mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 13:52:07 +00:00
fixes and improvements
This commit is contained in:
parent
8e01191b4c
commit
cc0552f8fc
@ -1,4 +1,5 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::collections::{HashMap, HashSet};
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(tag = "model_type")]
|
||||
@ -103,6 +104,151 @@ impl LlavaNext {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct Llama4VisionConfig {
|
||||
image_size: usize,
|
||||
patch_size: usize,
|
||||
pixel_shuffle_ratio: f64,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct Llama4 {
|
||||
text_config: TextConfig,
|
||||
vision_config: Llama4VisionConfig,
|
||||
}
|
||||
|
||||
fn gcd(a: usize, b: usize) -> usize {
|
||||
if b == 0 {
|
||||
a
|
||||
} else {
|
||||
gcd(b, a % b)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_factors(dividend: usize) -> HashSet<usize> {
|
||||
let mut factors_set = HashSet::new();
|
||||
|
||||
for i in 1..=((dividend as f64).sqrt() as usize) {
|
||||
if dividend % i == 0 {
|
||||
factors_set.insert(i);
|
||||
factors_set.insert(dividend / i);
|
||||
}
|
||||
}
|
||||
|
||||
factors_set
|
||||
}
|
||||
|
||||
fn find_supported_resolutions(max_num_chunks: usize, height: usize) -> Vec<(usize, usize)> {
|
||||
let patch_size = height;
|
||||
|
||||
let mut asp_dict: HashMap<(usize, usize), Vec<(usize, usize)>> = HashMap::new();
|
||||
|
||||
for chunk_size in (1..=max_num_chunks).rev() {
|
||||
let mut _factors: Vec<_> = get_factors(chunk_size).into_iter().collect();
|
||||
_factors.sort();
|
||||
let _asp_ratios: Vec<(usize, usize)> =
|
||||
_factors.iter().map(|&f| (f, chunk_size / f)).collect();
|
||||
|
||||
for (h, w) in _asp_ratios {
|
||||
let divisor = gcd(h, w);
|
||||
let key = (h / divisor, w / divisor); // reduced aspect ratio as key
|
||||
|
||||
if !asp_dict.contains_key(&key) {
|
||||
asp_dict.insert(key, vec![]);
|
||||
}
|
||||
asp_dict.get_mut(&key).unwrap().push((h, w));
|
||||
}
|
||||
}
|
||||
|
||||
let mut possible_resolutions = vec![];
|
||||
|
||||
for (_key, value) in asp_dict {
|
||||
for (h, w) in value {
|
||||
possible_resolutions.push((h * patch_size, w * patch_size));
|
||||
}
|
||||
}
|
||||
|
||||
possible_resolutions
|
||||
}
|
||||
|
||||
fn get_best_fit(
|
||||
original_height: usize,
|
||||
original_width: usize,
|
||||
possible_resolutions: &Vec<(usize, usize)>,
|
||||
resize_to_max_canvas: bool,
|
||||
) -> (usize, usize) {
|
||||
let orig_h = original_height as f32;
|
||||
let orig_w = original_width as f32;
|
||||
|
||||
let mut scales = Vec::with_capacity(possible_resolutions.len());
|
||||
|
||||
for &(h, w) in possible_resolutions.iter() {
|
||||
let scale_h = h as f32 / orig_h;
|
||||
let scale_w = w as f32 / orig_w;
|
||||
let scale = scale_h.min(scale_w);
|
||||
scales.push(scale);
|
||||
}
|
||||
|
||||
let upscaling_options: Vec<f32> = scales.iter().copied().filter(|&s| s >= 1.0).collect();
|
||||
let selected_scale = if !upscaling_options.is_empty() {
|
||||
if resize_to_max_canvas {
|
||||
upscaling_options
|
||||
.into_iter()
|
||||
.fold(f32::MIN, f32::max)
|
||||
} else {
|
||||
upscaling_options
|
||||
.into_iter()
|
||||
.fold(f32::MAX, f32::min)
|
||||
}
|
||||
} else {
|
||||
let downscaling_options: Vec<f32> =
|
||||
scales.iter().copied().filter(|&s| s < 1.0).collect();
|
||||
downscaling_options
|
||||
.into_iter()
|
||||
.fold(f32::MIN, f32::max)
|
||||
};
|
||||
|
||||
let chosen_canvas: Vec<(usize, usize)> = possible_resolutions
|
||||
.iter()
|
||||
.zip(scales.iter())
|
||||
.filter(|&(_, &s)| (s - selected_scale).abs() < f32::EPSILON)
|
||||
.map(|(&(h, w), _)| (h, w))
|
||||
.collect();
|
||||
|
||||
if chosen_canvas.len() > 1 {
|
||||
chosen_canvas
|
||||
.into_iter()
|
||||
.min_by_key(|(h, w)| h * w)
|
||||
.unwrap()
|
||||
} else {
|
||||
chosen_canvas[0]
|
||||
}
|
||||
}
|
||||
|
||||
impl Llama4 {
|
||||
pub fn image_size(&self) -> usize {
|
||||
self.vision_config.image_size
|
||||
}
|
||||
|
||||
pub fn patch_size(&self) -> usize {
|
||||
self.vision_config.patch_size
|
||||
}
|
||||
|
||||
pub fn pixel_shuffle_ratio(&self) -> f64 {
|
||||
self.vision_config.pixel_shuffle_ratio
|
||||
}
|
||||
pub fn get_aspect_ratios(&self, height: usize, width: usize) -> (usize, usize) {
|
||||
let patch_size = self.vision_config.image_size;
|
||||
// How to avoid hardcoding this?
|
||||
let max_chunks = 15;
|
||||
let supported = find_supported_resolutions(max_chunks, patch_size);
|
||||
let (target_h, target_w) = get_best_fit(height, width, &supported, false);
|
||||
(target_h / patch_size, target_w / patch_size)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct ClipVisionModel {
|
||||
@ -229,18 +375,6 @@ pub struct Gemma3 {
|
||||
vision_config: Gemma3VisionConfig,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct Llama4VisionConfig {
|
||||
pub(crate) image_size: usize,
|
||||
pub(crate) patch_size: usize,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(rename_all = "snake_case")]
|
||||
pub struct Llama4 {
|
||||
vision_config: Llama4VisionConfig,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(tag = "model_type")]
|
||||
|
@ -687,7 +687,46 @@ fn image_tokens(
|
||||
}
|
||||
Paligemma(config) => "<image>".repeat(config.get_number_of_features(height, width)),
|
||||
LlavaNext(config) => "<image>".repeat(config.get_number_of_features(height, width)),
|
||||
Llama4(_config) => "<image>".repeat(1),
|
||||
Llama4(config) => {
|
||||
const IMAGE_START: &str = "<|image_start|>";
|
||||
const IMAGE: &str = "<|image|>";
|
||||
const IMAGE_END: &str = "<|image_end|>";
|
||||
const PATCH: &str = "<|patch|>";
|
||||
const TILE_X_SEP: &str = "<|tile_x_separator|>";
|
||||
const TILE_Y_SEP: &str = "<|tile_y_separator|>";
|
||||
|
||||
let image_height = config.image_size();
|
||||
let patch_size = config.patch_size();
|
||||
let pixel_shuffle_ratio = config.pixel_shuffle_ratio();
|
||||
let downsample_ratio = (1.0 / (pixel_shuffle_ratio * pixel_shuffle_ratio)).round() as usize;
|
||||
|
||||
let (ratio_h, ratio_w) = config.get_aspect_ratios(height, width);
|
||||
let image_width = image_height; // Assuming pixel shape: [H][W][C]
|
||||
|
||||
let num_patches_per_chunk =
|
||||
(image_height / patch_size) * (image_width / patch_size) / downsample_ratio;
|
||||
|
||||
let mut img_string = String::new();
|
||||
img_string.push_str(IMAGE_START);
|
||||
|
||||
if ratio_h * ratio_w > 1 {
|
||||
for yy in 0..ratio_h {
|
||||
for xx in 0..ratio_w {
|
||||
img_string.push_str(&PATCH.repeat(num_patches_per_chunk));
|
||||
if xx < ratio_w - 1 {
|
||||
img_string.push_str(TILE_X_SEP);
|
||||
}
|
||||
}
|
||||
img_string.push_str(TILE_Y_SEP);
|
||||
}
|
||||
}
|
||||
|
||||
img_string.push_str(IMAGE);
|
||||
img_string.push_str(&PATCH.repeat(num_patches_per_chunk));
|
||||
img_string.push_str(IMAGE_END);
|
||||
|
||||
img_string
|
||||
},
|
||||
Qwen2Vl(config) => format!(
|
||||
"<|vision_start|>{:?}<|vision_end|>",
|
||||
"<|image_pad|>".repeat(config.get_number_of_features(height, width))
|
||||
|
@ -97,9 +97,6 @@ try:
|
||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||
FlashLlamaForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_llama4_modeling import (
|
||||
Llama4ForConditionalGeneration,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
|
||||
FlashCohereForCausalLM,
|
||||
)
|
||||
@ -217,9 +214,6 @@ except ImportError as e:
|
||||
log_master(logger.warning, f"Could not import Flash Transformers Backend: {e}")
|
||||
FLASH_TRANSFORMERS_BACKEND = False
|
||||
|
||||
# TODO: remove this, it's a temporary for testing the FLASH_TRANSFORMERS_BACKEND
|
||||
FLASH_ATTENTION = False
|
||||
|
||||
|
||||
class ModelType(enum.Enum):
|
||||
DEEPSEEK_V2 = {
|
||||
@ -1033,22 +1027,6 @@ def get_model(
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == LLAMA4:
|
||||
return VlmCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=Llama4ForConditionalGeneration,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
kv_cache_dtype=kv_cache_dtype,
|
||||
# TODO: once implemented in transformers, use the config class
|
||||
# and processor class from there.
|
||||
# config_class=Gemma3Config,
|
||||
# processor_class=Gemma3Processor,
|
||||
default_dtype=torch.bfloat16,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
)
|
||||
if FLASH_TRANSFORMERS_BACKEND:
|
||||
from transformers import Llama4ForConditionalGeneration as Llama4Model
|
||||
|
||||
@ -1060,6 +1038,12 @@ def get_model(
|
||||
speculator=speculator,
|
||||
dtype=torch.bfloat16,
|
||||
trust_remote_code=trust_remote_code,
|
||||
# how to load from preprocessor_config.json
|
||||
processor_kwargs={
|
||||
"use_fast": True,
|
||||
"max_patches": 15,
|
||||
"size": {"height": 336, "width": 336},
|
||||
},
|
||||
)
|
||||
elif model_type == BAICHUAN:
|
||||
if FLASH_ATTENTION:
|
||||
|
@ -1,737 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional, Tuple, Type
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
from text_generation_server.layers import (
|
||||
FastLinear,
|
||||
SpeculativeHead,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelMultiAdapterLinear,
|
||||
TensorParallelAdapterRowLinear,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention import (
|
||||
Seqlen,
|
||||
attention,
|
||||
paged_attention,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
|
||||
from text_generation_server.layers.layernorm import FastRMSNorm
|
||||
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.weights import Weights
|
||||
|
||||
if SYSTEM == "rocm":
|
||||
try:
|
||||
import vllm._custom_ops as ops
|
||||
except Exception as e:
|
||||
raise ImportError(f"Could not load `vllm._custom_ops`. Full error: {e}")
|
||||
|
||||
|
||||
# class FlashLlama4VisionModel(torch.nn.Module):
|
||||
# def __init__(self, prefix: str, config, weights: Weights):
|
||||
# super().__init__()
|
||||
# self.config = config
|
||||
# self.prefix = prefix
|
||||
# self.weights = weights
|
||||
|
||||
# self.image_size = config.image_size
|
||||
# self.patch_size = config.patch_size
|
||||
# # self.max_num_tiles = config.max_num_tiles
|
||||
# self.hidden_size = config.hidden_size
|
||||
# self.num_channels = config.num_channels
|
||||
# # self.intermediate_layers_indices = config.intermediate_layers_indices
|
||||
|
||||
# self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
|
||||
# self.scale = config.hidden_size**-0.5
|
||||
|
||||
# self.patch_embedding = UnfoldConvolution(
|
||||
# in_channels=config.num_channels,
|
||||
# out_channels=self.hidden_size,
|
||||
# kernel_size=self.patch_size,
|
||||
# stride=self.patch_size,
|
||||
# bias=False,
|
||||
# )
|
||||
|
||||
# self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size))
|
||||
# self.positional_embedding_vlm = nn.Parameter(
|
||||
# self.scale * torch.randn(self.num_patches, self.hidden_size)
|
||||
# )
|
||||
|
||||
# idx = self.image_size // self.patch_size
|
||||
# img_idx = torch.arange((self.image_size // self.patch_size) ** 2 , dtype=torch.int32)
|
||||
# img_idx = img_idx.reshape(idx ** 2, 1)
|
||||
# img_idx = torch.cat([img_idx, img_idx[:1]], dim=0)
|
||||
# img_idx[-1, -1] = PackingIndex.ID_CLS_TOKEN
|
||||
|
||||
# packed_img_idx = torch.empty(
|
||||
# img_idx.shape[0],
|
||||
# img_idx.shape[1],
|
||||
# PackingIndex.NUM_METADATA - 1,
|
||||
# dtype=torch.int32,
|
||||
# )
|
||||
|
||||
# packed_img_idx[:, :, PackingIndex.Y] = img_idx // idx
|
||||
# packed_img_idx[:, :, PackingIndex.X] = img_idx % idx
|
||||
# packed_img_idx[:, :, PackingIndex.HEIGHT].fill_(idx)
|
||||
# packed_img_idx[:, :, PackingIndex.WIDTH].fill_(idx)
|
||||
# packed_img_idx[:, :, PackingIndex.IDX] = img_idx
|
||||
# packed_img_idx = packed_img_idx.reshape(1, -1, PackingIndex.NUM_METADATA - 1)
|
||||
|
||||
# rope_freq = self.get_rope_freqs(self.hidden_size // config.attention_heads // 2)
|
||||
# self.freqs_ci = self.update_rope_frequencies(packed_img_idx, rope_freq)
|
||||
|
||||
# # layer norms
|
||||
# self.layernorm_pre = LayerNorm(self.hidden_size, eps=1e-5)
|
||||
# self.layernorm_post = LayerNorm(self.hidden_size, eps=1e-5)
|
||||
|
||||
# # encoders
|
||||
# self.model = Llama4VisionEncoder(config)
|
||||
# self.vision_adapter = Llama4VisionPixelShuffleMLP(config)
|
||||
|
||||
# def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||||
# inputs_embeds = self.embed_tokens(pixel_values)
|
||||
# return inputs_embeds
|
||||
|
||||
|
||||
def load_attention(config, prefix: str, weights, layer_id):
|
||||
# Only defined in granite.
|
||||
bias = getattr(config, "attention_bias", False)
|
||||
head_size = config.hidden_size // config.num_attention_heads
|
||||
sizes = None
|
||||
prefixes = None
|
||||
|
||||
# base_layer = TensorParallelColumnLinear.load_qkv(
|
||||
# config,
|
||||
# prefix=f"{prefix}.qkv_proj",
|
||||
# weights=weights,
|
||||
# bias=bias,
|
||||
# num_heads=config.num_attention_heads,
|
||||
# num_key_value_heads=config.num_key_value_heads,
|
||||
# )
|
||||
# prefixes = ["qkv_proj"]
|
||||
|
||||
prefixes = ["q_proj", "k_proj", "v_proj"]
|
||||
sizes = [
|
||||
head_size * config.num_attention_heads,
|
||||
head_size * config.num_key_value_heads,
|
||||
head_size * config.num_key_value_heads,
|
||||
]
|
||||
base_layer = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
dim=0,
|
||||
weights=weights,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
return TensorParallelMultiAdapterLinear.load(
|
||||
base_layer=base_layer,
|
||||
layer_id=layer_id,
|
||||
layer_names=prefixes,
|
||||
sizes=sizes,
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
|
||||
class Llama4TextL2Norm(torch.nn.Module):
|
||||
def __init__(self, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
self.eps = 1e-6
|
||||
|
||||
def _norm(self, x):
|
||||
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||
|
||||
def forward(self, x):
|
||||
return self._norm(x.float()).type_as(x)
|
||||
|
||||
def apply_rotary_emb(
|
||||
xq: torch.Tensor,
|
||||
xk: torch.Tensor,
|
||||
freqs_cis: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Reshape to complex: last dim becomes complex numbers
|
||||
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [12, 40, 64]
|
||||
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [12, 40, 64]
|
||||
|
||||
# Apply rotary embedding (elementwise complex multiplication)
|
||||
xq_out = torch.view_as_real(xq_ * freqs_cis) # [12, 40, 64, 2]
|
||||
xk_out = torch.view_as_real(xk_ * freqs_cis) # [12, 40, 64, 2]
|
||||
|
||||
# Flatten the last two dims back to real-valued representation
|
||||
xq_out = xq_out.reshape(*xq.shape) # [12, 40, 128]
|
||||
xk_out = xk_out.reshape(*xk.shape) # [12, 40, 128]
|
||||
|
||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||
|
||||
|
||||
class Llama4Attention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
index: int,
|
||||
prefix: str,
|
||||
config,
|
||||
weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.head_size = self.hidden_size // self.num_heads
|
||||
|
||||
config.rope_theta = getattr(config, "rope_theta", 10000)
|
||||
config.num_key_value_heads = getattr(
|
||||
config, "num_key_value_heads", config.num_attention_heads
|
||||
)
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.head_size,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
self.softmax_scale = self.head_size**-0.5
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
if config.num_key_value_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_key_value_heads` must be divisible by `num_shards` (got `num_key_value_heads`: {config.num_key_value_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights, index)
|
||||
self.index = index
|
||||
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=getattr(config, "attention_bias", False),
|
||||
)
|
||||
|
||||
self.o_proj = TensorParallelAdapterRowLinear.load(
|
||||
o_proj,
|
||||
index,
|
||||
"o_proj",
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
|
||||
self.qk_norm = Llama4TextL2Norm(config.rms_norm_eps)
|
||||
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache: KVCache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
adapter_data,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states, adapter_data)
|
||||
query, kv = qkv.split(
|
||||
[
|
||||
self.head_size * self.num_heads,
|
||||
2 * self.head_size * self.num_key_value_heads,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
kv = kv.view(-1, 2, self.num_key_value_heads * self.head_size)
|
||||
key = kv[:, 0]
|
||||
value = kv[:, 1]
|
||||
|
||||
x, y = hidden_states.shape
|
||||
query = query.reshape(1, x, 8, -1)
|
||||
key = key.reshape(1, x, 8, -1)
|
||||
|
||||
# query = query.reshape(-1, self.head_size)
|
||||
# key = key.reshape(-1, self.head_size)
|
||||
|
||||
query = self.qk_norm(query.contiguous())
|
||||
key = self.qk_norm(key.contiguous())
|
||||
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
key = key.view(-1, self.num_key_value_heads, self.head_size)
|
||||
value = value.view(-1, self.num_key_value_heads, self.head_size)
|
||||
freqs_cis = torch.complex(cos, sin)
|
||||
query, key = apply_rotary_emb(
|
||||
query, key, freqs_cis.to(query.device)
|
||||
)
|
||||
# self.rotary_emb(query, key, cos.to(hidden_states.dtype), sin.to(hidden_states.dtype))
|
||||
# from pdb import set_trace; set_trace()
|
||||
# query = query.to(hidden_states.dtype)
|
||||
# key = key.to(hidden_states.dtype)
|
||||
# from pdb import set_trace; set_trace()
|
||||
kv_cache.store(
|
||||
key=key,
|
||||
value=value,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
attn_output = attention(
|
||||
query=query,
|
||||
key=key,
|
||||
value=value,
|
||||
kv_scales=self.kv_scales,
|
||||
kv_cache=kv_cache,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
attn_output = paged_attention(
|
||||
query,
|
||||
kv_cache,
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
# from pdb import set_trace; set_trace()
|
||||
return self.o_proj(
|
||||
attn_output.view(-1, self.num_heads * self.head_size), adapter_data
|
||||
)
|
||||
|
||||
|
||||
class Llama4MLP(nn.Module):
|
||||
def __init__(self, prefix: str, config, weights, intermediate_size: int):
|
||||
super().__init__()
|
||||
self.hidden_act = config.hidden_act
|
||||
if self.hidden_act != "silu":
|
||||
# Bail out because MoE only supports silu.
|
||||
raise NotImplementedError(
|
||||
"Currently only `silu` is supported as an activation for Deepseek V2."
|
||||
)
|
||||
self.act = ACT2FN[self.hidden_act]
|
||||
|
||||
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
|
||||
weights=weights,
|
||||
dim=0,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.down_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.intermediate_size = intermediate_size // weights.process_group.size()
|
||||
|
||||
# TODO: This is a hotfix to be removed & properly refactored.
|
||||
self.quantize = config.quantize
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, reduce: bool = True):
|
||||
if (
|
||||
SYSTEM == "rocm"
|
||||
and self.hidden_act == "silu"
|
||||
and hidden_states.dtype == torch.float16
|
||||
and hidden_states.shape[0] == 1
|
||||
and not self.quantize
|
||||
and self.hidden_size
|
||||
!= 16384 # TODO: Temporary workaround for `LLMM_Silu` kernel not working with LLama3.1 405B; needs refactoring once fixed.
|
||||
):
|
||||
out = torch.empty(
|
||||
hidden_states.shape[0],
|
||||
self.intermediate_size,
|
||||
dtype=hidden_states.dtype,
|
||||
device="cuda",
|
||||
)
|
||||
ops.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
|
||||
return self.down_proj(out, reduce=reduce)
|
||||
else:
|
||||
gate_up_states = self.gate_up_proj(hidden_states)
|
||||
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
|
||||
return self.down_proj(
|
||||
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], reduce=reduce
|
||||
)
|
||||
|
||||
|
||||
class Llama4MoE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix,
|
||||
config,
|
||||
moe_layer_cls: Type[MoELayer],
|
||||
weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_dim = config.hidden_size
|
||||
|
||||
# Gating
|
||||
self.gate = FastLinear.load(config, f"{prefix}.router", weights, bias=False)
|
||||
|
||||
self.moe_layer = moe_layer_cls(
|
||||
prefix=f"{prefix}.experts",
|
||||
n_experts=config.num_local_experts,
|
||||
n_expert_group=None,
|
||||
renormalize=False,
|
||||
topk=config.num_experts_per_tok,
|
||||
topk_group=None,
|
||||
scoring_func="sigmoid",
|
||||
weights=weights,
|
||||
)
|
||||
assert isinstance(self.moe_layer, MoELayer)
|
||||
|
||||
self.shared_experts = Llama4MLP(
|
||||
prefix=f"{prefix}.shared_expert",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.intermediate_size
|
||||
)
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
if self.shared_experts is not None:
|
||||
shared_output = self.shared_experts(x, reduce=False)
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
router_logits = self.gate(x)
|
||||
|
||||
out = self.moe_layer(x, gating_output=router_logits)
|
||||
|
||||
if shared_output is not None:
|
||||
out = out + shared_output
|
||||
|
||||
# Reduce sum
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
# from pdb import set_trace; set_trace()
|
||||
|
||||
return out.view(*x.shape)
|
||||
|
||||
|
||||
class Llama4Layer(nn.Module):
|
||||
def __init__(self, prefix, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"{prefix}.layers.{layer_id}"
|
||||
|
||||
self.self_attn = Llama4Attention(
|
||||
index=layer_id,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
# if (
|
||||
# config.n_routed_experts is not None
|
||||
# and layer_id >= config.first_k_dense_replace
|
||||
# and layer_id % config.moe_layer_freq == 0
|
||||
# ):
|
||||
moe_layer_cls = (
|
||||
SparseMoELayer
|
||||
if SparseMoELayer.is_supported(weights)
|
||||
else DenseMoELayer
|
||||
)
|
||||
self.mlp = Llama4MoE(f"{prefix}.feed_forward", config, moe_layer_cls, weights)
|
||||
# else:
|
||||
# self.mlp = Llama4MLP(
|
||||
# prefix=f"{prefix}.mlp",
|
||||
# config=config,
|
||||
# weights=weights,
|
||||
# intermediate_size=config.intermediate_size,
|
||||
# )
|
||||
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
cu_seqlen_prefill: torch.Tensor,
|
||||
kv_cache,
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
adapter_data,
|
||||
):
|
||||
normed_hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
# Self Attention
|
||||
attn_output = self.self_attn(
|
||||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
adapter_data,
|
||||
)
|
||||
# from pdb import set_trace; set_trace()
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, residual = self.post_attention_layernorm(
|
||||
attn_output, residual
|
||||
)
|
||||
# from pdb import set_trace; set_trace()
|
||||
|
||||
output = self.mlp(normed_attn_res_output)
|
||||
|
||||
return output, residual
|
||||
|
||||
|
||||
class Llama4Model(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
Llama4Layer(
|
||||
prefix,
|
||||
layer_id,
|
||||
config,
|
||||
weights,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
adapter_data,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = inputs_embeds
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
adapter_data,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashLlama4ForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.model.embed_tokens", weights=weights
|
||||
)
|
||||
|
||||
self.model = Llama4Model(
|
||||
"model" if not prefix else f"{prefix}.model", config, weights
|
||||
)
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix="lm_head" if not prefix else f"{prefix}.lm_head",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
hidden_states = self.model(
|
||||
hidden_states,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.lm_head(hidden_states)
|
||||
return logits, speculative_logits
|
||||
|
||||
|
||||
class Llama4ForConditionalGeneration(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix: str,
|
||||
config: PretrainedConfig,
|
||||
weights: Weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
config.vision_config.quantize = config.quantize
|
||||
|
||||
text_config = config.text_config
|
||||
text_config.speculator = config.speculator
|
||||
text_config.quantize = config.quantize
|
||||
|
||||
# self.vision_model = FlashLlama4VisionModel(
|
||||
# prefix=f"{prefix}.vision_model",
|
||||
# config=config.vision_config,
|
||||
# weights=weights,
|
||||
# )
|
||||
|
||||
self.text_model = FlashLlama4ForCausalLM(
|
||||
prefix=f"language_model",
|
||||
config=text_config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
|
||||
self.pad_token_id = (
|
||||
config.pad_token_id if config.pad_token_id is not None else -1
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor] = None,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
pixel_values: torch.FloatTensor = None,
|
||||
# Unused here
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
||||
image_sizes: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
image_grid_thw: Optional[torch.LongTensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
inputs_embeds = self.text_model.embed_tokens(input_ids)
|
||||
|
||||
# if pixel_values is not None:
|
||||
# pixel_values = pixel_values.to(dtype=inputs_embeds.dtype)
|
||||
# image_outputs = self.vision_model(pixel_values)
|
||||
# vision_outputs = self.post_vision_model_layernorm(
|
||||
# image_outputs.last_hidden_state
|
||||
# )
|
||||
# image_features = self.multimodal_projector(vision_outputs)
|
||||
|
||||
# image_token_mask = (input_ids == self.config.image_token_index).to(
|
||||
# input_ids.device
|
||||
# )
|
||||
# inputs_embeds[image_token_mask] = image_features.view(
|
||||
# -1, image_features.shape[-1]
|
||||
# )
|
||||
|
||||
hidden_states = self.text_model.model(
|
||||
inputs_embeds=inputs_embeds,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
seqlen=seqlen,
|
||||
max_s=max_s,
|
||||
adapter_data=adapter_data,
|
||||
)
|
||||
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.text_model.lm_head(hidden_states)
|
||||
|
||||
return logits, speculative_logits
|
||||
|
@ -202,6 +202,7 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
|
||||
|
||||
attn_implementation = {
|
||||
"text_config": "tgi",
|
||||
"vision_config": "eager",
|
||||
}
|
||||
|
||||
model = model_class.from_pretrained(
|
||||
@ -372,7 +373,6 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
)
|
||||
|
||||
# This is equivalent to `self.model.forward`, see the monkey patch in __init__
|
||||
logits = self.model.original_forward(
|
||||
input_ids=inputs["input_ids"],
|
||||
|
@ -29,6 +29,33 @@ IDEFICS3_FAKE_IMAGE_TOKEN = "<fake_token_around_image>"
|
||||
IDEFICS3_GLOBAL_IMG_TOKEN = "<global-img>"
|
||||
|
||||
|
||||
def prompt_split_image_llama4(aspect_ratio, num_patches_per_chunk):
|
||||
"""
|
||||
Create a structured string representation of image tokens
|
||||
|
||||
Args:
|
||||
num_patches: Number of patches in the image
|
||||
|
||||
Returns:
|
||||
String with appropriate image tokens
|
||||
"""
|
||||
img_string = "<|image_start|>"
|
||||
ratio_h, ratio_w = aspect_ratio
|
||||
if ratio_h * ratio_w > 1:
|
||||
for yy in range(ratio_h):
|
||||
for xx in range(ratio_w):
|
||||
img_string += "<|patch|>" * num_patches_per_chunk
|
||||
if xx < ratio_w - 1:
|
||||
img_string += "<|tile_x_separator|>"
|
||||
|
||||
img_string += "<|tile_y_separator|>"
|
||||
img_string += "<|image|>"
|
||||
img_string += "<|patch|>" * num_patches_per_chunk
|
||||
img_string += "<|image_end|>"
|
||||
|
||||
return img_string
|
||||
|
||||
|
||||
# copied from: https://github.com/huggingface/transformers/blob/02ed609285c2448b3b54c31e362f2c389fa952ab/src/transformers/models/idefics3/processing_idefics3.py#L44-L60
|
||||
def _prompt_split_image(
|
||||
*,
|
||||
@ -135,7 +162,22 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
|
||||
padding = "<image_soft_token>" * num_pads
|
||||
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n"
|
||||
elif config.model_type == "llama4":
|
||||
return "<image>" * 1
|
||||
patch_size = config.vision_config.patch_size
|
||||
pixel_shuffle_ratio = config.vision_config.pixel_shuffle_ratio
|
||||
downsample_ratio = int(round(1.0 / (pixel_shuffle_ratio**2)))
|
||||
aspect_ratios = image_input["aspect_ratios"][image_id]
|
||||
image_height, image_width = image_input["pixel_values"][image_id].shape[-2:]
|
||||
|
||||
num_patches_per_chunk = int(
|
||||
(image_height // patch_size)
|
||||
* (image_width // patch_size)
|
||||
// downsample_ratio
|
||||
)
|
||||
tokens_for_this_image = prompt_split_image_llama4(
|
||||
aspect_ratios, num_patches_per_chunk
|
||||
)
|
||||
|
||||
return tokens_for_this_image
|
||||
else:
|
||||
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
|
||||
|
||||
@ -254,6 +296,8 @@ class VlmCausalLMBatch(FlashCausalLMBatch):
|
||||
images.append(image)
|
||||
elif config.model_type == "gemma3":
|
||||
images.append(image)
|
||||
elif config.model_type == "llama4":
|
||||
images.append(image)
|
||||
else:
|
||||
images.append([image])
|
||||
else:
|
||||
@ -287,7 +331,7 @@ class VlmCausalLMBatch(FlashCausalLMBatch):
|
||||
processor, image_inputs, config, image_id
|
||||
)
|
||||
image_id += 1
|
||||
|
||||
# from pdb import set_trace; set_trace()
|
||||
full_text = image_text_replacement_fixup(config, full_text)
|
||||
input_ids = tokenizer(
|
||||
full_text,
|
||||
|
Loading…
Reference in New Issue
Block a user