Idefics2: sync added image tokens with transformers (#2080)

Before this change, the number of reserved image tokens was not the
same as the number of images. Fixes #2029.

While at it, also remove all the image token handling duplication
in `prepare_input`.
This commit is contained in:
Daniël de Kok 2024-06-27 15:54:35 +02:00 committed by GitHub
parent b53b21c63a
commit dd2d91b043
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 5887 additions and 5660 deletions

1
Cargo.lock generated
View File

@ -3832,6 +3832,7 @@ dependencies = [
"hf-hub", "hf-hub",
"image", "image",
"init-tracing-opentelemetry", "init-tracing-opentelemetry",
"itertools 0.10.5",
"jsonschema", "jsonschema",
"metrics 0.21.1", "metrics 0.21.1",
"metrics-exporter-prometheus", "metrics-exporter-prometheus",

View File

@ -8,61 +8,61 @@
"tokens": [ "tokens": [
{ {
"id": 330, "id": 330,
"logprob": -0.13000488, "logprob": -0.08660889,
"special": false, "special": false,
"text": " A" "text": " A"
}, },
{ {
"id": 13088, "id": 13088,
"logprob": -0.6713867, "logprob": -0.7089844,
"special": false, "special": false,
"text": " chicken" "text": " chicken"
}, },
{ {
"id": 349, "id": 349,
"logprob": -0.2980957, "logprob": -0.32885742,
"special": false, "special": false,
"text": " is" "text": " is"
}, },
{ {
"id": 6398, "id": 6398,
"logprob": -0.060638428, "logprob": -0.05126953,
"special": false, "special": false,
"text": " sitting" "text": " sitting"
}, },
{ {
"id": 356, "id": 356,
"logprob": -0.27319336, "logprob": -0.35229492,
"special": false, "special": false,
"text": " on" "text": " on"
}, },
{ {
"id": 264, "id": 264,
"logprob": -0.140625, "logprob": -0.12561035,
"special": false, "special": false,
"text": " a" "text": " a"
}, },
{ {
"id": 17972, "id": 17972,
"logprob": -0.040405273, "logprob": -0.038085938,
"special": false, "special": false,
"text": " pile" "text": " pile"
}, },
{ {
"id": 302, "id": 302,
"logprob": -0.0002708435, "logprob": -0.00018656254,
"special": false, "special": false,
"text": " of" "text": " of"
}, },
{ {
"id": 2445, "id": 2445,
"logprob": -0.095336914, "logprob": -0.07293701,
"special": false, "special": false,
"text": " money" "text": " money"
}, },
{ {
"id": 28723, "id": 28723,
"logprob": -0.0068359375, "logprob": -0.004852295,
"special": false, "special": false,
"text": "." "text": "."
} }

View File

@ -8,115 +8,115 @@
"tokens": [ "tokens": [
{ {
"id": 415, "id": 415,
"logprob": -0.04421997, "logprob": -0.039886475,
"special": false, "special": false,
"text": " The" "text": " The"
}, },
{ {
"id": 12072, "id": 12072,
"logprob": -0.13500977, "logprob": -0.1430664,
"special": false, "special": false,
"text": " cow" "text": " cow"
}, },
{ {
"id": 349, "id": 349,
"logprob": -0.06750488, "logprob": -0.056488037,
"special": false, "special": false,
"text": " is" "text": " is"
}, },
{ {
"id": 6328, "id": 6328,
"logprob": -0.6352539, "logprob": -0.6855469,
"special": false, "special": false,
"text": " standing" "text": " standing"
}, },
{ {
"id": 356, "id": 356,
"logprob": -0.16186523, "logprob": -0.1685791,
"special": false, "special": false,
"text": " on" "text": " on"
}, },
{ {
"id": 272, "id": 272,
"logprob": -0.5078125, "logprob": -0.50097656,
"special": false, "special": false,
"text": " the" "text": " the"
}, },
{ {
"id": 10305, "id": 10305,
"logprob": -0.017913818, "logprob": -0.017303467,
"special": false, "special": false,
"text": " beach" "text": " beach"
}, },
{ {
"id": 304, "id": 304,
"logprob": -1.5205078, "logprob": -1.3564453,
"special": false, "special": false,
"text": " and" "text": " and"
}, },
{ {
"id": 272, "id": 272,
"logprob": -0.029174805, "logprob": -0.017868042,
"special": false, "special": false,
"text": " the" "text": " the"
}, },
{ {
"id": 13088, "id": 13088,
"logprob": -0.003479004, "logprob": -0.0027103424,
"special": false, "special": false,
"text": " chicken" "text": " chicken"
}, },
{ {
"id": 349, "id": 349,
"logprob": -0.0035095215, "logprob": -0.003156662,
"special": false, "special": false,
"text": " is" "text": " is"
}, },
{ {
"id": 6398, "id": 6398,
"logprob": -0.3088379, "logprob": -0.37304688,
"special": false, "special": false,
"text": " sitting" "text": " sitting"
}, },
{ {
"id": 356, "id": 356,
"logprob": -0.027755737, "logprob": -0.034576416,
"special": false, "special": false,
"text": " on" "text": " on"
}, },
{ {
"id": 264, "id": 264,
"logprob": -0.31884766, "logprob": -0.29418945,
"special": false, "special": false,
"text": " a" "text": " a"
}, },
{ {
"id": 17972, "id": 17972,
"logprob": -0.047943115, "logprob": -0.042877197,
"special": false, "special": false,
"text": " pile" "text": " pile"
}, },
{ {
"id": 302, "id": 302,
"logprob": -0.0002925396, "logprob": -0.00028443336,
"special": false, "special": false,
"text": " of" "text": " of"
}, },
{ {
"id": 2445, "id": 2445,
"logprob": -0.02935791, "logprob": -0.023223877,
"special": false, "special": false,
"text": " money" "text": " money"
}, },
{ {
"id": 28723, "id": 28723,
"logprob": -0.031219482, "logprob": -0.018157959,
"special": false, "special": false,
"text": "." "text": "."
}, },
{ {
"id": 32002, "id": 32002,
"logprob": -0.00034475327, "logprob": -0.00018393993,
"special": true, "special": true,
"text": "<end_of_utterance>" "text": "<end_of_utterance>"
}, },

View File

@ -22,6 +22,7 @@ text-generation-client = { path = "client" }
clap = { version = "4.4.5", features = ["derive", "env"] } clap = { version = "4.4.5", features = ["derive", "env"] }
futures = "0.3.28" futures = "0.3.28"
hf-hub = { workspace = true } hf-hub = { workspace = true }
itertools = "0.10"
jsonschema = { version = "0.17.1", features = ["draft202012"] } jsonschema = { version = "0.17.1", features = ["draft202012"] }
metrics = "0.21.1" metrics = "0.21.1"
metrics-exporter-prometheus = { version = "0.15.1", features = [] } metrics-exporter-prometheus = { version = "0.15.1", features = [] }

View File

@ -71,10 +71,12 @@ fn get_unpadded_features(
let current_aspect_ratio: f64 = current_width as f64 / current_height as f64; let current_aspect_ratio: f64 = current_width as f64 / current_height as f64;
let (current_height, current_width) = if aspect_ratio > current_aspect_ratio { let (current_height, current_width) = if aspect_ratio > current_aspect_ratio {
let new_height = (height * current_width) / width; let new_height = (height * current_width) / width;
(new_height, current_width) let padding = (current_height - new_height) / 2;
(current_height - (2 * padding), current_width)
} else { } else {
let new_width = (width * current_height) / height; let new_width = (width * current_height) / height;
(current_height, new_width) let padding = (current_width - new_width) / 2;
(current_height, current_width - (2 * padding))
}; };
let unpadded_features = current_height * current_width; let unpadded_features = current_height * current_width;
@ -88,7 +90,9 @@ impl LlavaNext {
let patch_size = self.vision_config.patch_size; let patch_size = self.vision_config.patch_size;
assert!(image_size % patch_size == 0); assert!(image_size % patch_size == 0);
let npatches = image_size / patch_size; let npatches = image_size / patch_size;
let (num_patch_height, num_patch_width) = // Dimensions are intentionally swapped to be bug-compatible with
// upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
let (num_patch_width, num_patch_height) =
get_anyres_image_grid_shape(height, width, &self.image_grid_pinpoints, image_size); get_anyres_image_grid_shape(height, width, &self.image_grid_pinpoints, image_size);
let (unpadded_features, newline_features) = let (unpadded_features, newline_features) =
@ -112,7 +116,7 @@ pub struct Idefics2 {}
impl Idefics2 { impl Idefics2 {
pub fn get_number_of_features(&self, _height: usize, _width: usize) -> usize { pub fn get_number_of_features(&self, _height: usize, _width: usize) -> usize {
320 64
} }
} }

View File

@ -70,6 +70,25 @@ impl HubTokenizerConfig {
} }
} }
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
Idefics2Processor(Idefics2Preprocessor),
}
impl HubPreprocessorConfig {
pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
let content = std::fs::read_to_string(filename).ok()?;
serde_json::from_str(&content).ok()
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
#[serde(default)]
do_image_splitting: bool,
}
#[derive(Debug, Clone, Deserialize, Default)] #[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig { pub struct HubProcessorConfig {
pub chat_template: Option<ChatTemplateVersions>, pub chat_template: Option<ChatTemplateVersions>,

View File

@ -13,7 +13,9 @@ use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr}; use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf}; use std::path::{Path, PathBuf};
use text_generation_router::config::Config; use text_generation_router::config::Config;
use text_generation_router::{server, HubModelInfo, HubProcessorConfig, HubTokenizerConfig}; use text_generation_router::{
server, HubModelInfo, HubPreprocessorConfig, HubProcessorConfig, HubTokenizerConfig,
};
use thiserror::Error; use thiserror::Error;
use tokenizers::Tokenizer; use tokenizers::Tokenizer;
use tower_http::cors::AllowOrigin; use tower_http::cors::AllowOrigin;
@ -214,6 +216,7 @@ async fn main() -> Result<(), RouterError> {
tokenizer_filename, tokenizer_filename,
config_filename, config_filename,
tokenizer_config_filename, tokenizer_config_filename,
preprocessor_config_filename,
processor_config_filename, processor_config_filename,
model_info, model_info,
) = match api { ) = match api {
@ -221,6 +224,7 @@ async fn main() -> Result<(), RouterError> {
Some(local_path.join("tokenizer.json")), Some(local_path.join("tokenizer.json")),
Some(local_path.join("config.json")), Some(local_path.join("config.json")),
Some(local_path.join("tokenizer_config.json")), Some(local_path.join("tokenizer_config.json")),
Some(local_path.join("preprocessor_config.json")),
Some(local_path.join("processor_config.json")), Some(local_path.join("processor_config.json")),
None, None,
), ),
@ -237,6 +241,7 @@ async fn main() -> Result<(), RouterError> {
}; };
let config_filename = api_repo.get("config.json").await.ok(); let config_filename = api_repo.get("config.json").await.ok();
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok(); let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
let processor_config_filename = api_repo.get("processor_config.json").await.ok(); let processor_config_filename = api_repo.get("processor_config.json").await.ok();
let model_info = if let Some(model_info) = get_model_info(&api_repo).await { let model_info = if let Some(model_info) = get_model_info(&api_repo).await {
@ -249,6 +254,7 @@ async fn main() -> Result<(), RouterError> {
tokenizer_filename, tokenizer_filename,
config_filename, config_filename,
tokenizer_config_filename, tokenizer_config_filename,
preprocessor_config_filename,
processor_config_filename, processor_config_filename,
model_info, model_info,
) )
@ -263,6 +269,7 @@ async fn main() -> Result<(), RouterError> {
repo.get("tokenizer.json"), repo.get("tokenizer.json"),
repo.get("config.json"), repo.get("config.json"),
repo.get("tokenizer_config.json"), repo.get("tokenizer_config.json"),
repo.get("preprocessor_config.json"),
repo.get("processor_config.json"), repo.get("processor_config.json"),
None, None,
) )
@ -300,6 +307,8 @@ async fn main() -> Result<(), RouterError> {
HubTokenizerConfig::default() HubTokenizerConfig::default()
}); });
let preprocessor_config =
preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);
let processor_config = processor_config_filename let processor_config = processor_config_filename
.and_then(HubProcessorConfig::from_file) .and_then(HubProcessorConfig::from_file)
.unwrap_or_default(); .unwrap_or_default();
@ -361,6 +370,7 @@ async fn main() -> Result<(), RouterError> {
ngrok_authtoken, ngrok_authtoken,
ngrok_edge, ngrok_edge,
tokenizer_config, tokenizer_config,
preprocessor_config,
processor_config, processor_config,
messages_api_enabled, messages_api_enabled,
disable_grammar_support, disable_grammar_support,

View File

@ -12,9 +12,9 @@ use crate::kserve::{
use crate::validation::ValidationError; use crate::validation::ValidationError;
use crate::{ use crate::{
BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest, BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info, GenerateResponse, GrammarType, HubModelInfo, HubPreprocessorConfig, HubProcessorConfig,
Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, HubTokenizerConfig, Info, Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse,
Usage, Validation, Token, TokenizeResponse, Usage, Validation,
}; };
use crate::{ use crate::{
ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
@ -1423,6 +1423,7 @@ pub async fn run(
_ngrok_authtoken: Option<String>, _ngrok_authtoken: Option<String>,
_ngrok_edge: Option<String>, _ngrok_edge: Option<String>,
tokenizer_config: HubTokenizerConfig, tokenizer_config: HubTokenizerConfig,
preprocessor_config: Option<HubPreprocessorConfig>,
processor_config: HubProcessorConfig, processor_config: HubProcessorConfig,
messages_api_enabled: bool, messages_api_enabled: bool,
grammar_support: bool, grammar_support: bool,
@ -1636,6 +1637,7 @@ pub async fn run(
validation_workers, validation_workers,
tokenizer, tokenizer,
config, config,
preprocessor_config,
max_best_of, max_best_of,
max_stop_sequences, max_stop_sequences,
max_top_n_tokens, max_top_n_tokens,

View File

@ -1,13 +1,16 @@
/// Payload validation logic /// Payload validation logic
use crate::config::Config; use crate::config::Config;
use crate::validation::ValidationError::{BestOfSampling, BestOfSeed, EmptyInput}; use crate::validation::ValidationError::{BestOfSampling, BestOfSeed, EmptyInput};
use crate::{GenerateParameters, GenerateRequest, GrammarType}; use crate::{
GenerateParameters, GenerateRequest, GrammarType, HubPreprocessorConfig, Idefics2Preprocessor,
};
use base64::{engine::general_purpose::STANDARD, Engine}; use base64::{engine::general_purpose::STANDARD, Engine};
use image::{io::Reader as ImageReader, ImageFormat}; use image::{io::Reader as ImageReader, ImageFormat};
use jsonschema::{Draft, JSONSchema}; use jsonschema::{Draft, JSONSchema};
use rand::{thread_rng, Rng}; use rand::{thread_rng, Rng};
use serde_json::Value; use serde_json::Value;
use std::io::Cursor; use std::io::Cursor;
use std::iter;
use text_generation_client::{Chunk, Image, InputChunk}; use text_generation_client::{Chunk, Image, InputChunk};
use thiserror::Error; use thiserror::Error;
use tokenizers::tokenizer::Tokenizer; use tokenizers::tokenizer::Tokenizer;
@ -36,6 +39,7 @@ impl Validation {
workers: usize, workers: usize,
tokenizer: Option<Tokenizer>, tokenizer: Option<Tokenizer>,
config: Option<Config>, config: Option<Config>,
preprocessor_config: Option<HubPreprocessorConfig>,
max_best_of: usize, max_best_of: usize,
max_stop_sequences: usize, max_stop_sequences: usize,
max_top_n_tokens: u32, max_top_n_tokens: u32,
@ -53,12 +57,18 @@ impl Validation {
for _ in 0..workers { for _ in 0..workers {
let tokenizer_clone = tokenizer.clone(); let tokenizer_clone = tokenizer.clone();
let config_clone = config.clone(); let config_clone = config.clone();
let preprocessor_config_clone = preprocessor_config.clone();
let (tokenizer_sender, tokenizer_receiver) = mpsc::unbounded_channel(); let (tokenizer_sender, tokenizer_receiver) = mpsc::unbounded_channel();
senders.push(tokenizer_sender); senders.push(tokenizer_sender);
// Spawn worker // Spawn worker
tokio::task::spawn_blocking(move || { tokio::task::spawn_blocking(move || {
tokenizer_worker(tokenizer_clone, config_clone, tokenizer_receiver) tokenizer_worker(
tokenizer_clone,
config_clone,
preprocessor_config_clone,
tokenizer_receiver,
)
}); });
} }
@ -422,13 +432,20 @@ async fn round_robin_task(
fn tokenizer_worker( fn tokenizer_worker(
tokenizer: Tokenizer, tokenizer: Tokenizer,
config: Option<Config>, config: Option<Config>,
preprocessor_config: Option<HubPreprocessorConfig>,
mut receiver: mpsc::UnboundedReceiver<TokenizerRequest>, mut receiver: mpsc::UnboundedReceiver<TokenizerRequest>,
) { ) {
// Loop over requests // Loop over requests
while let Some(((inputs, truncate), response_tx, parent_span)) = receiver.blocking_recv() { while let Some(((inputs, truncate), response_tx, parent_span)) = receiver.blocking_recv() {
parent_span.in_scope(|| { parent_span.in_scope(|| {
response_tx response_tx
.send(prepare_input(inputs, truncate, &tokenizer, &config)) .send(prepare_input(
inputs,
truncate,
&tokenizer,
config.as_ref(),
preprocessor_config.as_ref(),
))
.unwrap_or(()) .unwrap_or(())
}) })
} }
@ -508,16 +525,67 @@ fn fetch_image(input: &str) -> Result<(Vec<u8>, String, usize, usize), Validatio
} }
} }
fn image_tokens(
config: &Config,
preprocessor_config: Option<&HubPreprocessorConfig>,
height: usize,
width: usize,
) -> String {
use Config::*;
use HubPreprocessorConfig::*;
match config {
Idefics => "<image>".to_string(),
Idefics2(config) => {
const FAKE: &str = "<fake_token_around_image>";
const IMAGE: &str = "<image>";
let slots = config.get_number_of_features(height, width);
let mut image_string = String::with_capacity(2 * FAKE.len() + slots * IMAGE.len());
image_string.push_str(FAKE);
image_string.extend(iter::repeat(IMAGE).take(slots));
image_string.push_str(FAKE);
if matches!(
preprocessor_config,
Some(Idefics2Processor(Idefics2Preprocessor {
do_image_splitting: true,
..
}))
) {
image_string = image_string.repeat(5);
};
image_string
}
Paligemma(config) => "<image>".repeat(config.get_number_of_features(height, width)),
LlavaNext(config) => "<image>".repeat(config.get_number_of_features(height, width)),
_ => unimplemented!("Images tokens are not supported for this model configuration"),
}
}
fn image_tokens_fixup(config: &Config, text: String) -> String {
match config {
Config::Idefics2(_) => {
const FAKE: &str = "<fake_token_around_image>";
text.replace(&format!("{FAKE}{FAKE}"), FAKE)
}
_ => text,
}
}
/// Get input length and optionally truncate it /// Get input length and optionally truncate it
fn prepare_input( fn prepare_input(
inputs: String, inputs: String,
_truncate: Option<usize>, _truncate: Option<usize>,
tokenizer: &Tokenizer, tokenizer: &Tokenizer,
config: &Option<Config>, config: Option<&Config>,
preprocessor_config: Option<&HubPreprocessorConfig>,
) -> Result<(tokenizers::Encoding, Vec<InputChunk>), ValidationError> { ) -> Result<(tokenizers::Encoding, Vec<InputChunk>), ValidationError> {
use Config::*;
static RE: Lazy<Regex> = Lazy::new(|| Regex::new(r"!\[\]\([^\)]*\)").unwrap()); static RE: Lazy<Regex> = Lazy::new(|| Regex::new(r"!\[\]\([^\)]*\)").unwrap());
let (tokenizer_query, input_chunks) = match config { let (tokenizer_query, input_chunks) = match config {
Some(Config::LlavaNext(config)) => { Some(config @ (Idefics | Idefics2(_) | Paligemma(_) | LlavaNext(_))) => {
let mut input_chunks = Vec::new(); let mut input_chunks = Vec::new();
let mut tokenizer_query = String::with_capacity(inputs.len()); let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0; let mut start = 0;
@ -529,88 +597,17 @@ fn prepare_input(
tokenizer_query.push_str(&inputs[start..chunk_start]); tokenizer_query.push_str(&inputs[start..chunk_start]);
} }
let (data, mimetype, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?; let (data, mimetype, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = config.get_number_of_features(height, width);
input_chunks.push(Chunk::Image(Image { data, mimetype }).into()); input_chunks.push(Chunk::Image(Image { data, mimetype }).into());
tokenizer_query.push_str(&"<image>".repeat(slots)); tokenizer_query.push_str(&image_tokens(config, preprocessor_config, height, width));
start = chunk_end; start = chunk_end;
} }
if start != inputs.len() { if start != inputs.len() {
input_chunks.push(Chunk::Text(inputs[start..].to_string()).into()); input_chunks.push(Chunk::Text(inputs[start..].to_string()).into());
tokenizer_query.push_str(&inputs[start..]); tokenizer_query.push_str(&inputs[start..]);
} }
(tokenizer_query, input_chunks)
}
Some(Config::Paligemma(config)) => {
let mut input_chunks = Vec::new();
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
input_chunks.push(Chunk::Text(inputs[start..chunk_start].to_string()).into());
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (data, mimetype, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = config.get_number_of_features(height, width);
input_chunks.push(Chunk::Image(Image { data, mimetype }).into());
tokenizer_query.push_str(&"<image>".repeat(slots));
start = chunk_end;
}
if start != inputs.len() {
input_chunks.push(Chunk::Text(inputs[start..].to_string()).into());
tokenizer_query.push_str(&inputs[start..]);
}
(tokenizer_query, input_chunks)
}
Some(Config::Idefics2(config)) => {
let mut input_chunks = Vec::new();
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
input_chunks.push(Chunk::Text(inputs[start..chunk_start].to_string()).into());
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (data, mimetype, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = config.get_number_of_features(height, width);
tokenizer_query.push_str("<fake_token_around_image>");
tokenizer_query.push_str(&"<image>".repeat(slots));
tokenizer_query.push_str("<fake_token_around_image>");
input_chunks.push(Chunk::Image(Image { data, mimetype }).into()); tokenizer_query = image_tokens_fixup(config, tokenizer_query);
start = chunk_end;
}
if start != inputs.len() {
input_chunks.push(Chunk::Text(inputs[start..].to_string()).into());
tokenizer_query.push_str(&inputs[start..]);
}
(tokenizer_query, input_chunks)
}
Some(Config::Idefics) => {
let mut input_chunks = Vec::new();
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
input_chunks.push(Chunk::Text(inputs[start..chunk_start].to_string()).into());
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (data, mimetype, _height, _width) =
fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = 1;
tokenizer_query.push_str(&"<image>".repeat(slots));
input_chunks.push(Chunk::Image(Image { data, mimetype }).into());
start = chunk_end;
}
if start != inputs.len() {
input_chunks.push(Chunk::Text(inputs[start..].to_string()).into());
tokenizer_query.push_str(&inputs[start..]);
}
(tokenizer_query, input_chunks) (tokenizer_query, input_chunks)
} }
_ => (inputs.clone(), vec![Chunk::Text(inputs).into()]), _ => (inputs.clone(), vec![Chunk::Text(inputs).into()]),
@ -750,7 +747,7 @@ pub enum ValidationError {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use crate::config::{PaliTextConfig, Paligemma}; use crate::config::{Idefics2, PaliTextConfig, Paligemma};
use crate::default_parameters; use crate::default_parameters;
use crate::tests::get_tokenizer; use crate::tests::get_tokenizer;
@ -769,6 +766,7 @@ mod tests {
workers, workers,
tokenizer, tokenizer,
config, config,
None,
max_best_of, max_best_of,
max_stop_sequence, max_stop_sequence,
max_top_n_tokens, max_top_n_tokens,
@ -803,6 +801,7 @@ mod tests {
workers, workers,
tokenizer, tokenizer,
config, config,
None,
max_best_of, max_best_of,
max_stop_sequence, max_stop_sequence,
max_top_n_tokens, max_top_n_tokens,
@ -836,6 +835,7 @@ mod tests {
workers, workers,
tokenizer, tokenizer,
config, config,
None,
max_best_of, max_best_of,
max_stop_sequence, max_stop_sequence,
max_top_n_tokens, max_top_n_tokens,
@ -874,6 +874,7 @@ mod tests {
workers, workers,
tokenizer, tokenizer,
config, config,
None,
max_best_of, max_best_of,
max_stop_sequence, max_stop_sequence,
max_top_n_tokens, max_top_n_tokens,
@ -941,6 +942,7 @@ mod tests {
workers, workers,
tokenizer, tokenizer,
config, config,
None,
max_best_of, max_best_of,
max_stop_sequences, max_stop_sequences,
max_top_n_tokens, max_top_n_tokens,
@ -1026,6 +1028,7 @@ mod tests {
workers, workers,
tokenizer, tokenizer,
Some(config), Some(config),
None,
max_best_of, max_best_of,
max_stop_sequence, max_stop_sequence,
max_top_n_tokens, max_top_n_tokens,
@ -1058,4 +1061,83 @@ mod tests {
"Failed to process images", "Failed to process images",
); );
} }
#[tokio::test]
async fn test_idefics2_correct_n_fake_tokens() {
let pixel_data = STANDARD.decode(PIXEL_GIF).unwrap();
let tokenizer = Some(get_tokenizer().await);
let max_best_of = 2;
let max_stop_sequence = 3;
let max_top_n_tokens = 4;
let max_input_length = 5;
let max_total_tokens = 6;
let disable_grammar_support = true;
let workers = 1;
let config = Config::Idefics2(Idefics2 {});
let validation = Validation::new(
workers,
tokenizer,
Some(config),
Some(HubPreprocessorConfig::Idefics2Processor(
Idefics2Preprocessor {
do_image_splitting: true,
},
)),
max_best_of,
max_stop_sequence,
max_top_n_tokens,
max_input_length,
max_total_tokens,
disable_grammar_support,
);
let (encoding, chunks) = match validation
.tokenize(
format!(
"test![](data:image/gif;base64,{})![](data:image/gif;base64,{})",
PIXEL_GIF, PIXEL_GIF
),
None,
)
.await
{
Ok(Some((encoding, chunks))) => (encoding, chunks),
_ => panic!("Unexpected tokenization failure"),
};
assert!(
chunks
== vec![
Chunk::Text("test".to_string()).into(),
Chunk::Image(Image {
data: pixel_data.clone(),
mimetype: "image/gif".to_string()
})
.into(),
Chunk::Image(Image {
data: pixel_data.clone(),
mimetype: "image/gif".to_string()
})
.into()
],
"Failed to process images",
);
// Verify the number of fake tokens:
//
// - Two images surrounded/separated by a fake token = 3.
// - Both are split in 5 subimages, separated by a fake token: 2 * 4
//
// Fake tokens get split up by the testing tokenizer, but we don't care.
assert_eq!(
encoding
.get_tokens()
.iter()
.filter(|t| *t == "fake")
.count(),
11
);
}
} }

View File

@ -39,7 +39,7 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
Args: Args:
image_size (`tuple`): image_size (`tuple`):
The size of the input image in the format (width, height). The size of the input image in the format (height, width).
grid_pinpoints (`List`): grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`. of the form `(height, width)`.
@ -47,7 +47,7 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
The size of each image patch. The size of each image patch.
Returns: Returns:
tuple: The shape of the image patch grid in the format (width, height). tuple: The shape of the image patch grid in the format (height, width).
""" """
if not isinstance(grid_pinpoints, list): if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists") raise ValueError("grid_pinpoints should be a list of tuples or lists")
@ -230,7 +230,10 @@ class LlavaNextForConditionalGeneration(nn.Module):
raise ValueError( raise ValueError(
"The number of patches is not consistent with the image size." "The number of patches is not consistent with the image size."
) )
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
# Dimensions are intentionally swapped to be bug-compatible with
# upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx], image_sizes[image_idx],
self.config.image_grid_pinpoints, self.config.image_grid_pinpoints,
self.config.vision_config.image_size, self.config.vision_config.image_size,

View File

@ -39,7 +39,9 @@ class PaliGemmaBatch(VlmCausalLMBatch):
# TODO do_convert_RGB should be on by default ? # TODO do_convert_RGB should be on by default ?
image = image.convert("RGB") image = image.convert("RGB")
image_input = processor.image_processor(image, return_tensors="pt") image_input = processor.image_processor(image, return_tensors="pt")
full_text += image_text_replacement(image_input, config, image_id) full_text += image_text_replacement(
processor, image_input, config, image_id
)
image_inputs.append(image_input) image_inputs.append(image_input)
else: else:
raise RuntimeError(f"Invalid chunk type {chunk_type}") raise RuntimeError(f"Invalid chunk type {chunk_type}")

View File

@ -1,3 +1,4 @@
from itertools import repeat
import torch import torch
from PIL import Image from PIL import Image
from io import BytesIO from io import BytesIO
@ -15,6 +16,9 @@ from text_generation_server.models.flash_mistral import (
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
IDEFICS2_FAKE_TOKEN = "<fake_token_around_image>"
IDEFICS2_IMAGE_TOKEN = "<image>"
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
""" """
@ -22,7 +26,7 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
Args: Args:
image_size (`tuple`): image_size (`tuple`):
The size of the input image in the format (width, height). The size of the input image in the format (height, width).
grid_pinpoints (`List`): grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`. of the form `(height, width)`.
@ -39,15 +43,13 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
return height // patch_size, width // patch_size return height // patch_size, width // patch_size
def image_text_replacement(image_input, config, image_id) -> str: def image_text_replacement(processor, image_input, config, image_id: int) -> str:
if config.model_type == "idefics2": if config.model_type == "idefics2":
# TODO technically depends on image splitting which is not implemented. image_seq_len = 64
num_features = 320 image_str = f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_IMAGE_TOKEN * image_seq_len}{IDEFICS2_FAKE_TOKEN}"
return ( if processor.image_processor.do_image_splitting:
"<fake_token_around_image>" image_str *= 5
+ "<image>" * num_features return image_str
+ "<fake_token_around_image>"
)
elif config.model_type == "llava_next": elif config.model_type == "llava_next":
height, width = image_input["image_sizes"][image_id] height, width = image_input["image_sizes"][image_id]
num_features = get_number_of_features(height, width, config) num_features = get_number_of_features(height, width, config)
@ -64,20 +66,35 @@ def image_text_replacement(image_input, config, image_id) -> str:
raise RuntimeError(f"Unknown config {config.model_type} for multimodal") raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
def image_text_replacement_fixup(config, text: str) -> str:
if config.model_type == "idefics2":
return text.replace(
f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_FAKE_TOKEN}", IDEFICS2_FAKE_TOKEN
)
return text
def get_unpadded_features( def get_unpadded_features(
height: int, width: int, npatches: int, num_patch_height: int, num_patch_width: int original_height: int,
original_width: int,
npatches: int,
num_patch_height: int,
num_patch_width: int,
) -> Tuple[int, int]: ) -> Tuple[int, int]:
current_height = npatches * num_patch_height current_height = npatches * num_patch_height
current_width = npatches * num_patch_width current_width = npatches * num_patch_width
aspect_ratio: float = width / height aspect_ratio: float = original_width / original_height
current_aspect_ratio: float = current_width / current_height current_aspect_ratio: float = current_width / current_height
if aspect_ratio > current_aspect_ratio: if aspect_ratio > current_aspect_ratio:
new_height = (height * current_width) // width new_height = (original_height * current_width) // original_width
current_height = new_height padding = (current_height - new_height) // 2
current_height = current_height - (2 * padding)
else: else:
new_width = (width * current_height) // height new_width = (original_width * current_height) // original_height
current_width = new_width padding = (current_width - new_width) // 2
current_width = current_width - (2 * padding)
unpadded_features = current_height * current_width unpadded_features = current_height * current_width
newline_features = current_height newline_features = current_height
@ -96,7 +113,9 @@ def get_number_of_features(height: int, width: int, config) -> int:
npatches = image_size // patch_size npatches = image_size // patch_size
num_patch_height, num_patch_width = get_anyres_image_grid_shape( # Dimensions are intentionally swapped to be bug-compatible with
# upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
[height, width], [height, width],
image_grid_pinpoints, image_grid_pinpoints,
image_size, image_size,
@ -168,9 +187,13 @@ class VlmCausalLMBatch(FlashCausalLMBatch):
if chunk_type == "text": if chunk_type == "text":
full_text += chunk.text full_text += chunk.text
elif chunk_type == "image": elif chunk_type == "image":
full_text += image_text_replacement(image_inputs, config, image_id) full_text += image_text_replacement(
processor, image_inputs, config, image_id
)
image_id += 1 image_id += 1
full_text = image_text_replacement_fixup(config, full_text)
batch_inputs.append(full_text) batch_inputs.append(full_text)
max_truncation = max(max_truncation, r.truncate) max_truncation = max(max_truncation, r.truncate)