From cef8ca442f5ead5c24c233d9b796493995879976 Mon Sep 17 00:00:00 2001 From: rsnm2 Date: Tue, 22 Aug 2023 04:07:46 +0000 Subject: [PATCH] added readme --- README-HF.md | 275 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 275 insertions(+) create mode 100644 README-HF.md diff --git a/README-HF.md b/README-HF.md new file mode 100644 index 00000000..effab42e --- /dev/null +++ b/README-HF.md @@ -0,0 +1,275 @@ +
+ +![image](https://github.com/huggingface/text-generation-inference/assets/3841370/38ba1531-ea0d-4851-b31a-a6d4ddc944b0) + +# Text Generation Inference + + + GitHub Repo stars + + + License + + + Swagger API documentation + +
+ +A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) +to power LLMs api-inference widgets. + +## Table of contents + +- [Features](#features) +- [Optimized Architectures](#optimized-architectures) +- [Get Started](#get-started) + - [Docker](#docker) + - [API Documentation](#api-documentation) + - [Using a private or gated model](#using-a-private-or-gated-model) + - [A note on Shared Memory](#a-note-on-shared-memory-shm) + - [Distributed Tracing](#distributed-tracing) + - [Local Install](#local-install) + - [CUDA Kernels](#cuda-kernels) +- [Run Falcon](#run-falcon) + - [Run](#run) + - [Quantization](#quantization) +- [Develop](#develop) +- [Testing](#testing) + +## Features + +- Serve the most popular Large Language Models with a simple launcher +- Tensor Parallelism for faster inference on multiple GPUs +- Token streaming using Server-Sent Events (SSE) +- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput +- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures +- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323) +- [Safetensors](https://github.com/huggingface/safetensors) weight loading +- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) +- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor)) +- Stop sequences +- Log probabilities +- Production ready (distributed tracing with Open Telemetry, Prometheus metrics) + +## Optimized architectures + +- [BLOOM](https://huggingface.co/bigscience/bloom) +- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl) +- [Galactica](https://huggingface.co/facebook/galactica-120b) +- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b) +- [Llama](https://github.com/facebookresearch/llama) +- [OPT](https://huggingface.co/facebook/opt-66b) +- [SantaCoder](https://huggingface.co/bigcode/santacoder) +- [Starcoder](https://huggingface.co/bigcode/starcoder) +- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) +- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b) +- [MPT](https://huggingface.co/mosaicml/mpt-30b) +- [Llama V2](https://huggingface.co/meta-llama) + +Other architectures are supported on a best effort basis using: + +`AutoModelForCausalLM.from_pretrained(, device_map="auto")` + +or + +`AutoModelForSeq2SeqLM.from_pretrained(, device_map="auto")` + +## Get started + +### Docker + +The easiest way of getting started is using the official Docker container: + +```shell +model=tiiuae/falcon-7b-instruct +volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run + +docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.4 --model-id $model +``` +**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. + +To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli: +``` +text-generation-launcher --help +``` + +You can then query the model using either the `/generate` or `/generate_stream` routes: + +```shell +curl 127.0.0.1:8080/generate \ + -X POST \ + -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ + -H 'Content-Type: application/json' +``` + +```shell +curl 127.0.0.1:8080/generate_stream \ + -X POST \ + -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ + -H 'Content-Type: application/json' +``` + +or from Python: + +```shell +pip install text-generation +``` + +```python +from text_generation import Client + +client = Client("http://127.0.0.1:8080") +print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text) + +text = "" +for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20): + if not response.token.special: + text += response.token.text +print(text) +``` + +### API documentation + +You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route. +The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference). + +### Using a private or gated model + +You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by +`text-generation-inference`. This allows you to gain access to protected resources. + +For example, if you want to serve the gated Llama V2 model variants: + +1. Go to https://huggingface.co/settings/tokens +2. Copy your cli READ token +3. Export `HUGGING_FACE_HUB_TOKEN=` + +or with Docker: + +```shell +model=meta-llama/Llama-2-7b-chat-hf +volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run +token= + +docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model +``` + +### A note on Shared Memory (shm) + +[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by +`PyTorch` to do distributed training/inference. `text-generation-inference` make +use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models. + +In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if +peer-to-peer using NVLink or PCI is not possible. + +To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command. + +If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by +creating a volume with: + +```yaml +- name: shm + emptyDir: + medium: Memory + sizeLimit: 1Gi +``` + +and mounting it to `/dev/shm`. + +Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that +this will impact performance. + +### Distributed Tracing + +`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature +by setting the address to an OTLP collector with the `--otlp-endpoint` argument. + +### Local install + +You can also opt to install `text-generation-inference` locally. + +First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least +Python 3.9, e.g. using `conda`: + +```shell +curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh + +conda create -n text-generation-inference python=3.9 +conda activate text-generation-inference +``` + +You may also need to install Protoc. + +On Linux: + +```shell +PROTOC_ZIP=protoc-21.12-linux-x86_64.zip +curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP +sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc +sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*' +rm -f $PROTOC_ZIP +``` + +On MacOS, using Homebrew: + +```shell +brew install protobuf +``` + +Then run: + +```shell +BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels +make run-falcon-7b-instruct +``` + +**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run: + +```shell +sudo apt-get install libssl-dev gcc -y +``` + +### CUDA Kernels + +The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove +the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable. + +Be aware that the official Docker image has them enabled by default. + +## Run Falcon + +### Run + +```shell +make run-falcon-7b-instruct +``` + +### Quantization + +You can also quantize the weights with bitsandbytes to reduce the VRAM requirement: + +```shell +make run-falcon-7b-instruct-quantize +``` + +## Develop + +```shell +make server-dev +make router-dev +``` + +## Testing + +```shell +# python +make python-server-tests +make python-client-tests +# or both server and client tests +make python-tests +# rust cargo tests +make rust-tests +# integration tests +make integration-tests +```