mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 12:24:53 +00:00
(feat) convert tscales to tensorwise
This commit is contained in:
parent
b57f370386
commit
e2454dba40
@ -79,6 +79,32 @@ def normalize_e4m3fn_to_e4m3fnuz(
|
||||
return weight, weight_scale, input_scale
|
||||
|
||||
|
||||
def per_tensor_dequantize(
|
||||
tensor: torch.Tensor, inv_scale: Union[float, torch.Tensor]
|
||||
) -> torch.Tensor:
|
||||
fake_qweight = tensor.to(torch.float16)
|
||||
dq_weight = fake_qweight * inv_scale
|
||||
return dq_weight
|
||||
|
||||
|
||||
def requantize_with_max_scale(
|
||||
weight: torch.Tensor, weight_scale: torch.Tensor, logical_widths: int
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Max scale to be used for requanitzation.
|
||||
max_w_scale = weight_scale.max()
|
||||
|
||||
start = 0
|
||||
for idx, logical_width in enumerate(logical_widths):
|
||||
end = start + logical_width
|
||||
weight_dq = per_tensor_dequantize(weight[start:end, :], weight_scale[idx])
|
||||
weight[start:end, :], max_w_scale_normalized = fp8_quantize(
|
||||
weight_dq, max_w_scale
|
||||
)
|
||||
start = end
|
||||
|
||||
return weight, max_w_scale_normalized
|
||||
|
||||
|
||||
def fp8_quantize(
|
||||
weight: torch.Tensor,
|
||||
scale: Optional[torch.Tensor] = None,
|
||||
@ -145,13 +171,15 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
||||
weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
|
||||
.reshape(-1)
|
||||
.expand(w.shape[0])
|
||||
)
|
||||
).max()
|
||||
|
||||
input_scale = None
|
||||
if weights.has_tensor(f"{prefix}.input_scale"):
|
||||
input_scale = weights.get_tensor(
|
||||
f"{prefix}.input_scale", to_dtype=False
|
||||
).reshape(-1)
|
||||
input_scale = (
|
||||
weights.get_tensor(f"{prefix}.input_scale", to_dtype=False)
|
||||
.reshape(-1)
|
||||
.max()
|
||||
)
|
||||
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
@ -185,7 +213,7 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
||||
block_sizes=block_sizes,
|
||||
to_dtype=False,
|
||||
)
|
||||
scale = scale.reshape(-1).expand(w.shape[0])
|
||||
scale = scale.reshape(-1).expand(w.shape[0]).max()
|
||||
|
||||
input_scale = None
|
||||
if weights.has_tensor(f"{prefix}.input_scale"):
|
||||
@ -227,9 +255,15 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
||||
if w.dtype == torch.float8_e4m3fn:
|
||||
scale = [
|
||||
_load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape)
|
||||
.max()
|
||||
.unsqueeze(0)
|
||||
for p, shape in zip(prefixes, shapes)
|
||||
]
|
||||
scale = torch.cat(scale, dim=0).reshape(-1)
|
||||
scale = torch.cat(scale).to(weights.device)
|
||||
|
||||
logical_widths = [x[0] for x in shapes]
|
||||
|
||||
w, scale = requantize_with_max_scale(w, scale, logical_widths)
|
||||
|
||||
input_scale = [
|
||||
_load_scalar_or_matrix_scale(weights, f"{p}.input_scale", shape)
|
||||
@ -263,12 +297,14 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
||||
weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
|
||||
.reshape(-1)
|
||||
.expand(w.shape[0])
|
||||
)
|
||||
).max()
|
||||
input_scale = None
|
||||
if weights.has_tensor(f"{prefix}.input_scale"):
|
||||
input_scale = weights.get_tensor(
|
||||
f"{prefix}.input_scale", to_dtype=False
|
||||
).reshape(-1)
|
||||
input_scale = (
|
||||
weights.get_tensor(f"{prefix}.input_scale", to_dtype=False)
|
||||
.reshape(-1)
|
||||
.max()
|
||||
)
|
||||
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
|
Loading…
Reference in New Issue
Block a user