Updated kv cache for starcoder (#128)

This commit is contained in:
Vidya Galli 2024-06-14 13:36:44 -07:00 committed by GitHub
parent ef86232c94
commit ca1b2f4994
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 425 additions and 8 deletions

View File

@ -0,0 +1,372 @@
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import pytest
import torch
from copy import copy
from text_generation_server.pb import generate_pb2
from text_generation_server.models import get_model
from text_generation_server.models.starcoder import StarCoderCausalLMBatch
from text_generation_server.models.causal_lm import (
PREFILL_BATCH_BUCKET_SIZE,
PAD_SEQUENCE_TO_MULTIPLE_OF,
MAX_TOTAL_TOKENS,
BATCH_BUCKET_SIZE,
)
PAD_TOKEN=0
@pytest.fixture(scope="session")
def default_starcoder():
return get_model("bigcode/starcoder", None, None, None, None)
@pytest.fixture(scope="session")
def default_tokenizer(default_starcoder):
default_starcoder.tokenizer.pad_token_id = PAD_TOKEN
return default_starcoder.tokenizer
@pytest.fixture
def default_pb_request(default_pb_parameters, default_pb_stop_parameters):
return generate_pb2.Request(
id=0,
inputs="Test",
prefill_logprobs=True,
truncate=PAD_SEQUENCE_TO_MULTIPLE_OF,
parameters=default_pb_parameters,
stopping_parameters=default_pb_stop_parameters,
)
@pytest.fixture
def default_pb_batch(default_pb_request):
return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1)
@pytest.fixture
def default_starcoder_batch(default_pb_batch, default_tokenizer):
return StarCoderCausalLMBatch.from_pb(
default_pb_batch, default_tokenizer, torch.float32, torch.device("hpu")
)
@pytest.fixture
def default_multi_requests_starcoder_batch(default_pb_request, default_tokenizer):
req_0 = copy(default_pb_request)
req_0.id = 1
req_1 = default_pb_request
req_1.id = 2
req_1.stopping_parameters.max_new_tokens = 5
batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2)
return StarCoderCausalLMBatch.from_pb(
batch_pb, default_tokenizer, torch.float32, torch.device("hpu")
)
def test_starcoder_batch_type(default_starcoder):
assert default_starcoder.batch_type == StarCoderCausalLMBatch
def test_batch_from_pb(default_pb_batch, default_starcoder_batch):
batch = default_starcoder_batch
assert batch.batch_id == default_pb_batch.id
assert len(batch.requests) == len(default_pb_batch.requests)
for r in range(0,len(default_pb_batch.requests)):
assert batch.requests[r].data == default_pb_batch.requests[r]
# For Gaudi we are adding padding of multiplication of bucket size
size_of_padded_to_bucket = ((default_pb_batch.size + PREFILL_BATCH_BUCKET_SIZE - 1) // PREFILL_BATCH_BUCKET_SIZE) * PREFILL_BATCH_BUCKET_SIZE
assert len(batch.input_ids) == size_of_padded_to_bucket
assert batch.input_ids.shape == torch.Size([4, 128])
assert batch.input_ids[0][-2] == 1006
assert batch.input_ids[1][-2] == 49
assert batch.input_ids[2][-2] == 49
assert batch.attention_mask[0][-2] == 1
assert batch.attention_mask[1][-2] == 1
assert batch.attention_mask[2][-2] == 1
assert torch.all(batch.attention_mask[0, :-3] == 0)
assert batch.past_key_values is None
assert all(
[
torch.equal(input_ids, request.all_input_ids[:batch.input_length + 1, 0])
for input_ids, request in zip(batch.input_ids, batch.requests)
]
)
assert len(batch) == default_pb_batch.size
assert batch.max_input_length + 1 == default_pb_batch.requests[0].truncate
def test_starcoder_generate_token(default_starcoder, default_starcoder_batch):
sequence_length = len(default_starcoder_batch.requests[0].all_input_ids)
generations, next_batch, _ = default_starcoder.generate_token([default_starcoder_batch])
padding = next_batch.requests[0].stopping_criteria.max_new_tokens
assert isinstance(next_batch, StarCoderCausalLMBatch)
assert len(next_batch.attention_mask[0]) == PAD_SEQUENCE_TO_MULTIPLE_OF
assert next_batch.requests[0].all_input_ids[-padding-2] == 1006
assert torch.all(next_batch.requests[0].all_input_ids[-padding-1:] == PAD_TOKEN)
assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
generations, next_batch, _ = default_starcoder.generate_token([default_starcoder_batch])
assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF-2:PAD_SEQUENCE_TO_MULTIPLE_OF] == 1)
assert torch.all(next_batch.attention_mask[0][:PAD_SEQUENCE_TO_MULTIPLE_OF-3] == 0)
assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF+1:] == 0)
assert next_batch.requests[0].all_input_ids[-padding-2] == 1006
assert next_batch.requests[0].all_input_ids[-padding-1] == 26
assert torch.all(next_batch.requests[0].all_input_ids[-padding:] == PAD_TOKEN)
assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF
assert next_batch.max_input_length == next_batch.input_length
assert next_batch.past_key_values is not None
assert all(
[p[0].shape == (MAX_TOTAL_TOKENS, 256) for p in next_batch.past_key_values]
)
assert all(
[p[1].shape == (MAX_TOTAL_TOKENS, 256) for p in next_batch.past_key_values]
)
assert all([generation.generated_text is None for generation in generations])
assert all([len(generation.prefill_tokens) == PAD_SEQUENCE_TO_MULTIPLE_OF-1 for generation in generations])
assert all([generation.tokens.token_ids[0] == 26 for generation in generations])
assert all([generation.tokens.texts[0] == "(" for generation in generations])
assert generations[0].request_id == 0
def test_starcoder_generate_token_completion(
default_starcoder, default_starcoder_batch
):
next_batch = default_starcoder_batch
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
for _ in range(default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens - 1):
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert len(generations) == len(next_batch)
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert next_batch is None
assert len(generations) == 1
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
assert generations[0].request_id == default_starcoder_batch.requests[0].data.id
assert (
generations[0].generated_text.generated_tokens
== default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
)
def test_starcoder_generate_token_completion_multi(
default_starcoder, default_multi_requests_starcoder_batch
):
next_batch = default_multi_requests_starcoder_batch
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
for i in range(
default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens - 1
):
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert len(generations) == len(next_batch)
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert next_batch is not None
assert len(generations) == 2
assert generations[1].generated_text.text == '(self):\n """'
assert (
generations[1].request_id
== default_multi_requests_starcoder_batch.requests[1].data.id
)
assert (
generations[1].generated_text.generated_tokens
== default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
)
next_batch = next_batch.filter([next_batch.requests[0].data.id])
for _ in range(
default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens - default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens - 1
):
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert len(generations) == len(next_batch)
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert next_batch is None
assert len(generations) == 1
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
assert (
generations[0].request_id
== default_multi_requests_starcoder_batch.requests[0].data.id
)
assert (
generations[0].generated_text.generated_tokens
== default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
)
def test_batch_concatenate(
default_starcoder, default_starcoder_batch, default_multi_requests_starcoder_batch
):
next_batch_0 = default_starcoder_batch
_, next_batch_0, _ = default_starcoder.generate_token([next_batch_0])
_, next_batch_0, _ = default_starcoder.generate_token([next_batch_0])
_, next_batch_0, _ = default_starcoder.generate_token([next_batch_0])
next_batch_1 = default_multi_requests_starcoder_batch
_, next_batch_1, _ = default_starcoder.generate_token([next_batch_1])
_, next_batch_1, _ = default_starcoder.generate_token([next_batch_1])
# Clone past_key_values before concatenating to compare after,
# because they are removed from the concatenated batches
next_batch_0_past_key_values = [x.clone() for x in next_batch_0.past_key_values]
next_batch_1_past_key_values = [x.clone() for x in next_batch_1.past_key_values]
next_batch = StarCoderCausalLMBatch.concatenate([next_batch_0, next_batch_1])
assert torch.equal(next_batch.requests[0].all_input_ids, next_batch_0.requests[0].all_input_ids)
assert torch.equal(next_batch.requests[1].all_input_ids, next_batch_1.requests[0].all_input_ids)
assert torch.equal(next_batch.requests[2].all_input_ids, next_batch_1.requests[1].all_input_ids)
assert torch.all(
next_batch.attention_mask[0:2, -next_batch.right_padding - 2: -next_batch.right_padding] == 1
)
assert torch.all(
next_batch.attention_mask[2, -next_batch.right_padding - 3: -next_batch.right_padding] == 1
)
assert torch.all(
next_batch.attention_mask[3, -next_batch.right_padding - 2: -next_batch.right_padding] == 1
)
assert torch.all(
next_batch.attention_mask[0:2, :-next_batch.right_padding-2] == 0)
assert torch.all(
next_batch.attention_mask[2, :-next_batch.right_padding-4] == 0)
assert torch.all(
next_batch.attention_mask[3, :-next_batch.right_padding-3] == 0)
assert next_batch.batch_id == 0
assert next_batch.input_ids[0,-next_batch.right_padding - 2] == 1006
assert next_batch.input_ids[0,-next_batch.right_padding - 1] == 26
assert next_batch.max_input_length == 129
assert torch.all(next_batch.input_ids[0,-next_batch.right_padding:] == PAD_TOKEN)
assert torch.all(next_batch.input_ids[1,-next_batch.right_padding:] == PAD_TOKEN)
assert torch.all(next_batch.input_ids[2,-next_batch.right_padding:] == PAD_TOKEN)
assert torch.all(next_batch.input_ids[3,-next_batch.right_padding:] == PAD_TOKEN)
assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF +1
assert next_batch.max_input_length == PAD_SEQUENCE_TO_MULTIPLE_OF + 1
assert next_batch.requests[0] == next_batch_0.requests[0]
assert next_batch.requests[1:] == next_batch_1.requests
assert next_batch.requests[0].stopping_criteria == next_batch_0.requests[0].stopping_criteria
assert next_batch.requests[1].stopping_criteria == next_batch_1.requests[0].stopping_criteria
assert next_batch.requests[2].stopping_criteria == next_batch_1.requests[1].stopping_criteria
assert next_batch.past_key_values is not None
assert all([p[0].shape == (2048, 256) for p in next_batch.past_key_values])
assert all([p[1].shape == (2048, 256) for p in next_batch.past_key_values])
assert next_batch.past_key_values is not None
for i, past in enumerate(next_batch.past_key_values):
assert torch.equal(next_batch_0_past_key_values[i][0,0,0:128], past[0][1:129][0, 0:128])
assert torch.equal(next_batch_0_past_key_values[i][0,1,0:128], past[1][1:129][0, 0:128])
assert torch.equal(
next_batch_1_past_key_values[i][:, :, 0:1][0][0][0], past[0][1:, :][0][0]
)
assert torch.equal(
next_batch_1_past_key_values[i][1:, :, 0:1][0][0][0], past[1][1:, :][0][0]
)
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
for _ in range(
default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens - 2
):
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert len(generations) == len(next_batch)
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert next_batch is not None
assert len(generations) == 3
assert generations[2].generated_text.text == '(self):\n """'
assert (
generations[2].request_id
== default_multi_requests_starcoder_batch.requests[1].data.id
)
assert (
generations[2].generated_text.generated_tokens
== default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
)
next_batch = next_batch.filter(
[next_batch.requests[0].data.id, next_batch.requests[1].data.id]
)
for _ in range(
default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
- default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
- 2
):
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert len(generations) == len(next_batch)
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert next_batch is not None
assert len(generations) == 2
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
assert generations[0].request_id == default_starcoder_batch.requests[0].data.id
assert (
generations[0].generated_text.generated_tokens
== default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
)
next_batch = next_batch.filter([next_batch.requests[1].data.id])
for _ in range(
default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
- default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
- default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
- 4
):
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert len(generations) == len(next_batch)
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
assert next_batch is None
assert len(generations) == 1
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
assert (
generations[0].request_id
== default_multi_requests_starcoder_batch.requests[0].data.id
)
assert (
generations[0].generated_text.generated_tokens
== default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
)

View File

@ -14,7 +14,7 @@ from text_generation_server.utils.speculate import get_speculate, set_speculate
from text_generation_server.models.model import Model from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM from text_generation_server.models.causal_lm import CausalLM
from text_generation_server.models.bloom import BLOOM from text_generation_server.models.bloom import BLOOM
from text_generation_server.models.santacoder import SantaCoder from text_generation_server.models.starcoder import StarCoder
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
@ -86,13 +86,7 @@ def get_model(
model_type = config_dict["model_type"] model_type = config_dict["model_type"]
if model_type == "gpt_bigcode": if model_type == "gpt_bigcode":
return SantaCoder( return StarCoder(model_id, revision, dtype)
model_id,
revision,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "bloom": if model_type == "bloom":
return BLOOM( return BLOOM(

View File

@ -0,0 +1,51 @@
from loguru import logger
import torch
from dataclasses import dataclass
import os
from typing import List, Optional, Type
from text_generation_server.models import CausalLM
from text_generation_server.models.causal_lm import CausalLMBatch
@dataclass
class StarCoderCausalLMBatch(CausalLMBatch):
past_key_values: Optional[List[torch.Tensor]]
def detach_kv_cache(self):
past_keys = []
past_values = []
last_dim = int(self.past_key_values[0].size(dim=-1)/2)
for key_value in self.past_key_values:
past_keys.append(key_value.split((last_dim, last_dim), dim=-1)[0])
past_values.append(key_value.split((last_dim, last_dim), dim=-1)[1])
del self.past_key_values
return past_keys, past_values
def attach_kv_cache(self, past_keys, past_values):
self.past_key_values = [
torch.cat((key, value), dim=-1) for key, value in zip(past_keys, past_values)]
class StarCoder(CausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
):
# Bypasses runtime error "Empty tensor optional" with hpu graphs
os.environ["ENABLE_HPU_GRAPH"] = "false"
logger.warning("Disabling HPU graphs as they are not supported with Starcoder model!")
super(StarCoder, self).__init__(
model_id=model_id,
revision=revision,
dtype=dtype,
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return StarCoderCausalLMBatch