Fixing mamba by using the transformers version.

This commit is contained in:
Nicolas Patry 2024-09-25 03:37:12 +02:00
parent 9d7a95b24b
commit cd355d08a9
No known key found for this signature in database
GPG Key ID: D2920555C90F704C
4 changed files with 12 additions and 5 deletions

View File

@ -3,7 +3,7 @@ import pytest
@pytest.fixture(scope="module")
def fused_kernel_mamba_handle(launcher):
with launcher("state-spaces/mamba-130m", num_shard=1) as handle:
with launcher("state-spaces/mamba-130m-hf", num_shard=1) as handle:
yield handle

View File

@ -145,6 +145,7 @@ pub enum Config {
LlavaNext(LlavaNext),
ClipVisionModel(ClipVisionModel),
Mistral,
Mamba,
Idefics,
Mllama,
Idefics2(Idefics2),

View File

@ -226,7 +226,7 @@ class ModelType(enum.Enum):
"url": "https://huggingface.co/databricks/dbrx-instruct",
}
MAMBA = {
"type": "ssm",
"type": "mamba",
"name": "Mamba",
"url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
}
@ -555,7 +555,7 @@ def get_model(
# TODO: fix how we determine model type for Mamba
if "ssm_cfg" in config_dict:
# *only happens in Mamba case
model_type = "ssm"
model_type = "mamba"
else:
raise RuntimeError(
f"Could not determine model type for {model_id} revision {revision}"

View File

@ -196,7 +196,10 @@ class MambaModel(nn.Module):
def __init__(self, config, weights):
super().__init__()
prefix = "backbone"
self.embed_tokens = TensorParallelEmbedding(f"{prefix}.embedding", weights)
try:
self.embed_tokens = TensorParallelEmbedding(f"{prefix}.embeddings", weights)
except RuntimeError:
self.embed_tokens = TensorParallelEmbedding(f"{prefix}.embedding", weights)
self.blocks = nn.ModuleList(
[
ResidualBlock(f"{prefix}.layers.{i}", config, weights, layer_id=i)
@ -206,7 +209,10 @@ class MambaModel(nn.Module):
self.norm_f = FastRMSNorm.load(
f"{prefix}.norm_f", weights, eps=config.layer_norm_epsilon
)
self.lm_head = SpeculativeHead.load(config, f"{prefix}.embedding", weights)
try:
self.lm_head = SpeculativeHead.load(config, f"{prefix}.embeddings", weights)
except RuntimeError:
self.lm_head = SpeculativeHead.load(config, f"{prefix}.embeddings", weights)
self.config = config
def forward(