[Gaudi] Enable Qwen3_moe model (#3244)

Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
Yuan Wu 2025-06-13 18:03:24 +08:00 committed by GitHub
parent a220e57f45
commit ded4cb52ac
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 563 additions and 2 deletions

View File

@ -104,6 +104,9 @@ try:
from text_generation_server.models.custom_modeling.flash_qwen3_modeling import (
Qwen3ForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_qwen3_moe_modeling import (
Qwen3MoeForCausalLM,
)
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM,
)
@ -292,7 +295,11 @@ class ModelType(enum.Enum):
"name": "Qwen 3",
"url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f",
}
QWEN3_MOE = {
"type": "qwen3_moe",
"name": "Qwen 3 Moe",
"url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f",
}
GALACTICA = {
"type": "galactica",
"name": "Galactica",
@ -808,6 +815,18 @@ def get_model(
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == QWEN3_MOE:
return FlashCausalLM(
model_id=model_id,
model_class=Qwen3MoeForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif model_type == MLLAMA:
return FlashMllamaCausalLM(
model_id=model_id,

View File

@ -0,0 +1,542 @@
# coding=utf-8
# Copyright 5 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Type
import torch
from torch import nn
import torch.nn.functional as F
from text_generation_server.layers.attention import (
attention,
paged_attention,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers import (
TensorParallelEmbedding,
TensorParallelColumnLinear,
TensorParallelRowLinear,
SpeculativeHead,
FastLinear,
)
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from .flash_qwen2_modeling import Qwen2MLP
from .flash_qwen3_modeling import Qwen3Attention
from transformers.activations import ACT2FN
from text_generation_server.layers.rotary import PositionRotaryEmbedding
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class Qwen3MoeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, prefix, weights, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = (
config.num_attention_heads // config.num_key_value_heads
)
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = FastLinear.load(
config, f"{prefix}.q_proj", weights, bias=config.attention_bias
)
self.k_proj = FastLinear.load(
config, f"{prefix}.k_proj", weights, bias=config.attention_bias
)
self.v_proj = FastLinear.load(
config, f"{prefix}.v_proj", weights, bias=config.attention_bias
)
self.o_proj = FastLinear.load(
config, f"{prefix}.o_proj", weights, bias=config.attention_bias
)
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_dim,
base=config.rope_theta,
device=weights.device,
)
self.q_norm = FastRMSNorm.load(
prefix=f"{prefix}.q_norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.k_norm = FastRMSNorm.load(
prefix=f"{prefix}.k_norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_key_value_groups)
self.sliding_window = config.sliding_window
if not (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
self.sliding_window = None
def forward(
self,
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states, _ = self.q_norm(self.q_proj(hidden_states).view(hidden_shape))
key_states, _ = self.k_norm(self.k_proj(hidden_states).view(hidden_shape))
value_states = self.v_proj(hidden_states).view(hidden_shape)
self.rotary_emb(query_states, key_states, cos, sin)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
kv_cache.store(
key=key_states,
value=value_states,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# sdpa
attn_output = attention(
query=query_states,
key=key_states,
value=value_states,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.scaling,
window_size_left=self.max_past,
)
# Decode
else:
attn_output = paged_attention(
query_states,
kv_cache,
self.kv_head_mapping,
self.scaling,
seqlen,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
class Qwen3MoE(nn.Module):
def __init__(self, prefix, config, moe_layer_cls: Type[MoELayer], weights):
super().__init__()
# gating
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
self.moe = moe_layer_cls(
n_expert_group=None,
n_experts=config.num_experts,
prefix=f"{prefix}.experts",
renormalize=True,
topk=config.num_experts_per_tok,
topk_group=None,
weights=weights,
)
# gate_proj_name="w1",
# up_proj_name="w3",
# down_proj_name="w2",
assert isinstance(self.moe, MoELayer)
self.process_group = weights.process_group
def forward(self, x: torch.Tensor) -> torch.Tensor:
router_logits = self.gate(x)
out = self.moe(x, gating_output=router_logits)
# Reduce sum
if self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out.view(*x.shape)
class Qwen3MoeMLP(nn.Module):
def __init__(self, prefix, config, weights, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = (
intermediate_size
if intermediate_size is not None
else config.intermediate_size
)
# Fuse gate and up proj
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
gate_up_states = self.gate_up_proj(x)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
class Qwen3MoeSparseMoeBlock(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.num_experts = config.num_experts
self.top_k = config.num_experts_per_tok
self.norm_topk_prob = config.norm_topk_prob
# gating
# self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
self.experts = nn.ModuleList(
[
Qwen3MoeMLP(
prefix=f"{prefix}.experts.{i}",
config=config,
weights=weights,
intermediate_size=config.moe_intermediate_size,
)
for i in range(self.num_experts)
]
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
input_shape = hidden_states.shape
_, hidden_dim = hidden_states.shape
# hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=hidden_states.dtype)
routing_weights, selected_experts = torch.topk(
routing_weights, self.top_k, dim=-1
)
if self.norm_topk_prob: # only diff with mixtral sparse moe block!
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(input_shape), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(
selected_experts, num_classes=self.num_experts
).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = (
expert_layer(current_state) * routing_weights[top_x, idx, None]
)
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(
0, top_x, current_hidden_states.to(hidden_states.dtype)
)
final_hidden_states = final_hidden_states.reshape(input_shape)
return final_hidden_states
class Qwen3MoeDecoderLayer(nn.Module):
def __init__(self, config, prefix, weights, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
if config.num_key_value_heads // weights.process_group.size() > 0:
self.self_attn = Qwen3Attention(
config,
prefix=f"{prefix}.self_attn",
weights=weights,
layer_idx=layer_idx,
)
else:
self.self_attn = Qwen3MoeAttention(
config,
prefix=f"{prefix}.self_attn",
weights=weights,
layer_idx=layer_idx,
)
moe_layer_cls = (
SparseMoELayer if SparseMoELayer.is_supported(weights) else DenseMoELayer
)
if (layer_idx not in config.mlp_only_layers) and (
config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
):
self.mlp = Qwen3MoE(f"{prefix}.mlp", config, moe_layer_cls, weights)
# self.mlp = Qwen3MoeSparseMoeBlock(f"{prefix}.mlp", config, weights)
else:
self.mlp = Qwen2MLP(config=config, prefix=f"{prefix}.mlp", weights=weights)
self.input_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.post_attention_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
) -> torch.Tensor:
if residual is None:
residual = hidden_states
hidden_states, _ = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states, _ = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Qwen3MoeModel(nn.Module):
def __init__(self, config, prefix: str, weights):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.layers = nn.ModuleList(
[
Qwen3MoeDecoderLayer(
config=config,
prefix=f"{prefix}.layers.{layer_idx}",
weights=weights,
layer_idx=layer_idx,
)
for layer_idx in range(config.num_hidden_layers)
]
)
self.norm = FastRMSNorm.load(
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
)
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
) -> torch.Tensor:
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids,
)
residual = None
for i, decoder_layer in enumerate(self.layers):
hidden_states = decoder_layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
slots,
seqlen,
hpu_attention_meta,
)
hidden_states, _ = self.norm(hidden_states)
# add hidden states from the last decoder layer
return hidden_states
class Qwen3MoeForCausalLM(nn.Module):
def __init__(self, prefix: str, config, weights):
super().__init__()
self.model = Qwen3MoeModel(config=config, prefix="model", weights=weights)
self.vocab_size = config.vocab_size
if config.tie_word_embeddings:
suffix = "model.embed_tokens"
else:
suffix = "lm_head"
self.lm_head = SpeculativeHead.load(
config,
prefix=f"{prefix}.{suffix}" if prefix else suffix,
weights=weights,
)
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens",
weights=weights,
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
slots: torch.Tensor,
seqlen: Seqlen,
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
lm_head_indices: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
hidden_states = self.model(
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
)
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits = self.lm_head(hidden_states)
return logits

View File

@ -1469,7 +1469,7 @@ class FlashCausalLM(Model):
raise ValueError("Cannot get the number of key/value heads")
self.num_kv_heads = (
num_kv_heads // self.process_group.size()
if num_kv_heads > 1
if num_kv_heads // self.process_group.size() > 0
else num_kv_heads
)
assert self.num_kv_heads > 0