server.utils.adapter import (
AdapterParameters,
build_layer_weight_lookup,
load_and_merge_adapters,
AdapterInfo,
)
from text_generation_server.adapters.lora import LoraWeights
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_master
@ -50,7 +60,7 @@ __all__ = [
"Model",
"CausalLM",
"Seq2SeqLM",
"get_model",
"get_model_with_lora_adapters",
]
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
@ -1118,3 +1128,116 @@ def get_model(
)
raise ValueError(f"Unsupported model type {model_type}")
# get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters
# this provides a post model loading hook to load adapters into the model after the model has been loaded
def get_model_with_lora_adapters(
model_id: str,
lora_adapters: Optional[List[AdapterInfo]],
revision: Optional[str],
sharded: bool,
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[str],
trust_remote_code: bool,
max_input_tokens: int,
adapter_to_index: Dict[str, int],
):
lora_adapter_ids = [adapter.id for adapter in lora_adapters]
model = get_model(
model_id,
lora_adapter_ids,
revision,
sharded,
quantize,
speculate,
dtype,
trust_remote_code,
max_input_tokens,
)
if len(lora_adapters) > 0:
target_to_layer = build_layer_weight_lookup(model.model)
for index, adapter in enumerate(lora_adapters):
# The AdapterParameters object allows for merging multiple adapters into a single adapter.
# At the moment, we only support loading a single adapter into the model, but we keep the
# AdapterParameters object for easier extension in the future.
adapter_parameters = AdapterParameters(
adapter_info=[adapter],
# when merging multiple adapters we can weight them differently
# if this is not set, all adapters will be weighted equally
# see: text_generation_server.utils.merges.strategies for impl
weights=None,
merge_strategy=0,
density=1.0,
majority_sign_method=0,
)
adapter_index = index + 1
adapter_to_index[adapter.id] = adapter_index
logger.info(
f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}"
)
weight_names = tuple([v[0] for v in target_to_layer.values()])
(
module_map,
adapter_config,
adapter_weight_names,
adapter_tokenizer,
) = load_and_merge_adapters(
model.model_id,
adapter_parameters,
adapter_index,
weight_names,
False,
)
unused_weight_names = adapter_weight_names.copy()
adapter_layers = [
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
]
for layer_name in adapter_layers:
nlayers = (
1 if layer_name == "lm_head" else len(model.model.model.layers)
)
adapter_weights = LoraWeights.prepare_weights(
config=adapter_config,
module_map=module_map,
layer_type=layer_name,
unused_weight_names=unused_weight_names,
nlayers=nlayers,
dtype=model.dtype,
world_size=model.world_size,
process_group=model.process_group,
target_to_layer=target_to_layer,
)
if adapter_weights is None:
continue
model.layer_to_adapter_weights[layer_name].add_adapter(
adapter_index, adapter_weights
)
if len(unused_weight_names) > 0:
logger.warning(
f"{','.join(adapter_parameters.adapter_ids)} unused adapter weights: {unused_weight_names}"
)
if adapter_tokenizer is not None:
model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)
model.loaded_adapters.add(adapter_index)
return model

View File

@ -1,7 +1,6 @@
import math
import os
import time
import itertools
import torch
import torch.distributed
@ -1700,72 +1699,3 @@ class FlashCausalLM(Model):
forward_ns = start_decode - start
decode_ns = time.time_ns() - start_decode
return generations, batch, (forward_ns, decode_ns)
@property
def supports_adapter_loading(self) -> bool:
return True
def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
layer_weights = {}
prefix = "model.layers"
# This accounts for VLMs (e.g. LlavaNext, Idefics2)
# that have a language_model inside of the larger model.
if hasattr(self.model, "language_model"):
_model = self.model.language_model
elif hasattr(self.model, "text_model"):
_model = self.model.text_model
else:
_model = self.model
for i, layer in enumerate(_model.model.layers):
layer_weights[(i, "q_proj")] = (
f"{prefix}.{i}.self_attn.q_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, "k_proj")] = (
f"{prefix}.{i}.self_attn.k_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, "v_proj")] = (
f"{prefix}.{i}.self_attn.v_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, "o_proj")] = (
f"{prefix}.{i}.self_attn.o_proj",
layer.self_attn.o_proj,
)
# TODO: this is a hack to avoid the gate_proj for
# FlashStarcoder2 that doesnt have these layers
if hasattr(layer, "mlp") and hasattr(layer.mlp, "gate_up_proj"):
layer_weights[(i, "gate_proj")] = (
f"{prefix}.{i}.mlp.gate_proj",
layer.mlp.gate_up_proj,
)
layer_weights[(i, "up_proj")] = (
f"{prefix}.{i}.mlp.up_proj",
layer.mlp.gate_up_proj,
)
layer_weights[(i, "down_proj")] = (
f"{prefix}.{i}.mlp.down_proj",
layer.mlp.down_proj,
)
layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head)
return layer_weights
@property
def adapter_layers(self) -> List[str]:
return ADAPTER_LAYERS
@property
def default_traced_adapter_layers(self) -> List[str]:
return ["q_proj", "v_proj"]
def get_num_layers_for_type(self, layer_type: str) -> int:
return 1 if layer_type == "lm_head" else len(self.model.model.layers)
def is_row_parallel(self, layer_type: str) -> bool:
return layer_type in ROW_PARALLEL

View File

@ -1,85 +0,0 @@
import torch
from typing import Optional, Tuple, Dict, List
from text_generation_server.models import FlashCausalLM
ADAPTER_LAYERS = [
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
]
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}
class FlashMistral(FlashCausalLM):
@property
def supports_adapter_loading(self) -> bool:
return True
def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
layer_weights = {}
prefix = "model.layers"
# This accounts for VLMs (e.g. LlavaNext, Idefics2)
# that have a language_model inside of the larger model.
if hasattr(self.model, "text_model"):
_model = self.model.text_model
else:
_model = self.model
for i, layer in enumerate(_model.model.layers):
layer_weights[(i, "q_proj")] = (
f"{prefix}.{i}.self_attn.q_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, "k_proj")] = (
f"{prefix}.{i}.self_attn.k_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, "v_proj")] = (
f"{prefix}.{i}.self_attn.v_proj",
layer.self_attn.query_key_value,
)
layer_weights[(i, "o_proj")] = (
f"{prefix}.{i}.self_attn.o_proj",
layer.self_attn.o_proj,
)
# TODO: this is a hack to avoid the gate_proj for
# FlashStarcoder2 that doesnt have these layers
if hasattr(layer, "mlp") and hasattr(layer.mlp, "gate_up_proj"):
layer_weights[(i, "gate_proj")] = (
f"{prefix}.{i}.mlp.gate_proj",
layer.mlp.gate_up_proj,
)
layer_weights[(i, "up_proj")] = (
f"{prefix}.{i}.mlp.up_proj",
layer.mlp.gate_up_proj,
)
layer_weights[(i, "down_proj")] = (
f"{prefix}.{i}.mlp.down_proj",
layer.mlp.down_proj,
)
layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head)
return layer_weights
@property
def adapter_layers(self) -> List[str]:
return ADAPTER_LAYERS
@property
def default_traced_adapter_layers(self) -> List[str]:
return ["q_proj", "v_proj"]
def get_num_layers_for_type(self, layer_type: str) -> int:
return 1 if layer_type == "lm_head" else len(self.model.model.layers)
def is_row_parallel(self, layer_type: str) -> bool:
return layer_type in ROW_PARALLEL

View File

@ -4,20 +4,12 @@ import torch
from abc import ABC, abstractmethod
from typing import List, Tuple, Optional, TypeVar, Type, Dict, DefaultDict
from collections import defaultdict
from transformers import PreTrainedTokenizerBase, PretrainedConfig
from transformers import PreTrainedTokenizerBase
from text_generation_server.models.types import Batch, Generation
from text_generation_server.utils.speculate import get_speculate
from text_generation_server.pb.generate_pb2 import InfoResponse
from text_generation_server.adapters.weights import LayerAdapterWeights
from text_generation_server.utils.adapter import (
load_and_merge_adapters,
AdapterParameters,
AdapterSource,
)
from text_generation_server.utils.log import log_master
from loguru import logger
BASE_MODEL_ADAPTER_ID = "__base_model__"
@ -61,7 +53,6 @@ class Model(ABC):
self.layer_to_adapter_weights: Dict[str, LayerAdapterWeights] = defaultdict(
LayerAdapterWeights
)
self.target_to_layer = None
self.loaded_adapters = set()
self.static_adapter_id = adapter_id
@ -142,140 +133,3 @@ class Model(ABC):
raise RuntimeError(
f"found uninitialized parameters in model {self.__class__.__name__}: {uninitialized_parameters}"
)
@property
def supports_adapter_loading(self) -> bool:
return False
def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
return {}
@property
def adapter_layers(self) -> List[str]:
return []
@property
def default_traced_adapter_layers(self) -> List[str]:
return []
def get_num_layers_for_type(self, layer_type: str) -> int:
return 0
def is_row_parallel(self, layer_type: str) -> bool:
return False
@property
def max_speculative_tokens(self) -> int:
return max(
[
weights.max_speculative_tokens
for weights in self.layer_to_adapter_weights.values()
],
default=0,
)
def load_adapter(
self,
adapter_parameters: AdapterParameters,
adapter_source: AdapterSource,
adapter_index: int,
api_token: str,
dynamic: bool = True,
):
"""Loads adapter weights from disk / host memory on the GPU.
adapter_id must be `BASE_MODEL_ADAPTER_ID` if adapter statically loaded
into model. Otherwise, the adapter weights are applied during the forward
pass and stored separately from the base model parameters.
"""
if self.target_to_layer is None:
self.target_to_layer = self.adapter_target_to_layer()
if adapter_index in self.loaded_adapters:
# Adapter already loaded
return
if not self.supports_adapter_loading:
raise ValueError("This model does not support adapter loading.")
if dynamic and not self.dynamic_adapter_loading_enabled:
raise ValueError(
f"This model was initialized with the adapter {self.static_adapter_id} "
f"and therefore does not support dynamic adapter loading. "
f"Please initialize a new model instance from the base model in "
f"order to use the dynamic adapter loading feature."
)
log_master(
logger.info,
f"Loading adapter weights into model: {','.join(adapter_parameters.adapter_ids)}",
)
weight_names = tuple([v[0] for v in self.target_to_layer.values()])
(
module_map,
adapter_config,
adapter_weight_names,
adapter_tokenizer,
) = load_and_merge_adapters(
self.model_id,
adapter_parameters,
adapter_source,
adapter_index,
weight_names,
api_token,
False,
)
unused_weight_names = adapter_weight_names.copy()
for layer_name in self.adapter_layers:
adapter_weights = adapter_config.load_batched_adapter_weights(
self,
module_map,
layer_name,
unused_weight_names,
dynamic,
)
if adapter_weights is None:
continue
layer_weights = self.layer_to_adapter_weights[layer_name]
layer_weights.add_adapter(adapter_index, adapter_weights)
if len(unused_weight_names) > 0:
log_master(
logger.warning,
f"{','.join(adapter_parameters.adapter_ids)} unused adapter weights: {unused_weight_names}",
)
if adapter_tokenizer is not None:
self.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)
self.loaded_adapters.add(adapter_index)
def offload_adapter(
self,
adapter_parameters: AdapterParameters,
adapter_source: AdapterSource,
adapter_index: int,
):
"""Offloads the adapter weights from GPU to CPU or disk."""
if adapter_index not in self.loaded_adapters:
# Adapter already offloaded
return
if not self.supports_adapter_loading:
raise ValueError("This model does not support adapter loading.")
if not self.dynamic_adapter_loading_enabled:
raise ValueError(
f"This model was initialized with the adapter {self.static_adapter_id} "
f"and therefore does not support dynamic adapter loading. "
f"Please initialize a new model instance from the base model in "
f"order to use the dynamic adapter loading feature."
)
for layer_name in self.adapter_layers:
if layer_name in self.layer_to_adapter_weights:
self.layer_to_adapter_weights[layer_name].remove_adapter(adapter_index)
self.loaded_adapters.remove(adapter_index)

View File

@ -9,11 +9,12 @@ from loguru import logger
from grpc_reflection.v1alpha import reflection
from pathlib import Path
from typing import List, Optional
from typing import List, Optional, Dict
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model
from text_generation_server.models import Model, get_model_with_lora_adapters
from text_generation_server.utils.adapter import AdapterInfo
try:
from text_generation_server.models.pali_gemma import PaliGemmaBatch
@ -30,9 +31,6 @@ except (ImportError, NotImplementedError):
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
from text_generation_server.models.globals import set_model_id, set_adapter_to_index
from text_generation_server.utils.adapter import (
AdapterParameters,
)
class SignalHandler:
@ -195,7 +193,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def serve(
model_id: str,
lora_adapter_ids: Optional[List[str]],
lora_adapters: Optional[List[AdapterInfo]],
revision: Optional[str],
sharded: bool,
quantize: Optional[str],
@ -207,7 +205,7 @@ def serve(
):
async def serve_inner(
model_id: str,
lora_adapter_ids: Optional[List[str]],
lora_adapters: Optional[List[AdapterInfo]],
revision: Optional[str],
sharded: bool = False,
quantize: Optional[str] = None,
@ -228,9 +226,9 @@ def serve(
server_urls = [local_url]
try:
model = get_model(
model = get_model_with_lora_adapters(
model_id,
lora_adapter_ids,
lora_adapters,
revision,
sharded,
quantize,
@ -238,27 +236,7 @@ def serve(
dtype,
trust_remote_code,
max_input_tokens,
)
if len(lora_adapter_ids) > 0:
for index, adapter_id in enumerate(lora_adapter_ids):
# TODO: improve non merged adapter loading and long term
# improve adapter loading as a whole
adapter_parameters = AdapterParameters(
adapter_ids=[adapter_id],
weights=None, # will be set to 1
merge_strategy=0,
density=1.0,
majority_sign_method=0,
)
adapter_index = index + 1
adapter_to_index[adapter_id] = adapter_index
model.load_adapter(
adapter_parameters,
None, # adapter_source
adapter_index,
None, # api_token
False, # dynamic
adapter_to_index,
)
except Exception:
@ -297,7 +275,7 @@ def serve(
asyncio.run(
serve_inner(
model_id,
lora_adapter_ids,
lora_adapters,
revision,
sharded,
quantize,

View File

@ -5,12 +5,11 @@
import warnings
from dataclasses import dataclass
from functools import lru_cache
from typing import TYPE_CHECKING, Set, Tuple
from typing import TYPE_CHECKING, Set, Tuple, Optional, List
from safetensors.torch import load_file
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
from text_generation_server.pb import generate_pb2
from text_generation_server.utils.merges.strategies import merge_adapters
from text_generation_server.utils import hub
@ -24,9 +23,15 @@ if TYPE_CHECKING:
BASE_MODEL_ADAPTER_ID = "__base_model__"
@dataclass
class AdapterInfo:
id: str
path: Optional[str]
@dataclass
class AdapterParameters:
adapter_ids: Tuple[str]
adapter_info: Tuple[AdapterInfo]
weights: Tuple[float]
merge_strategy: NotImplemented
density: float
@ -40,37 +45,47 @@ class AdapterSource:
revision: str
def parse_lora_adapters(lora_adapters: Optional[str]) -> List[AdapterInfo]:
if not lora_adapters:
return []
adapter_list = []
for adapter in lora_adapters.split(","):
parts = adapter.strip().split("=")
if len(parts) == 1:
adapter_list.append(AdapterInfo(id=parts[0], path=None))
elif len(parts) == 2:
adapter_list.append(AdapterInfo(id=parts[0], path=parts[1]))
else:
raise ValueError(f"Invalid LoRA adapter format: {adapter}")
return adapter_list
def load_and_merge_adapters(
model_id: str,
adapter_parameters: AdapterParameters,
adapter_source: str,
adapter_index: int,
weight_names: Tuple[str],
api_token: str,
trust_remote_code: bool = False,
) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]:
if len(adapter_parameters.adapter_ids) == 1:
if len(adapter_parameters.adapter_info) == 1:
adapter_info = next(iter(adapter_parameters.adapter_info))
return load_module_map(
model_id,
adapter_parameters.adapter_ids[0],
adapter_source,
adapter_info.id,
adapter_info.path,
weight_names,
api_token,
trust_remote_code,
)
adapter_params = AdapterParametersContainer(
adapter_parameters, adapter_source, adapter_index
)
return _load_and_merge(
model_id, adapter_params, weight_names, api_token, trust_remote_code
)
adapter_params = AdapterParametersContainer(adapter_parameters, adapter_index)
return _load_and_merge(model_id, adapter_params, weight_names, trust_remote_code)
@dataclass
class AdapterParametersContainer:
adapter_parameters: AdapterParameters
adapter_source: str
adapter_index: int
def __hash__(self) -> int:
@ -82,7 +97,6 @@ def _load_and_merge(
model_id: str,
adapter_params: AdapterParametersContainer,
weight_names: Tuple[str],
api_token: str,
trust_remote_code: bool = False,
) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]:
params = adapter_params.adapter_parameters
@ -90,17 +104,16 @@ def _load_and_merge(
adapters_to_merge = []
merged_weight_names = set()
tokenizer = None
for adapter_id in params.adapter_ids:
if adapter_id == BASE_MODEL_ADAPTER_ID:
for adapter in params.adapter_info:
if adapter.id == BASE_MODEL_ADAPTER_ID:
raise ValueError("Base model adapter cannot be merged.")
module_map, adapter_config, adapter_weight_names, adapter_tokenizer = (
load_module_map(
model_id,
adapter_id,
adapter_params.adapter_source,
adapter.id,
adapter.path,
weight_names,
api_token,
trust_remote_code,
)
)
@ -159,25 +172,28 @@ def check_architectures(
def load_module_map(
model_id: str,
adapter_id: str,
adapter_source: str,
adapter_path: Optional[str],
weight_names: Tuple[str],
api_token: str,
trust_remote_code: bool = False,
) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]:
revision = "main"
adapter_config = LoraConfig.load(adapter_id, api_token)
if adapter_config.base_model_name_or_path != model_id:
adapter_config = LoraConfig.load(adapter_path or adapter_id, None)
if not adapter_path and adapter_config.base_model_name_or_path != model_id:
check_architectures(model_id, adapter_id, adapter_config, trust_remote_code)
adapter_filenames = hub._cached_adapter_weight_files(
adapter_filenames = (
hub._adapter_weight_files_from_dir(adapter_path, extension=".safetensors")
if adapter_path
else hub._cached_adapter_weight_files(
adapter_id, revision=revision, extension=".safetensors"
)
)
try:
adapter_tokenizer = AutoTokenizer.from_pretrained(
adapter_config.config_path,
token=api_token,
trust_remote_code=trust_remote_code,
)
except Exception:
@ -194,3 +210,87 @@ def load_module_map(
adapter_weights, weight_names
)
return module_map, adapter_config, adapter_weight_names, adapter_tokenizer
def get_attn_weights(i, layer):
qkv = layer.self_attn.query_key_value
weights = {}
for k in ["q", "k", "v"]:
key = (i, f"{k}_proj")
value = (f"model.layers.{i}.self_attn.{k}_proj", qkv)
weights[key] = value
weights[(i, "o_proj")] = (
f"model.layers.{i}.self_attn.o_proj",
layer.self_attn.o_proj,
)
return weights
def get_mlp_weights(i, layer):
weights = {}
if hasattr(layer, "mlp"):
mlp = layer.mlp
if hasattr(mlp, "gate_up_proj"):
# handle combined gate_up_proj (e.g., for some LLaMA variants)
weights.update(
{
(i, "gate_proj"): (
f"model.layers.{i}.mlp.gate_proj",
mlp.gate_up_proj,
),
(i, "up_proj"): (f"model.layers.{i}.mlp.up_proj", mlp.gate_up_proj),
}
)
else:
# handle separate gate_proj, up_proj, and down_proj (e.g., for Gemma)
if hasattr(mlp, "gate_proj"):
weights[(i, "gate_proj")] = (
f"model.layers.{i}.mlp.gate_proj",
mlp.gate_proj,
)
if hasattr(mlp, "up_proj"):
weights[(i, "up_proj")] = (f"model.layers.{i}.mlp.up_proj", mlp.up_proj)
if hasattr(mlp, "down_proj"):
weights[(i, "down_proj")] = (
f"model.layers.{i}.mlp.down_proj",
mlp.down_proj,
)
return weights
# build_layer_weight_lookup creates a mapping of model layers to their corresponding
# weight tensors and paths. It builds a dictionary that maps layer identifiers to tuples
# containing the weight tensor path and the actual layer object. This mapping is needed
# for the lora adapter to know which weights to update when applying the adapter.
def build_layer_weight_lookup(model):
if hasattr(model, "language_model"):
m = model.language_model.model
elif hasattr(model, "text_model"):
m = model.text_model.model
else:
m = model.model
layer_weights = {}
for i, layer in enumerate(m.layers):
attn_weights = get_attn_weights(i, layer)
mlp_weights = get_mlp_weights(i, layer)
layer_weights.update(attn_weights)
layer_weights.update(mlp_weights)
lm_head = None
if hasattr(m, "lm_head"):
lm_head = m.lm_head
elif hasattr(model, "lm_head"):
lm_head = model.lm_head
if lm_head:
layer_weights[(0, "lm_head")] = ("lm_head", lm_head)
return layer_weights