mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-24 00:12:08 +00:00
Updated kv cache for starcoder (#128)
This commit is contained in:
parent
ef86232c94
commit
ca1b2f4994
372
server/tests/models/test_starcoder.py
Normal file
372
server/tests/models/test_starcoder.py
Normal file
@ -0,0 +1,372 @@
|
||||
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from copy import copy
|
||||
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models import get_model
|
||||
from text_generation_server.models.starcoder import StarCoderCausalLMBatch
|
||||
from text_generation_server.models.causal_lm import (
|
||||
PREFILL_BATCH_BUCKET_SIZE,
|
||||
PAD_SEQUENCE_TO_MULTIPLE_OF,
|
||||
MAX_TOTAL_TOKENS,
|
||||
BATCH_BUCKET_SIZE,
|
||||
)
|
||||
PAD_TOKEN=0
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def default_starcoder():
|
||||
return get_model("bigcode/starcoder", None, None, None, None)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def default_tokenizer(default_starcoder):
|
||||
default_starcoder.tokenizer.pad_token_id = PAD_TOKEN
|
||||
return default_starcoder.tokenizer
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def default_pb_request(default_pb_parameters, default_pb_stop_parameters):
|
||||
return generate_pb2.Request(
|
||||
id=0,
|
||||
inputs="Test",
|
||||
prefill_logprobs=True,
|
||||
truncate=PAD_SEQUENCE_TO_MULTIPLE_OF,
|
||||
parameters=default_pb_parameters,
|
||||
stopping_parameters=default_pb_stop_parameters,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def default_pb_batch(default_pb_request):
|
||||
return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def default_starcoder_batch(default_pb_batch, default_tokenizer):
|
||||
return StarCoderCausalLMBatch.from_pb(
|
||||
default_pb_batch, default_tokenizer, torch.float32, torch.device("hpu")
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def default_multi_requests_starcoder_batch(default_pb_request, default_tokenizer):
|
||||
req_0 = copy(default_pb_request)
|
||||
req_0.id = 1
|
||||
req_1 = default_pb_request
|
||||
req_1.id = 2
|
||||
req_1.stopping_parameters.max_new_tokens = 5
|
||||
|
||||
batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2)
|
||||
return StarCoderCausalLMBatch.from_pb(
|
||||
batch_pb, default_tokenizer, torch.float32, torch.device("hpu")
|
||||
)
|
||||
|
||||
|
||||
def test_starcoder_batch_type(default_starcoder):
|
||||
assert default_starcoder.batch_type == StarCoderCausalLMBatch
|
||||
|
||||
|
||||
def test_batch_from_pb(default_pb_batch, default_starcoder_batch):
|
||||
batch = default_starcoder_batch
|
||||
|
||||
assert batch.batch_id == default_pb_batch.id
|
||||
assert len(batch.requests) == len(default_pb_batch.requests)
|
||||
|
||||
for r in range(0,len(default_pb_batch.requests)):
|
||||
assert batch.requests[r].data == default_pb_batch.requests[r]
|
||||
|
||||
# For Gaudi we are adding padding of multiplication of bucket size
|
||||
size_of_padded_to_bucket = ((default_pb_batch.size + PREFILL_BATCH_BUCKET_SIZE - 1) // PREFILL_BATCH_BUCKET_SIZE) * PREFILL_BATCH_BUCKET_SIZE
|
||||
|
||||
assert len(batch.input_ids) == size_of_padded_to_bucket
|
||||
assert batch.input_ids.shape == torch.Size([4, 128])
|
||||
|
||||
assert batch.input_ids[0][-2] == 1006
|
||||
assert batch.input_ids[1][-2] == 49
|
||||
assert batch.input_ids[2][-2] == 49
|
||||
assert batch.attention_mask[0][-2] == 1
|
||||
assert batch.attention_mask[1][-2] == 1
|
||||
assert batch.attention_mask[2][-2] == 1
|
||||
assert torch.all(batch.attention_mask[0, :-3] == 0)
|
||||
|
||||
assert batch.past_key_values is None
|
||||
assert all(
|
||||
[
|
||||
torch.equal(input_ids, request.all_input_ids[:batch.input_length + 1, 0])
|
||||
for input_ids, request in zip(batch.input_ids, batch.requests)
|
||||
]
|
||||
)
|
||||
|
||||
assert len(batch) == default_pb_batch.size
|
||||
|
||||
assert batch.max_input_length + 1 == default_pb_batch.requests[0].truncate
|
||||
|
||||
|
||||
def test_starcoder_generate_token(default_starcoder, default_starcoder_batch):
|
||||
|
||||
sequence_length = len(default_starcoder_batch.requests[0].all_input_ids)
|
||||
generations, next_batch, _ = default_starcoder.generate_token([default_starcoder_batch])
|
||||
padding = next_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
|
||||
assert isinstance(next_batch, StarCoderCausalLMBatch)
|
||||
assert len(next_batch.attention_mask[0]) == PAD_SEQUENCE_TO_MULTIPLE_OF
|
||||
assert next_batch.requests[0].all_input_ids[-padding-2] == 1006
|
||||
|
||||
assert torch.all(next_batch.requests[0].all_input_ids[-padding-1:] == PAD_TOKEN)
|
||||
assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([default_starcoder_batch])
|
||||
assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF-2:PAD_SEQUENCE_TO_MULTIPLE_OF] == 1)
|
||||
assert torch.all(next_batch.attention_mask[0][:PAD_SEQUENCE_TO_MULTIPLE_OF-3] == 0)
|
||||
assert torch.all(next_batch.attention_mask[0][PAD_SEQUENCE_TO_MULTIPLE_OF+1:] == 0)
|
||||
|
||||
assert next_batch.requests[0].all_input_ids[-padding-2] == 1006
|
||||
assert next_batch.requests[0].all_input_ids[-padding-1] == 26
|
||||
assert torch.all(next_batch.requests[0].all_input_ids[-padding:] == PAD_TOKEN)
|
||||
assert torch.all(next_batch.requests[0].all_input_ids[:-padding-3] == PAD_TOKEN)
|
||||
|
||||
assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF
|
||||
assert next_batch.max_input_length == next_batch.input_length
|
||||
|
||||
assert next_batch.past_key_values is not None
|
||||
assert all(
|
||||
[p[0].shape == (MAX_TOTAL_TOKENS, 256) for p in next_batch.past_key_values]
|
||||
)
|
||||
assert all(
|
||||
[p[1].shape == (MAX_TOTAL_TOKENS, 256) for p in next_batch.past_key_values]
|
||||
)
|
||||
assert all([generation.generated_text is None for generation in generations])
|
||||
assert all([len(generation.prefill_tokens) == PAD_SEQUENCE_TO_MULTIPLE_OF-1 for generation in generations])
|
||||
assert all([generation.tokens.token_ids[0] == 26 for generation in generations])
|
||||
assert all([generation.tokens.texts[0] == "(" for generation in generations])
|
||||
assert generations[0].request_id == 0
|
||||
|
||||
|
||||
def test_starcoder_generate_token_completion(
|
||||
default_starcoder, default_starcoder_batch
|
||||
):
|
||||
|
||||
next_batch = default_starcoder_batch
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
|
||||
for _ in range(default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens - 1):
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert len(generations) == len(next_batch)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
|
||||
assert next_batch is None
|
||||
|
||||
assert len(generations) == 1
|
||||
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
|
||||
assert generations[0].request_id == default_starcoder_batch.requests[0].data.id
|
||||
assert (
|
||||
generations[0].generated_text.generated_tokens
|
||||
== default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
)
|
||||
|
||||
|
||||
def test_starcoder_generate_token_completion_multi(
|
||||
default_starcoder, default_multi_requests_starcoder_batch
|
||||
):
|
||||
next_batch = default_multi_requests_starcoder_batch
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
|
||||
for i in range(
|
||||
default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens - 1
|
||||
):
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert len(generations) == len(next_batch)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert next_batch is not None
|
||||
|
||||
assert len(generations) == 2
|
||||
assert generations[1].generated_text.text == '(self):\n """'
|
||||
assert (
|
||||
generations[1].request_id
|
||||
== default_multi_requests_starcoder_batch.requests[1].data.id
|
||||
)
|
||||
assert (
|
||||
generations[1].generated_text.generated_tokens
|
||||
== default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[0].data.id])
|
||||
|
||||
for _ in range(
|
||||
default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens - default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens - 1
|
||||
):
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert len(generations) == len(next_batch)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
|
||||
assert next_batch is None
|
||||
|
||||
assert len(generations) == 1
|
||||
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
|
||||
assert (
|
||||
generations[0].request_id
|
||||
== default_multi_requests_starcoder_batch.requests[0].data.id
|
||||
)
|
||||
assert (
|
||||
generations[0].generated_text.generated_tokens
|
||||
== default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
)
|
||||
|
||||
|
||||
def test_batch_concatenate(
|
||||
default_starcoder, default_starcoder_batch, default_multi_requests_starcoder_batch
|
||||
):
|
||||
next_batch_0 = default_starcoder_batch
|
||||
_, next_batch_0, _ = default_starcoder.generate_token([next_batch_0])
|
||||
_, next_batch_0, _ = default_starcoder.generate_token([next_batch_0])
|
||||
_, next_batch_0, _ = default_starcoder.generate_token([next_batch_0])
|
||||
|
||||
next_batch_1 = default_multi_requests_starcoder_batch
|
||||
_, next_batch_1, _ = default_starcoder.generate_token([next_batch_1])
|
||||
_, next_batch_1, _ = default_starcoder.generate_token([next_batch_1])
|
||||
|
||||
# Clone past_key_values before concatenating to compare after,
|
||||
# because they are removed from the concatenated batches
|
||||
next_batch_0_past_key_values = [x.clone() for x in next_batch_0.past_key_values]
|
||||
next_batch_1_past_key_values = [x.clone() for x in next_batch_1.past_key_values]
|
||||
|
||||
next_batch = StarCoderCausalLMBatch.concatenate([next_batch_0, next_batch_1])
|
||||
|
||||
assert torch.equal(next_batch.requests[0].all_input_ids, next_batch_0.requests[0].all_input_ids)
|
||||
assert torch.equal(next_batch.requests[1].all_input_ids, next_batch_1.requests[0].all_input_ids)
|
||||
assert torch.equal(next_batch.requests[2].all_input_ids, next_batch_1.requests[1].all_input_ids)
|
||||
|
||||
|
||||
assert torch.all(
|
||||
next_batch.attention_mask[0:2, -next_batch.right_padding - 2: -next_batch.right_padding] == 1
|
||||
)
|
||||
assert torch.all(
|
||||
next_batch.attention_mask[2, -next_batch.right_padding - 3: -next_batch.right_padding] == 1
|
||||
)
|
||||
assert torch.all(
|
||||
next_batch.attention_mask[3, -next_batch.right_padding - 2: -next_batch.right_padding] == 1
|
||||
)
|
||||
|
||||
assert torch.all(
|
||||
next_batch.attention_mask[0:2, :-next_batch.right_padding-2] == 0)
|
||||
assert torch.all(
|
||||
next_batch.attention_mask[2, :-next_batch.right_padding-4] == 0)
|
||||
assert torch.all(
|
||||
next_batch.attention_mask[3, :-next_batch.right_padding-3] == 0)
|
||||
|
||||
assert next_batch.batch_id == 0
|
||||
assert next_batch.input_ids[0,-next_batch.right_padding - 2] == 1006
|
||||
assert next_batch.input_ids[0,-next_batch.right_padding - 1] == 26
|
||||
|
||||
assert next_batch.max_input_length == 129
|
||||
|
||||
assert torch.all(next_batch.input_ids[0,-next_batch.right_padding:] == PAD_TOKEN)
|
||||
assert torch.all(next_batch.input_ids[1,-next_batch.right_padding:] == PAD_TOKEN)
|
||||
assert torch.all(next_batch.input_ids[2,-next_batch.right_padding:] == PAD_TOKEN)
|
||||
assert torch.all(next_batch.input_ids[3,-next_batch.right_padding:] == PAD_TOKEN)
|
||||
|
||||
assert next_batch.input_length == PAD_SEQUENCE_TO_MULTIPLE_OF +1
|
||||
assert next_batch.max_input_length == PAD_SEQUENCE_TO_MULTIPLE_OF + 1
|
||||
|
||||
assert next_batch.requests[0] == next_batch_0.requests[0]
|
||||
assert next_batch.requests[1:] == next_batch_1.requests
|
||||
|
||||
assert next_batch.requests[0].stopping_criteria == next_batch_0.requests[0].stopping_criteria
|
||||
assert next_batch.requests[1].stopping_criteria == next_batch_1.requests[0].stopping_criteria
|
||||
assert next_batch.requests[2].stopping_criteria == next_batch_1.requests[1].stopping_criteria
|
||||
|
||||
assert next_batch.past_key_values is not None
|
||||
|
||||
assert all([p[0].shape == (2048, 256) for p in next_batch.past_key_values])
|
||||
assert all([p[1].shape == (2048, 256) for p in next_batch.past_key_values])
|
||||
|
||||
assert next_batch.past_key_values is not None
|
||||
|
||||
for i, past in enumerate(next_batch.past_key_values):
|
||||
assert torch.equal(next_batch_0_past_key_values[i][0,0,0:128], past[0][1:129][0, 0:128])
|
||||
assert torch.equal(next_batch_0_past_key_values[i][0,1,0:128], past[1][1:129][0, 0:128])
|
||||
assert torch.equal(
|
||||
next_batch_1_past_key_values[i][:, :, 0:1][0][0][0], past[0][1:, :][0][0]
|
||||
)
|
||||
|
||||
assert torch.equal(
|
||||
next_batch_1_past_key_values[i][1:, :, 0:1][0][0][0], past[1][1:, :][0][0]
|
||||
)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
|
||||
for _ in range(
|
||||
default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens - 2
|
||||
):
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert len(generations) == len(next_batch)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert next_batch is not None
|
||||
|
||||
assert len(generations) == 3
|
||||
assert generations[2].generated_text.text == '(self):\n """'
|
||||
|
||||
assert (
|
||||
generations[2].request_id
|
||||
== default_multi_requests_starcoder_batch.requests[1].data.id
|
||||
)
|
||||
assert (
|
||||
generations[2].generated_text.generated_tokens
|
||||
== default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter(
|
||||
[next_batch.requests[0].data.id, next_batch.requests[1].data.id]
|
||||
)
|
||||
|
||||
for _ in range(
|
||||
default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
- default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
|
||||
- 2
|
||||
):
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert len(generations) == len(next_batch)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert next_batch is not None
|
||||
|
||||
assert len(generations) == 2
|
||||
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
|
||||
assert generations[0].request_id == default_starcoder_batch.requests[0].data.id
|
||||
assert (
|
||||
generations[0].generated_text.generated_tokens
|
||||
== default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[1].data.id])
|
||||
|
||||
for _ in range(
|
||||
default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
- default_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
- default_multi_requests_starcoder_batch.requests[1].stopping_criteria.max_new_tokens
|
||||
- 4
|
||||
):
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert len(generations) == len(next_batch)
|
||||
|
||||
generations, next_batch, _ = default_starcoder.generate_token([next_batch])
|
||||
assert next_batch is None
|
||||
|
||||
assert len(generations) == 1
|
||||
assert generations[0].generated_text.text == '(self):\n """\n Test that the test'
|
||||
assert (
|
||||
generations[0].request_id
|
||||
== default_multi_requests_starcoder_batch.requests[0].data.id
|
||||
)
|
||||
assert (
|
||||
generations[0].generated_text.generated_tokens
|
||||
== default_multi_requests_starcoder_batch.requests[0].stopping_criteria.max_new_tokens
|
||||
)
|
@ -14,7 +14,7 @@ from text_generation_server.utils.speculate import get_speculate, set_speculate
|
||||
from text_generation_server.models.model import Model
|
||||
from text_generation_server.models.causal_lm import CausalLM
|
||||
from text_generation_server.models.bloom import BLOOM
|
||||
from text_generation_server.models.santacoder import SantaCoder
|
||||
from text_generation_server.models.starcoder import StarCoder
|
||||
|
||||
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
||||
|
||||
@ -86,13 +86,7 @@ def get_model(
|
||||
model_type = config_dict["model_type"]
|
||||
|
||||
if model_type == "gpt_bigcode":
|
||||
return SantaCoder(
|
||||
model_id,
|
||||
revision,
|
||||
use_medusa=use_medusa,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
return StarCoder(model_id, revision, dtype)
|
||||
|
||||
if model_type == "bloom":
|
||||
return BLOOM(
|
||||
|
51
server/text_generation_server/models/starcoder.py
Normal file
51
server/text_generation_server/models/starcoder.py
Normal file
@ -0,0 +1,51 @@
|
||||
from loguru import logger
|
||||
import torch
|
||||
from dataclasses import dataclass
|
||||
import os
|
||||
from typing import List, Optional, Type
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
|
||||
|
||||
@dataclass
|
||||
class StarCoderCausalLMBatch(CausalLMBatch):
|
||||
past_key_values: Optional[List[torch.Tensor]]
|
||||
|
||||
def detach_kv_cache(self):
|
||||
past_keys = []
|
||||
past_values = []
|
||||
last_dim = int(self.past_key_values[0].size(dim=-1)/2)
|
||||
for key_value in self.past_key_values:
|
||||
past_keys.append(key_value.split((last_dim, last_dim), dim=-1)[0])
|
||||
past_values.append(key_value.split((last_dim, last_dim), dim=-1)[1])
|
||||
del self.past_key_values
|
||||
|
||||
return past_keys, past_values
|
||||
|
||||
def attach_kv_cache(self, past_keys, past_values):
|
||||
self.past_key_values = [
|
||||
torch.cat((key, value), dim=-1) for key, value in zip(past_keys, past_values)]
|
||||
|
||||
|
||||
class StarCoder(CausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
|
||||
# Bypasses runtime error "Empty tensor optional" with hpu graphs
|
||||
os.environ["ENABLE_HPU_GRAPH"] = "false"
|
||||
logger.warning("Disabling HPU graphs as they are not supported with Starcoder model!")
|
||||
|
||||
super(StarCoder, self).__init__(
|
||||
model_id=model_id,
|
||||
revision=revision,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[CausalLMBatch]:
|
||||
return StarCoderCausalLMBatch
|
Loading…
Reference in New Issue
Block a user