mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-06-19 15:52:08 +00:00
make leader executor mode working
This commit is contained in:
parent
f53ffa886d
commit
da926feaa1
@ -8,8 +8,8 @@
|
||||
#include <filesystem>
|
||||
#include <span>
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
#include <fmt/format.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
#include <tensorrt_llm/runtime/common.h>
|
||||
#include <tensorrt_llm/executor/executor.h>
|
||||
@ -20,8 +20,24 @@ namespace tle = tensorrt_llm::executor;
|
||||
|
||||
namespace huggingface::tgi::backends {
|
||||
|
||||
/**
|
||||
* Initialize all the components required by TRTLLM.
|
||||
* It is required to call this function before attempting to load any engine
|
||||
*/
|
||||
void InitializeBackend();
|
||||
|
||||
/**
|
||||
*
|
||||
* @param config
|
||||
* @param workerPath
|
||||
* @param channel
|
||||
* @return
|
||||
*/
|
||||
tle::ExecutorConfig GetExecutorConfig(const json &config, const std::string &workerPath);
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
class TensorRtLlmBackend {
|
||||
private:
|
||||
const json config;
|
||||
@ -50,23 +66,30 @@ namespace huggingface::tgi::backends {
|
||||
* @param temperature
|
||||
* @param minLength
|
||||
* @param repetitionPenalty
|
||||
* @param frequencePenalty
|
||||
* @param frequencyPenalty
|
||||
* @param seed
|
||||
* @param nTopTokens
|
||||
* @return
|
||||
*/
|
||||
[[nodiscard]] tle::IdType Submit(
|
||||
std::vector<tle::TokenIdType> &tokens,
|
||||
const std::vector<tle::TokenIdType> &tokens,
|
||||
int32_t maxNewTokens,
|
||||
float_t topK,
|
||||
int32_t topK,
|
||||
float_t topP,
|
||||
float_t temperature,
|
||||
int32_t minLength,
|
||||
std::optional<float_t> repetitionPenalty = std::nullopt,
|
||||
std::optional<float_t> frequencePenalty = std::nullopt,
|
||||
std::optional<float_t> frequencyPenalty = std::nullopt,
|
||||
std::optional<uint32_t> seed = std::nullopt,
|
||||
std::optional<uint32_t> nTopTokens = std::nullopt
|
||||
);
|
||||
|
||||
/***
|
||||
*
|
||||
* @param reqId
|
||||
* @return
|
||||
*/
|
||||
std::vector<tle::Response> Poll(tle::IdType reqId);
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -1,13 +1,32 @@
|
||||
#include <spdlog/spdlog.h>
|
||||
#include <fmt/std.h>
|
||||
#include <spdlog/spdlog.h>
|
||||
|
||||
#include "backend.h"
|
||||
|
||||
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
|
||||
tle::ExecutorConfig execConfig(
|
||||
config["/build_config/max_beam_width"_json_pointer].get<int32_t>()
|
||||
);
|
||||
void huggingface::tgi::backends::InitializeBackend() {
|
||||
SPDLOG_INFO("Initializing Backend...");
|
||||
|
||||
initTrtLlmPlugins();
|
||||
}
|
||||
|
||||
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
|
||||
tle::ExecutorConfig execConfig(1);
|
||||
|
||||
// TODO : Need to check for >= sm_80 (ampere)
|
||||
// execConfig.setEnableChunkedContext(true)
|
||||
execConfig.setKvCacheConfig(tle::KvCacheConfig(true));
|
||||
|
||||
if(config["/pretrained_config/mapping/world_size"_json_pointer].get<uint8_t>() == 1){
|
||||
SPDLOG_INFO("Detected single engine deployment, using leader mode");
|
||||
execConfig.setParallelConfig(tle::ParallelConfig(
|
||||
tle::CommunicationType::kMPI,
|
||||
tle::CommunicationMode::kLEADER,
|
||||
std::nullopt,
|
||||
std::nullopt,
|
||||
std::nullopt
|
||||
));
|
||||
} else {
|
||||
SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode");
|
||||
execConfig.setParallelConfig(tle::ParallelConfig(
|
||||
tle::CommunicationType::kMPI,
|
||||
tle::CommunicationMode::kORCHESTRATOR,
|
||||
@ -15,63 +34,65 @@ tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &co
|
||||
std::nullopt,
|
||||
tle::OrchestratorConfig(true, workerPath)
|
||||
));
|
||||
|
||||
|
||||
// TODO : Need to check for >= sm_80 (ampere)
|
||||
// execConfig.setEnableChunkedContext(true)
|
||||
execConfig.setKvCacheConfig(tle::KvCacheConfig(true));
|
||||
}
|
||||
return execConfig;
|
||||
}
|
||||
|
||||
huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
|
||||
const std::filesystem::path &engineFolder,
|
||||
const std::filesystem::path &enginesFolder,
|
||||
const std::filesystem::path &executorWorker
|
||||
):
|
||||
config(json::parse(std::ifstream(engineFolder / "config.json"))),
|
||||
executor(engineFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY, GetExecutorConfig(config, executorWorker.string()))
|
||||
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
|
||||
executor(
|
||||
enginesFolder,
|
||||
tensorrt_llm::executor::ModelType::kDECODER_ONLY,
|
||||
GetExecutorConfig(config, executorWorker.string()
|
||||
))
|
||||
{
|
||||
initTrtLlmPlugins();
|
||||
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["version"].get<std::string>());
|
||||
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref<const std::string&>());
|
||||
}
|
||||
|
||||
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
|
||||
std::vector<tle::TokenIdType> &tokens,
|
||||
const std::vector<tle::TokenIdType> &tokens,
|
||||
const int32_t maxNewTokens,
|
||||
const float_t topK,
|
||||
const int32_t topK,
|
||||
const float_t topP,
|
||||
const float_t temperature,
|
||||
const int32_t minLength,
|
||||
const std::optional<float_t> repetitionPenalty,
|
||||
const std::optional<float_t> frequencePenalty,
|
||||
const std::optional<uint32_t> seed,
|
||||
const std::optional<uint32_t> nTopTokens
|
||||
std::optional<float_t> repetitionPenalty,
|
||||
std::optional<float_t> frequencyPenalty,
|
||||
std::optional<uint32_t> seed,
|
||||
std::optional<uint32_t> nTopTokens
|
||||
) {
|
||||
// if (IsReady()) {
|
||||
// spdlog::debug(
|
||||
// "Submitting inference over {:d} tokens to the executor {:d}",
|
||||
// tokens.size(),
|
||||
// executor.getLatestIterationStats().back().numActiveRequests
|
||||
// );
|
||||
//
|
||||
// const auto sampling = tle::SamplingConfig{
|
||||
// 1,
|
||||
// topK,
|
||||
// topP,
|
||||
// std::nullopt,
|
||||
// std::nullopt,
|
||||
// std::nullopt,
|
||||
// seed,
|
||||
// temperature,
|
||||
// minLength,
|
||||
// std::nullopt,
|
||||
// repetitionPenalty.value_or(0.0),
|
||||
// std::nullopt,
|
||||
// frequencePenalty.value_or(1.0),
|
||||
// };
|
||||
// const auto output = tle::OutputConfig{false, false, nTopTokens.value_or(1) > 1};
|
||||
// const auto request = tle::Request{std::move(tokens), maxNewTokens, true, sampling, output};
|
||||
//
|
||||
// return executor.enqueueRequest(request);
|
||||
// }
|
||||
return 0;
|
||||
spdlog::debug(
|
||||
"Submitting inference over {:d} tokens to the executor {:d}",
|
||||
tokens.size(),
|
||||
executor.getLatestIterationStats().back().numActiveRequests
|
||||
);
|
||||
|
||||
const auto sampling = tle::SamplingConfig{
|
||||
1,
|
||||
topK,
|
||||
topP,
|
||||
std::nullopt,
|
||||
std::nullopt,
|
||||
std::nullopt,
|
||||
seed,
|
||||
temperature,
|
||||
minLength,
|
||||
std::nullopt,
|
||||
repetitionPenalty,
|
||||
std::nullopt,
|
||||
frequencyPenalty,
|
||||
};
|
||||
const auto output = tle::OutputConfig{false, false, nTopTokens.value_or(1) > 1};
|
||||
const auto request = tle::Request{tokens, maxNewTokens, true, sampling, output};
|
||||
|
||||
return executor.enqueueRequest(request);
|
||||
}
|
||||
|
||||
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::Poll(const tle::IdType reqId) {
|
||||
SPDLOG_DEBUG("Polling request {:d}", reqId);
|
||||
const auto responses = executor.awaitResponses(reqId);
|
||||
return responses;
|
||||
}
|
Loading…
Reference in New Issue
Block a user