Fixing exl2 scratch buffer. (#1990)

# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)

## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @

@OlivierDehaene OR @Narsil

 -->
This commit is contained in:
Nicolas Patry 2024-05-31 18:01:43 +02:00 committed by yuanwu
parent bdc676f65c
commit d1473fab70

View File

@ -1,253 +0,0 @@
diff a/server/text_generation_server/layers/gptq/exllamav2.py b/server/text_generation_server/layers/gptq/exllamav2.py (rejected hunks)
@@ -1,10 +1,15 @@
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
+from dataclasses import dataclass
+from typing import Optional
import torch
import torch.nn as nn
from loguru import logger
+from text_generation_server.layers.exl2 import Exl2Weight
+from text_generation_server.layers.gptq import GPTQWeight
+
try:
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
except ImportError:
@@ -15,6 +20,15 @@ except ImportError:
none_tensor = torch.empty((1, 1), device="meta")
+@dataclass
+class _ExtraTensors:
+ """Additional generated quantizer tensors."""
+
+ q_group_map: Optional[torch.Tensor] = None
+ q_invperm: Optional[torch.Tensor] = None
+ q_perm: Optional[torch.Tensor] = None
+
+
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
"""Matrix multiplication, returns x @ q4"""
output_shape = x.shape[:-1] + (q4_width,)
@@ -24,11 +38,7 @@ def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
return output.view(output_shape)
-# Group map needed for irregular group sizes
-
-
-def make_group_map(q_groups, num_qrows):
-
+def make_group_map(q_groups: torch.Tensor, num_qrows: int):
gr = q_groups.tolist()
group_map = []
num_groups = len(gr) // 2
@@ -50,72 +60,72 @@ def make_group_map(q_groups, num_qrows):
# Create Q matrix
-def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
+def ext_make_q_matrix(
+ w: Exl2Weight | GPTQWeight,
+ extra: _ExtraTensors,
+ temp_dq,
+ key: Optional[str] = None,
+):
"""
Create Q matrix
"""
# EXL2
- # won't work as the moment because the tensors are not the same.
- if "q_weight" in w:
- w["q_scale_max"] /= 256
- w["q_perm"] = w["q_perm"].short()
- w["q_invperm"] = w["q_invperm"].short()
-
- if "q_group_map" not in w:
- w["q_group_map"] = make_group_map(w["q_groups"], w["q_weight"].shape[0])
+ if isinstance(w, Exl2Weight):
+ extra.q_group_map = make_group_map(w.q_groups, w.q_weight.shape[0])
+ extra.q_perm = torch.argsort(w.q_invperm).short()
return make_q_matrix(
- w["q_weight"],
- w["q_perm"],
- w["q_invperm"],
- w["q_scale"],
- w["q_scale_max"],
- w["q_groups"],
- w["q_group_map"],
+ w.q_weight,
+ extra.q_perm,
+ w.q_invperm,
+ w.q_scale,
+ w.q_scale_max,
+ w.q_groups,
+ extra.q_group_map,
none_tensor,
none_tensor,
none_tensor,
temp_dq,
)
# GPTQ
- elif "qweight" in w:
- if w["scales"].dtype == torch.float:
- w["scales"] = w["scales"].half()
+ elif isinstance(w, GPTQWeight):
+ if w.scales.dtype == torch.float:
+ w.scales = w.scales.half()
# GPTQ with g_idx (act_order)
- if w.get("g_idx", None) is not None and not (w["g_idx"] == 0).all().item():
- w["q_perm"] = torch.empty(
- (w["qweight"].shape[0] * 8,),
+ if w.g_idx is not None and not (w.g_idx == 0).all().item():
+ extra.q_perm = torch.empty(
+ (w.qweight.shape[0] * 8,),
dtype=torch.short,
- device=w["qweight"].device,
+ device=w.qweight.device,
)
- w["q_invperm"] = torch.empty_like(w["q_perm"])
+ extra.q_invperm = torch.empty_like(extra.q_perm)
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
return make_q_matrix(
- w["qweight"],
- w["q_perm"],
- w["q_invperm"],
+ w.qweight,
+ extra.q_perm,
+ extra.q_invperm,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
- w["qzeros"],
- w["scales"],
- w["g_idx"].cpu(),
+ w.qzeros,
+ w.scales,
+ w.g_idx.cpu(),
temp_dq,
)
# GPTQ without g_idx
else:
return make_q_matrix(
- w["qweight"],
+ w.qweight,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
- w["qzeros"],
- w["scales"],
+ w.qzeros,
+ w.scales,
none_tensor,
temp_dq,
)
@@ -124,7 +134,6 @@ def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
DEVICE = None
-FIXED_BYTES = 0
LAYERS = []
@@ -134,8 +143,13 @@ def set_device(device):
def create_exllama_buffers(max_total_tokens: int):
- global FIXED_BYTES, LAYERS, DEVICE
- temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES)
+ global LAYERS, DEVICE
+
+ # Find the size of the scratch space.
+ scratch_bytes = max(
+ layer.scratch_space_fixed(max_input_len=max_total_tokens) for layer in LAYERS
+ )
+ temp_dq = ExLlamaV2DeviceTensors(DEVICE, scratch_bytes)
for layer in LAYERS:
layer.post_init(temp_dq)
@@ -146,49 +160,48 @@ class QuantLinear(nn.Module):
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
- # def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
- def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
+ def __init__(
+ self,
+ weight: Exl2Weight | GPTQWeight,
+ bias: torch.Tensor,
+ ):
super().__init__()
- if bits != 4:
- raise ValueError(
- f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization."
- )
+
self.q_handle = None
- self.q_tensors = None
- self.bits = bits
- self.maxq = 2**self.bits - 1
- self.infeatures = qweight.shape[0] // self.bits * 32
- self.outfeatures = qweight.shape[1]
+ self.q_tensors = weight
+ self.extra_tensors = _ExtraTensors()
+
+ if isinstance(weight, Exl2Weight):
+ self.infeatures = weight.q_invperm.shape[0]
+ self.outfeatures = weight.q_weight.shape[1]
+ elif isinstance(weight, GPTQWeight):
+ if weight.bits != 4:
+ raise ValueError(
+ f"Exllamav2 kernel supports only bits=4, requested bits={weight.bits}. Something is wrong in the model initialization."
+ )
+
+ self.infeatures = weight.qweight.shape[0] // weight.bits * 32
+ self.outfeatures = weight.qweight.shape[1]
+
self.padding = -self.outfeatures % 32
self.outfeatures = self.outfeatures + self.padding
- self.device = qweight.device
- self.qweight = qweight
- self.qzeros = qzeros
- self.scales = scales
- self.g_idx = g_idx
+ self.device = weight.device
self.bias = bias if bias is not None else None
- self.group_size = groupsize
- global FIXED_BYTES, LAYERS
- FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed())
+ global LAYERS
LAYERS.append(self)
def post_init(self, temp_dq):
- assert self.qweight.device.type == "cuda"
- assert self.qweight.device.index is not None
- self.q_tensors = {
- "qweight": self.qweight,
- "qzeros": self.qzeros,
- "scales": self.scales,
- "g_idx": self.g_idx,
- }
+ device = self.q_tensors.device
+ assert device.type == "cuda"
+ assert device.index is not None
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
# We NEED to keep a pointer on Python side, otherwise the garbage collector will mess with us,
# and `Memory access fault by GPU node-2` will EAT you.
self.temp_dq = temp_dq
- self.q_handle = ext_make_q_matrix(self.q_tensors, temp_dq)
+ self.q_handle = ext_make_q_matrix(self.q_tensors, self.extra_tensors, temp_dq)
def forward(self, x, force_cuda=False):
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)