mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 20:34:54 +00:00
Merge branch 'main' into auto_length
This commit is contained in:
commit
c3fb2ecdc0
68
Cargo.lock
generated
68
Cargo.lock
generated
@ -2706,9 +2706,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "opentelemetry"
|
||||
version = "0.23.0"
|
||||
version = "0.24.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1b69a91d4893e713e06f724597ad630f1fa76057a5e1026c0ca67054a9032a76"
|
||||
checksum = "4c365a63eec4f55b7efeceb724f1336f26a9cf3427b70e59e2cd2a5b947fba96"
|
||||
dependencies = [
|
||||
"futures-core",
|
||||
"futures-sink",
|
||||
@ -2819,19 +2819,17 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "opentelemetry_sdk"
|
||||
version = "0.23.0"
|
||||
version = "0.24.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "ae312d58eaa90a82d2e627fd86e075cf5230b3f11794e2ed74199ebbe572d4fd"
|
||||
checksum = "692eac490ec80f24a17828d49b40b60f5aeaccdfe6a503f939713afd22bc28df"
|
||||
dependencies = [
|
||||
"async-trait",
|
||||
"futures-channel",
|
||||
"futures-executor",
|
||||
"futures-util",
|
||||
"glob",
|
||||
"lazy_static",
|
||||
"once_cell",
|
||||
"opentelemetry 0.23.0",
|
||||
"ordered-float 4.3.0",
|
||||
"opentelemetry 0.24.0",
|
||||
"percent-encoding",
|
||||
"rand",
|
||||
"thiserror",
|
||||
@ -4185,16 +4183,17 @@ dependencies = [
|
||||
"cmake",
|
||||
"cxx",
|
||||
"cxx-build",
|
||||
"hashbrown 0.14.5",
|
||||
"hf-hub",
|
||||
"log",
|
||||
"parking_lot",
|
||||
"pkg-config",
|
||||
"text-generation-router",
|
||||
"thiserror",
|
||||
"tokenizers 0.19.1",
|
||||
"tokenizers",
|
||||
"tokio",
|
||||
"tokio-stream",
|
||||
"tracing",
|
||||
"tracing-opentelemetry 0.24.0",
|
||||
"tracing-opentelemetry 0.25.0",
|
||||
"tracing-subscriber",
|
||||
]
|
||||
|
||||
@ -4212,7 +4211,7 @@ dependencies = [
|
||||
"tabled",
|
||||
"text-generation-client",
|
||||
"thiserror",
|
||||
"tokenizers 0.20.0",
|
||||
"tokenizers",
|
||||
"tokio",
|
||||
"tracing",
|
||||
"tracing-subscriber",
|
||||
@ -4292,7 +4291,7 @@ dependencies = [
|
||||
"serde_json",
|
||||
"sysinfo",
|
||||
"thiserror",
|
||||
"tokenizers 0.20.0",
|
||||
"tokenizers",
|
||||
"tokio",
|
||||
"tokio-stream",
|
||||
"tower-http",
|
||||
@ -4341,7 +4340,7 @@ dependencies = [
|
||||
"slotmap",
|
||||
"text-generation-router",
|
||||
"thiserror",
|
||||
"tokenizers 0.20.0",
|
||||
"tokenizers",
|
||||
"tokio",
|
||||
"tokio-stream",
|
||||
"tonic 0.10.2",
|
||||
@ -4392,7 +4391,7 @@ dependencies = [
|
||||
"slotmap",
|
||||
"text-generation-router",
|
||||
"thiserror",
|
||||
"tokenizers 0.20.0",
|
||||
"tokenizers",
|
||||
"tokio",
|
||||
"tokio-stream",
|
||||
"tonic 0.10.2",
|
||||
@ -4514,39 +4513,6 @@ version = "0.1.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1f3ccbac311fea05f86f61904b462b55fb3df8837a366dfc601a0161d0532f20"
|
||||
|
||||
[[package]]
|
||||
name = "tokenizers"
|
||||
version = "0.19.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "e500fad1dd3af3d626327e6a3fe5050e664a6eaa4708b8ca92f1794aaf73e6fd"
|
||||
dependencies = [
|
||||
"aho-corasick",
|
||||
"derive_builder",
|
||||
"esaxx-rs",
|
||||
"getrandom",
|
||||
"hf-hub",
|
||||
"indicatif",
|
||||
"itertools 0.12.1",
|
||||
"lazy_static",
|
||||
"log",
|
||||
"macro_rules_attribute",
|
||||
"monostate",
|
||||
"onig",
|
||||
"paste",
|
||||
"rand",
|
||||
"rayon",
|
||||
"rayon-cond",
|
||||
"regex",
|
||||
"regex-syntax 0.8.5",
|
||||
"serde",
|
||||
"serde_json",
|
||||
"spm_precompiled",
|
||||
"thiserror",
|
||||
"unicode-normalization-alignments",
|
||||
"unicode-segmentation",
|
||||
"unicode_categories",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tokenizers"
|
||||
version = "0.20.0"
|
||||
@ -4933,14 +4899,14 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "tracing-opentelemetry"
|
||||
version = "0.24.0"
|
||||
version = "0.25.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "f68803492bf28ab40aeccaecc7021096bd256baf7ca77c3d425d89b35a7be4e4"
|
||||
checksum = "a9784ed4da7d921bc8df6963f8c80a0e4ce34ba6ba76668acadd3edbd985ff3b"
|
||||
dependencies = [
|
||||
"js-sys",
|
||||
"once_cell",
|
||||
"opentelemetry 0.23.0",
|
||||
"opentelemetry_sdk 0.23.0",
|
||||
"opentelemetry 0.24.0",
|
||||
"opentelemetry_sdk 0.24.1",
|
||||
"smallvec",
|
||||
"tracing",
|
||||
"tracing-core",
|
||||
|
@ -1,23 +0,0 @@
|
||||
# All the tooling for CUDA
|
||||
FROM nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04 AS cuda-builder
|
||||
|
||||
WORKDIR /usr/src/tgi/backends/trtllm
|
||||
RUN apt update && apt install -y cmake git git-lfs gcc g++ ninja-build libopenmpi-dev python3-dev python3-pip wget
|
||||
|
||||
COPY . /usr/src/tgi
|
||||
RUN chmod +x scripts/install_tensorrt.sh && scripts/install_tensorrt.sh
|
||||
RUN cmake -G Ninja -B build -DTRT_LIB_DIR=/usr/local/tensorrt/lib -DTRT_INCLUDE_DIR=/usr/local/tensorrt/include .
|
||||
RUN cmake --build build --parallel -t tgi_trtllm_backend_impl
|
||||
|
||||
# All the tooling for Rust
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.79 AS chef
|
||||
WORKDIR /usr/src
|
||||
|
||||
# Include CUDA related libraries and tools to the Rust based image
|
||||
COPY --from=cuda-builder /usr/local/cuda /usr/local/cuda
|
||||
COPY --from=cuda-builder /usr/local/tensorrt /usr/local/tensorrt
|
||||
COPY --from=cuda-builder /usr/src/tgi/backends/trtllm/build /usr/local/tgi/trtllm/build
|
||||
ENV PATH=/usr/local/cuda/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=/usr/local/tensorrt/lib:$LD_LIBRARY_PATH
|
||||
|
||||
RUN apt update && apt install -y cmake git gcc g++ ninja-build libopenmpi3
|
@ -10,7 +10,7 @@ COPY . .
|
||||
RUN cargo chef prepare --recipe-path recipe.json
|
||||
|
||||
# CUDA dependent dependencies resolver stage
|
||||
FROM nvidia/cuda:12.5.1-cudnn-devel-ubuntu22.04 AS cuda-builder
|
||||
FROM nvidia/cuda:12.6.1-cudnn-devel-ubuntu22.04 AS cuda-builder
|
||||
|
||||
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
--mount=type=cache,target=/var/lib/apt,sharing=locked \
|
||||
@ -26,6 +26,7 @@ RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
|
||||
ninja-build \
|
||||
pkg-config \
|
||||
python3 \
|
||||
python3-dev \
|
||||
python3-setuptools \
|
||||
tar \
|
||||
wget
|
||||
@ -82,10 +83,15 @@ RUN mkdir $TGI_INSTALL_PREFIX && mkdir "$TGI_INSTALL_PREFIX/include" && mkdir "$
|
||||
cd backends/trtllm && \
|
||||
CMAKE_INSTALL_PREFIX=$TGI_INSTALL_PREFIX cargo build --release
|
||||
|
||||
FROM nvidia/cuda:12.5.1-cudnn-runtime-ubuntu22.04 AS runtime
|
||||
FROM nvidia/cuda:12.6.1-cudnn-runtime-ubuntu22.04 AS runtime
|
||||
RUN apt update && apt install -y python3 && \
|
||||
rm -rf /var/lib/{apt,dpkg,cache,log}/
|
||||
|
||||
WORKDIR /usr/local/tgi/bin
|
||||
|
||||
ENV LD_LIBRARY_PATH="/usr/local/tgi/lib:/usr/local/tensorrt/lib:/usr/local/cuda/lib64/stubs:$LD_LIBRARY_PATH"
|
||||
ENV TOKENIZERS_PARALLELISM=false
|
||||
ENV OMPI_MCA_plm_rsh_agent=""
|
||||
|
||||
COPY --from=mpi-builder /usr/local/mpi /usr/local/mpi
|
||||
COPY --from=trt-builder /usr/local/tensorrt /usr/local/tensorrt
|
@ -98,7 +98,7 @@ curl 127.0.0.1:8080/generate_stream \
|
||||
You can also use [TGI's Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) to obtain Open AI Chat Completion API compatible responses.
|
||||
|
||||
```bash
|
||||
curl localhost:3000/v1/chat/completions \
|
||||
curl localhost:8080/v1/chat/completions \
|
||||
-X POST \
|
||||
-d '{
|
||||
"model": "tgi",
|
||||
|
@ -1,5 +1,17 @@
|
||||
cmake_minimum_required(VERSION 3.20)
|
||||
|
||||
if (NOT DEFINED CMAKE_CXX_COMPILER_LAUNCHER AND CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
find_program(CCACHE_EXECUTABLE "ccache")
|
||||
if (CCACHE_EXECUTABLE)
|
||||
message(STATUS "Using ccache")
|
||||
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_EXECUTABLE}" CACHE PATH "Path to ccache" FORCE)
|
||||
endif ()
|
||||
endif ()
|
||||
|
||||
if (CMAKE_VERSION VERSION_GREATER_EQUAL "3.24.0")
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
endif ()
|
||||
|
||||
project(tgi-trtllm-backend VERSION 1.0.0)
|
||||
set(CMAKE_CXX_STANDARD 20)
|
||||
|
||||
@ -14,7 +26,7 @@ set(TGI_TRTLLM_BACKEND_TRT_INCLUDE_DIR "${TGI_TRTLLM_BACKEND_TRT_ROOT}/include"
|
||||
set(TGI_TRTLLM_BACKEND_TRT_LIB_DIR "${TGI_TRTLLM_BACKEND_TRT_ROOT}/lib" CACHE STRING "Path where TensorRT libraries are located")
|
||||
|
||||
# We are using nvidia-ml to query at runtime device information to enable some architecture-specific features
|
||||
find_package(CUDAToolkit 12.5 REQUIRED COMPONENTS CUDA::cudart CUDA::nvml)
|
||||
find_package(CUDAToolkit 12.6 REQUIRED COMPONENTS CUDA::cudart CUDA::nvml)
|
||||
|
||||
#### External dependencies ####
|
||||
include(cmake/fmt.cmake)
|
||||
|
@ -10,16 +10,17 @@ async-trait = "0.1"
|
||||
async-stream = "0.3"
|
||||
clap = { version = "4.5", features = ["derive"] }
|
||||
cxx = "1.0"
|
||||
hashbrown = "0.14"
|
||||
hf-hub = { workspace = true }
|
||||
log = { version = "0.4", features = [] }
|
||||
text-generation-router = { path = "../../router" }
|
||||
tokenizers = { version = "0.19", features = ["hf-hub"] }
|
||||
tokio = { version = "1.38", features = ["rt", "rt-multi-thread", "parking_lot", "signal", "sync"] }
|
||||
tokenizers = { workspace = true }
|
||||
tokio = { version = "1.39", features = ["rt", "rt-multi-thread", "parking_lot", "signal", "sync"] }
|
||||
tokio-stream = "0.1.15"
|
||||
thiserror = "1.0.62"
|
||||
thiserror = "1.0.63"
|
||||
tracing = "0.1"
|
||||
tracing-opentelemetry = "0.24"
|
||||
tracing-opentelemetry = "0.25"
|
||||
tracing-subscriber = { version = "0.3", features = ["json", "env-filter"] }
|
||||
parking_lot = "0.12"
|
||||
|
||||
[build-dependencies]
|
||||
cmake = "0.1"
|
||||
|
@ -6,7 +6,7 @@ use std::path::{absolute, PathBuf};
|
||||
|
||||
const ADDITIONAL_BACKEND_LINK_LIBRARIES: [&str; 2] = ["spdlog", "fmt"];
|
||||
const CUDA_ARCH_LIST: Option<&str> = option_env!("CUDA_ARCH_LIST");
|
||||
const CUDA_REQUIRED_VERSION: &str = "12.5";
|
||||
const CUDA_REQUIRED_VERSION: &str = "12.6";
|
||||
const MPI_REQUIRED_VERSION: &str = "4.1";
|
||||
const INSTALL_PREFIX: Option<&str> = option_env!("CMAKE_INSTALL_PREFIX");
|
||||
const TENSORRT_ROOT_DIR: Option<&str> = option_env!("TENSORRT_ROOT_DIR");
|
||||
@ -36,7 +36,7 @@ fn build_backend(is_debug: bool, opt_level: &str, out_dir: &PathBuf) -> (PathBuf
|
||||
// Build the backend implementation through CMake
|
||||
let install_path = INSTALL_PREFIX.unwrap_or("/usr/local/tgi");
|
||||
let tensorrt_path = TENSORRT_ROOT_DIR.unwrap_or("/usr/local/tensorrt");
|
||||
let cuda_arch_list = CUDA_ARCH_LIST.unwrap_or("90-real"); // Hopper by default
|
||||
let cuda_arch_list = CUDA_ARCH_LIST.unwrap_or("75-real;80-real;86-real;89-real;90-real");
|
||||
|
||||
let mut install_path = PathBuf::from(install_path);
|
||||
if !install_path.is_absolute() {
|
||||
@ -81,7 +81,12 @@ fn build_backend(is_debug: bool, opt_level: &str, out_dir: &PathBuf) -> (PathBuf
|
||||
(PathBuf::from(install_path), deps_folder)
|
||||
}
|
||||
|
||||
fn build_ffi_layer(deps_folder: &PathBuf) {
|
||||
fn build_ffi_layer(deps_folder: &PathBuf, is_debug: bool) {
|
||||
let ndebug = match is_debug {
|
||||
true => "1",
|
||||
false => "0",
|
||||
};
|
||||
|
||||
CFG.include_prefix = "backends/trtllm";
|
||||
cxx_build::bridge("src/lib.rs")
|
||||
.static_flag(true)
|
||||
@ -93,9 +98,14 @@ fn build_ffi_layer(deps_folder: &PathBuf) {
|
||||
.include("/usr/local/tensorrt/include")
|
||||
.file("src/ffi.cpp")
|
||||
.std("c++20")
|
||||
.define("NDEBUG", ndebug)
|
||||
.compile("tgi_trtllm_backend");
|
||||
|
||||
println!("cargo:rerun-if-changed=CMakeLists.txt");
|
||||
println!("cargo:rerun-if-changed=cmake/trtllm.cmake");
|
||||
println!("cargo:rerun-if-changed=cmake/json.cmake");
|
||||
println!("cargo:rerun-if-changed=cmake/fmt.cmake");
|
||||
println!("cargo:rerun-if-changed=cmake/spdlog.cmake");
|
||||
println!("cargo:rerun-if-changed=include/backend.h");
|
||||
println!("cargo:rerun-if-changed=lib/backend.cpp");
|
||||
println!("cargo:rerun-if-changed=include/ffi.h");
|
||||
@ -115,7 +125,7 @@ fn main() {
|
||||
let (_backend_path, deps_folder) = build_backend(is_debug, opt_level, &out_dir);
|
||||
|
||||
// Build the FFI layer calling the backend above
|
||||
build_ffi_layer(&deps_folder);
|
||||
build_ffi_layer(&deps_folder, is_debug);
|
||||
|
||||
// Emit linkage search path
|
||||
probe!("ompi", MPI_REQUIRED_VERSION);
|
||||
|
@ -1,6 +1,6 @@
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt
|
||||
GIT_TAG 11.0.1
|
||||
DOWNLOAD_EXTRACT_TIMESTAMP
|
||||
URL https://github.com/fmtlib/fmt/archive/refs/tags/11.0.2.tar.gz
|
||||
)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
|
@ -1,5 +1,6 @@
|
||||
fetchcontent_declare(
|
||||
json
|
||||
DOWNLOAD_EXTRACT_TIMESTAMP
|
||||
URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz
|
||||
)
|
||||
fetchcontent_makeavailable(json)
|
||||
|
@ -11,7 +11,7 @@ endif ()
|
||||
|
||||
fetchcontent_declare(
|
||||
spdlog
|
||||
GIT_REPOSITORY https://github.com/gabime/spdlog.git
|
||||
GIT_TAG v1.14.1
|
||||
DOWNLOAD_EXTRACT_TIMESTAMP
|
||||
URL https://github.com/gabime/spdlog/archive/refs/tags/v1.14.1.tar.gz
|
||||
)
|
||||
fetchcontent_makeavailable(spdlog)
|
||||
|
@ -23,8 +23,9 @@ endif ()
|
||||
fetchcontent_declare(
|
||||
trtllm
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/TensorRT-LLM.git
|
||||
GIT_TAG a681853d3803ee5893307e812530b5e7004bb6e1
|
||||
GIT_TAG 201135e58aa525af7e523d091d4c9584229524bc
|
||||
GIT_SHALLOW FALSE
|
||||
DOWNLOAD_EXTRACT_TIMESTAMP
|
||||
)
|
||||
fetchcontent_makeavailable(trtllm)
|
||||
|
||||
|
@ -23,6 +23,12 @@ namespace huggingface::tgi::backends {
|
||||
using RequestId = tle::IdType;
|
||||
using TokenId = tle::TokenIdType;
|
||||
|
||||
const static auto OUTPUT_CONFIG = tle::OutputConfig(true, false, false, true, false);
|
||||
constexpr auto FMT_EXECUTOR_STATS = FMT_STRING(
|
||||
"Submitting inference [{}] to the executor ({:d} already in-flight)");
|
||||
constexpr auto FMT_SAMPLING_CONFIG = FMT_STRING(
|
||||
"Sampling: topK={:d}, topP={:.1f}, temperature={:.1f}, repetition_penalty={:.1f}, frequency_penalty={:.1f}, seed={:d}");
|
||||
|
||||
/**
|
||||
* Initialize all the components required by TRTLLM.
|
||||
* It is required to call this function before attempting to load any engine
|
||||
@ -54,7 +60,7 @@ namespace huggingface::tgi::backends {
|
||||
float_t repetition_penalty,
|
||||
float_t frequency_penalty,
|
||||
uint64_t seed
|
||||
);
|
||||
) noexcept;
|
||||
|
||||
/**
|
||||
*
|
||||
@ -64,18 +70,15 @@ namespace huggingface::tgi::backends {
|
||||
const json config;
|
||||
tle::Executor executor;
|
||||
|
||||
/** Frequently accessed variables cached here **/
|
||||
uint32_t maxNumTokens;
|
||||
|
||||
public:
|
||||
explicit TensorRtLlmBackend(
|
||||
const std::filesystem::path &engineFolder,
|
||||
const std::filesystem::path &executorWorker
|
||||
);
|
||||
|
||||
/**
|
||||
* Indicate if the backend is ready to accept incoming request
|
||||
* @return true if ready, false otherwise
|
||||
*/
|
||||
[[nodiscard]] bool IsReady() const;
|
||||
|
||||
/**
|
||||
* Query the executor for the number of token available for pulling
|
||||
* @return
|
||||
@ -95,25 +98,16 @@ namespace huggingface::tgi::backends {
|
||||
*/
|
||||
[[nodiscard]] RequestId Submit(
|
||||
const std::vector<TokenId> &tokens,
|
||||
int32_t topK,
|
||||
float_t topP,
|
||||
float_t temperature,
|
||||
float_t repetition_penalty,
|
||||
float_t frequency_penalty,
|
||||
uint64_t seed
|
||||
const uint32_t maxNewTokens,
|
||||
const int32_t topK,
|
||||
const float_t topP,
|
||||
const float_t temperature,
|
||||
const float_t repetition_penalty,
|
||||
const float_t frequency_penalty,
|
||||
const uint64_t seed
|
||||
);
|
||||
|
||||
/**
|
||||
*
|
||||
* @param requestId The request id to poll the generation results
|
||||
* @return
|
||||
*/
|
||||
std::vector<tle::Response> Poll(RequestId requestId);
|
||||
|
||||
/**
|
||||
* Stop the underlying executor
|
||||
*/
|
||||
void Shutdown();
|
||||
[[nodiscard]] std::vector<tle::Response> PullNewTokens();
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -5,20 +5,31 @@
|
||||
#ifndef TGI_TRTLLM_BACKEND_FFI_H
|
||||
#define TGI_TRTLLM_BACKEND_FFI_H
|
||||
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
#include <memory>
|
||||
#include "backend.h"
|
||||
|
||||
namespace huggingface::tgi::backends {
|
||||
class TensorRtLlmBackendImpl;
|
||||
}
|
||||
|
||||
// Template to support returning error from TllmException back to Rust in a Result<>
|
||||
#include <tensorrt_llm/common/tllmException.h>
|
||||
|
||||
namespace rust::behavior {
|
||||
template<typename Try, typename Fail>
|
||||
static void trycatch(Try &&func, Fail &&fail) noexcept try {
|
||||
func();
|
||||
} catch (tensorrt_llm::common::TllmException &e) {
|
||||
fail(e.what());
|
||||
}
|
||||
}
|
||||
|
||||
#include "backends/trtllm/src/lib.rs.h"
|
||||
|
||||
|
||||
namespace huggingface::tgi::backends {
|
||||
|
||||
// struct GenerationContext;
|
||||
|
||||
class TensorRtLlmBackendImpl : public TensorRtLlmBackend {
|
||||
public:
|
||||
/***
|
||||
@ -28,15 +39,10 @@ namespace huggingface::tgi::backends {
|
||||
*/
|
||||
TensorRtLlmBackendImpl(const std::string_view &engineFolder, const std::string_view &executorWorker);
|
||||
|
||||
/***
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
bool IsReady() const;
|
||||
|
||||
/***
|
||||
*
|
||||
* @param tokens
|
||||
* @param maxNewTokens
|
||||
* @param topK
|
||||
* @param topP
|
||||
* @param temperature
|
||||
@ -47,21 +53,15 @@ namespace huggingface::tgi::backends {
|
||||
*/
|
||||
[[nodiscard("returned request id should be used to refer to the request's generation result later on")]]
|
||||
uint64_t
|
||||
Submit(rust::Slice<const uint32_t> tokens, int32_t topK, float_t topP, float_t temperature,
|
||||
Submit(rust::Slice<const uint32_t> tokens, uint32_t maxNewTokens,
|
||||
int32_t topK, float_t topP, float_t temperature,
|
||||
float_t repetition_penalty, float_t frequency_penalty, uint64_t seed);
|
||||
|
||||
/***
|
||||
*
|
||||
* @param requestId
|
||||
* @param ctx
|
||||
* @param callback
|
||||
* @return
|
||||
*/
|
||||
size_t StreamTokens(
|
||||
const RequestId requestId,
|
||||
huggingface::tgi::backends::GenerationContext *ctx,
|
||||
rust::Fn<void(huggingface::tgi::backends::GenerationContext *,
|
||||
huggingface::tgi::backends::GenerationStep)> callback);
|
||||
std::unique_ptr<std::vector<GenerationStep>> PullTokens();
|
||||
};
|
||||
|
||||
/***
|
||||
|
@ -14,7 +14,7 @@
|
||||
namespace huggingface::hardware::cuda {
|
||||
|
||||
#define AMPERE_SM_MAJOR 8
|
||||
#define HOPPER_SM_MAJOR 8
|
||||
#define HOPPER_SM_MAJOR 9
|
||||
|
||||
/**
|
||||
* Store information about the version of the CUDA Compute Capabilities detected on the device
|
||||
|
@ -1,3 +1,4 @@
|
||||
#include <cstdlib>
|
||||
#include <fstream>
|
||||
|
||||
#include <fmt/ranges.h>
|
||||
@ -8,10 +9,23 @@
|
||||
#include "hardware.h"
|
||||
|
||||
void huggingface::tgi::backends::InitializeBackend() {
|
||||
if (const auto TRTLLM_LOG_LEVEL_CSTR = std::getenv("TRTLLM_LOG_LEVEL")) {
|
||||
std::string log_level(TRTLLM_LOG_LEVEL_CSTR);
|
||||
std::transform(log_level.begin(), log_level.end(), log_level.begin(), [](unsigned char c) {
|
||||
return std::tolower(c);
|
||||
});
|
||||
|
||||
if (log_level == "debug")
|
||||
spdlog::set_level(spdlog::level::debug);
|
||||
else
|
||||
spdlog::set_level(spdlog::level::info);
|
||||
}
|
||||
|
||||
SPDLOG_INFO("Initializing Backend...");
|
||||
nvmlInit_v2();
|
||||
initTrtLlmPlugins();
|
||||
|
||||
SPDLOG_INFO("Backend Executor Version: {}", tle::version());
|
||||
const auto numGpus = huggingface::hardware::cuda::GetNumDevices();
|
||||
if (numGpus.has_value()) {
|
||||
SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value());
|
||||
@ -22,7 +36,7 @@ void huggingface::tgi::backends::InitializeBackend() {
|
||||
|
||||
[[nodiscard]]
|
||||
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
|
||||
tle::ExecutorConfig execConfig(1);
|
||||
tle::ExecutorConfig execConfig(/* maxBeamWidth = */ 1);
|
||||
|
||||
// Retrieve the compute capabilities to enable some options at runtime
|
||||
const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities();
|
||||
@ -55,12 +69,13 @@ tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &co
|
||||
}
|
||||
|
||||
tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig(
|
||||
uint32_t topK,
|
||||
float_t topP,
|
||||
float_t temperature,
|
||||
float_t repetition_penalty,
|
||||
float_t frequency_penalty,
|
||||
uint64_t seed) {
|
||||
const uint32_t topK,
|
||||
const float_t topP,
|
||||
const float_t temperature,
|
||||
const float_t repetition_penalty,
|
||||
const float_t frequency_penalty,
|
||||
const uint64_t seed) noexcept {
|
||||
|
||||
return tle::SamplingConfig(
|
||||
1, // TGI only use a single beam
|
||||
topK,
|
||||
@ -83,26 +98,29 @@ huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
|
||||
const std::filesystem::path &executorWorker
|
||||
) :
|
||||
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
|
||||
executor(
|
||||
enginesFolder,
|
||||
tensorrt_llm::executor::ModelType::kDECODER_ONLY,
|
||||
GetExecutorConfig(config, executorWorker.string()
|
||||
)) {
|
||||
executor(enginesFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY,
|
||||
GetExecutorConfig(config, executorWorker.string())) {
|
||||
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref<const std::string &>());
|
||||
}
|
||||
|
||||
bool huggingface::tgi::backends::TensorRtLlmBackend::IsReady() const {
|
||||
return executor.canEnqueueRequests();
|
||||
// Cache variables
|
||||
maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get<uint32_t>();
|
||||
}
|
||||
|
||||
[[nodiscard("Returned number of requests needs to be consumed")]]
|
||||
size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const {
|
||||
return executor.getNumResponsesReady();
|
||||
const auto numResponses = executor.getNumResponsesReady();
|
||||
|
||||
#ifndef NDEBUG
|
||||
if(numResponses > 0) SPDLOG_INFO(FMT_STRING("Num responses ready: {:d}"), numResponses);
|
||||
#endif
|
||||
|
||||
return numResponses;
|
||||
}
|
||||
|
||||
[[nodiscard("Returned request id needs to be provided back to gather generated tokens")]]
|
||||
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
|
||||
const std::vector<tle::TokenIdType> &tokens,
|
||||
const uint32_t maxNewTokens,
|
||||
const int32_t topK,
|
||||
const float_t topP,
|
||||
const float_t temperature,
|
||||
@ -110,37 +128,23 @@ tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
|
||||
const float_t frequency_penalty,
|
||||
const uint64_t seed
|
||||
) {
|
||||
#ifdef NDEBUG
|
||||
SPDLOG_DEBUG(
|
||||
FMT_STRING("Submitting inference over {:d} tokens to the executor ({:d} already in-flight)"),
|
||||
tokens.size(),
|
||||
executor.getLatestIterationStats().back().numActiveRequests
|
||||
);
|
||||
#else
|
||||
SPDLOG_DEBUG(
|
||||
FMT_STRING("Submitting inference [{}] to the executor ({:d} already in-flight)"),
|
||||
fmt::join(tokens, ", "),
|
||||
executor.getLatestIterationStats().front().numActiveRequests
|
||||
);
|
||||
const auto maxNewTokensChecked = std::min(maxNewTokens, static_cast<uint32_t>(maxNumTokens - tokens.size()));
|
||||
#ifndef NDEBUG
|
||||
{
|
||||
const auto &iterations = executor.getLatestIterationStats();
|
||||
const auto &lastIteration = iterations.front();
|
||||
|
||||
SPDLOG_DEBUG(FMT_EXECUTOR_STATS, fmt::join(tokens, ", "), lastIteration.numActiveRequests);
|
||||
SPDLOG_DEBUG(FMT_SAMPLING_CONFIG, topK, topP, temperature, repetition_penalty, frequency_penalty, seed);
|
||||
SPDLOG_DEBUG(FMT_STRING("Asking for max_new_tokens={:d}"), maxNewTokensChecked);
|
||||
}
|
||||
#endif
|
||||
|
||||
const auto maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get<size_t>();
|
||||
const auto maxNewTokens = static_cast<int32_t>(std::max(1ul, maxNumTokens - tokens.size()));
|
||||
|
||||
const auto sampling = GetSamplingConfig(topK, topP, temperature, repetition_penalty, frequency_penalty, seed);
|
||||
const auto output = tle::OutputConfig(true, false, false, true, false);
|
||||
return executor.enqueueRequest(
|
||||
tle::Request{tokens, maxNewTokens, true, sampling, output});
|
||||
const auto maxNewTokensChecked_ = static_cast<tle::SizeType32>(maxNewTokensChecked);
|
||||
return executor.enqueueRequest(tle::Request{tokens, maxNewTokensChecked_, true, sampling, OUTPUT_CONFIG});
|
||||
}
|
||||
|
||||
[[nodiscard("Generated tokens result must be used")]]
|
||||
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::Poll(const tle::IdType requestId) {
|
||||
SPDLOG_DEBUG(FMT_STRING("Polling status for request {:d}"), requestId);
|
||||
return executor.awaitResponses(requestId);
|
||||
}
|
||||
|
||||
|
||||
void huggingface::tgi::backends::TensorRtLlmBackend::Shutdown() {
|
||||
SPDLOG_INFO("Shutting down executor");
|
||||
executor.shutdown();
|
||||
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::PullNewTokens() {
|
||||
return executor.awaitResponses();
|
||||
}
|
||||
|
@ -2,12 +2,13 @@
|
||||
|
||||
set -ex
|
||||
|
||||
TRT_VER="10.2.0.19"
|
||||
CUDA_VER="12.5"
|
||||
CUDNN_VER="9.2.1.18-1"
|
||||
NCCL_VER="2.22.3-1+cuda12.5"
|
||||
CUBLAS_VER="12.5.3.2-1"
|
||||
NVRTC_VER="12.5.82-1"
|
||||
TRT_VER_BASE="10.4.0"
|
||||
TRT_VER_FULL="${TRT_VER_BASE}.26"
|
||||
CUDA_VER="12.6"
|
||||
CUDNN_VER="9.5.0.50-1"
|
||||
NCCL_VER="2.22.3-1+cuda12.6"
|
||||
CUBLAS_VER="12.6.3.3-1"
|
||||
NVRTC_VER="12.6.77-1"
|
||||
|
||||
for i in "$@"; do
|
||||
case $i in
|
||||
@ -32,8 +33,9 @@ install_ubuntu_requirements() {
|
||||
ARCH=$(uname -m)
|
||||
if [ "$ARCH" = "amd64" ];then ARCH="x86_64";fi
|
||||
if [ "$ARCH" = "aarch64" ];then ARCH="sbsa";fi
|
||||
curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/${ARCH}/cuda-keyring_1.0-1_all.deb
|
||||
dpkg -i cuda-keyring_1.0-1_all.deb
|
||||
curl -fsSLO https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/${ARCH}/cuda-keyring_1.1-1_all.deb
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
rm /etc/apt/sources.list.d/cuda-ubuntu2404-x86_64.list
|
||||
|
||||
apt-get update
|
||||
if [[ $(apt list --installed | grep libcudnn9) ]]; then
|
||||
@ -71,7 +73,7 @@ install_centos_requirements() {
|
||||
install_tensorrt() {
|
||||
#PY_VERSION=$(python3 -c 'import sys; print(".".join(map(str, sys.version_info[0:2])))')
|
||||
#PARSED_PY_VERSION=$(echo "${PY_VERSION//./}")
|
||||
TRT_CUDA_VERSION="12.5"
|
||||
TRT_CUDA_VERSION="12.6"
|
||||
|
||||
if [ -z "$RELEASE_URL_TRT" ];then
|
||||
ARCH=${TRT_TARGETARCH}
|
||||
@ -79,12 +81,12 @@ install_tensorrt() {
|
||||
if [ "$ARCH" = "arm64" ];then ARCH="aarch64";fi
|
||||
if [ "$ARCH" = "amd64" ];then ARCH="x86_64";fi
|
||||
if [ "$ARCH" = "x86_64" ];then DIR_NAME="x64-agnostic"; else DIR_NAME=${ARCH};fi
|
||||
if [ "$ARCH" = "aarch64" ];then OS1="Ubuntu22_04" && OS2="Ubuntu-22.04" && OS="ubuntu-22.04"; else OS1="Linux" && OS2="Linux" && OS="linux";fi
|
||||
RELEASE_URL_TRT=https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.2.0/tars/TensorRT-${TRT_VER}.${OS2}.${ARCH}-gnu.cuda-${TRT_CUDA_VERSION}.tar.gz
|
||||
if [ "$ARCH" = "aarch64" ];then OS1="Ubuntu22_04" && OS2="Ubuntu-24.04" && OS="ubuntu-24.04"; else OS1="Linux" && OS2="Linux" && OS="linux";fi
|
||||
RELEASE_URL_TRT=https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/${TRT_VER_BASE}/tars/TensorRT-${TRT_VER_FULL}.${OS2}.${ARCH}-gnu.cuda-${TRT_CUDA_VERSION}.tar.gz
|
||||
fi
|
||||
wget --no-verbose ${RELEASE_URL_TRT} -O /tmp/TensorRT.tar
|
||||
tar -xf /tmp/TensorRT.tar -C /usr/local/
|
||||
mv /usr/local/TensorRT-${TRT_VER} /usr/local/tensorrt
|
||||
mv /usr/local/TensorRT-${TRT_VER_FULL} /usr/local/tensorrt
|
||||
# pip3 install /usr/local/tensorrt/python/tensorrt-*-cp${PARSED_PY_VERSION}-*.whl
|
||||
rm -rf /tmp/TensorRT.tar
|
||||
}
|
||||
|
@ -1,330 +0,0 @@
|
||||
use std::future::Future;
|
||||
use std::path::Path;
|
||||
use std::pin::{pin, Pin};
|
||||
use std::str::FromStr;
|
||||
use std::sync::atomic::{AtomicBool, Ordering};
|
||||
use std::sync::{Arc, OnceLock};
|
||||
use std::task::{Context, Poll};
|
||||
use std::time::Duration;
|
||||
|
||||
use async_trait::async_trait;
|
||||
use cxx::UniquePtr;
|
||||
use log::{error, warn};
|
||||
use tokenizers::Tokenizer;
|
||||
use tokio::sync::mpsc::{unbounded_channel, UnboundedSender};
|
||||
use tokio::time::{sleep, Instant};
|
||||
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||||
use tokio_stream::{Stream, StreamExt};
|
||||
use tracing::{instrument, span, Level};
|
||||
|
||||
// use tokio::sync::RwLock;
|
||||
use parking_lot::RwLock;
|
||||
use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse};
|
||||
use text_generation_router::validation::ValidationError::UnsupportedModality;
|
||||
use text_generation_router::validation::{Chunk, ValidGenerateRequest, ValidationError};
|
||||
use text_generation_router::{FinishReason, Token};
|
||||
|
||||
use crate::errors::TensorRtLlmBackendError;
|
||||
use crate::ffi::{create_tensorrt_llm_backend, GenerationStep, TensorRtLlmBackendImpl};
|
||||
|
||||
// Value used to poll the state of the generation stream
|
||||
static POLLING_INTERVAL_US: OnceLock<u64> = OnceLock::new();
|
||||
|
||||
type InferResult<T> = Result<T, InferError>;
|
||||
|
||||
pub(crate) struct Generation {
|
||||
executor: Arc<RwLock<UniquePtr<TensorRtLlmBackendImpl>>>,
|
||||
done: Arc<AtomicBool>,
|
||||
}
|
||||
|
||||
/// Holds the user provided input to be executed along with a channel allowing
|
||||
/// to bubble up all the generated tokens for that tokens the to end stream.
|
||||
pub struct GenerationContext {
|
||||
sender: UnboundedSender<InferResult<InferStreamResponse>>,
|
||||
tokenizer: Arc<Tokenizer>,
|
||||
tokens: Vec<u32>,
|
||||
done: Arc<AtomicBool>,
|
||||
queued: Instant,
|
||||
start: Option<Instant>,
|
||||
}
|
||||
|
||||
impl Stream for Generation {
|
||||
type Item = usize;
|
||||
|
||||
fn poll_next(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
|
||||
let interval = POLLING_INTERVAL_US.get_or_init(|| {
|
||||
u64::from_str(option_env!("TRTLLM_BACKEND_POLLING_INTERVAL_US").unwrap_or("100"))
|
||||
.expect("Invalid value provided for envvar POLLING_INTERVAL_US")
|
||||
});
|
||||
|
||||
if !self.done.load(Ordering::Relaxed) {
|
||||
let backend = pin!(self.executor.read());
|
||||
let status = match backend.poll(ctx) {
|
||||
Poll::Ready(executor_r) => {
|
||||
let ready = executor_r.num_responses_ready();
|
||||
if ready == 0 {
|
||||
Poll::Pending
|
||||
} else {
|
||||
Poll::Ready(Some(ready))
|
||||
}
|
||||
}
|
||||
Poll::Pending => Poll::Pending,
|
||||
};
|
||||
|
||||
let waker = ctx.waker().clone();
|
||||
tokio::spawn(async {
|
||||
sleep(Duration::from_micros(*interval)).await;
|
||||
waker.wake();
|
||||
});
|
||||
|
||||
status
|
||||
} else {
|
||||
Poll::Ready(None) // end of stream
|
||||
}
|
||||
}
|
||||
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
(1, None)
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl Send for TensorRtLlmBackendImpl {}
|
||||
unsafe impl Sync for TensorRtLlmBackendImpl {}
|
||||
|
||||
/// Implements the logic to execute generation with TensorRT-LLM executor API in background
|
||||
pub struct TensorRtLlmBackend {
|
||||
tokenizer: Arc<Tokenizer>,
|
||||
|
||||
// Backing the backend behind a RwLock to allow concurrent read access to retrieve
|
||||
// the number of available tokens (read only) in the Generation stream
|
||||
backend: Arc<RwLock<UniquePtr<TensorRtLlmBackendImpl>>>,
|
||||
}
|
||||
|
||||
impl TensorRtLlmBackend {
|
||||
pub fn new<P: AsRef<Path> + Send + 'static, PP: AsRef<Path> + Send + 'static>(
|
||||
tokenizer: Tokenizer,
|
||||
engine_folder: P,
|
||||
executor_worker_path: PP,
|
||||
) -> Result<Self, TensorRtLlmBackendError> {
|
||||
Ok(TensorRtLlmBackend {
|
||||
tokenizer: Arc::new(tokenizer),
|
||||
backend: Arc::new(RwLock::new(create_tensorrt_llm_backend(
|
||||
engine_folder.as_ref().to_str().unwrap(),
|
||||
executor_worker_path.as_ref().to_str().unwrap(),
|
||||
))),
|
||||
})
|
||||
}
|
||||
|
||||
fn validate(request: &ValidGenerateRequest) -> InferResult<&String> {
|
||||
if request.top_n_tokens > 1 {
|
||||
return Err(InferError::ValidationError(
|
||||
ValidationError::TopNTokensDisabled,
|
||||
));
|
||||
}
|
||||
|
||||
// TODO: Is it really needed? How can it be validated before?
|
||||
if request.parameters.grammar.is_some() {
|
||||
return Err(InferError::ValidationError(ValidationError::Grammar));
|
||||
}
|
||||
|
||||
match request.inputs.len() {
|
||||
0 => Err(InferError::ValidationError(ValidationError::EmptyInput)),
|
||||
2.. => Err(InferError::GenerationError(
|
||||
"TensorRT-LLM backend don't support multi-chunk".into(),
|
||||
)),
|
||||
1 => match request.inputs.first().expect("Single item-chunk") {
|
||||
Chunk::Text(text) => Ok(text),
|
||||
Chunk::Image(_) => Err(InferError::ValidationError(UnsupportedModality("image"))),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn generate(
|
||||
&self,
|
||||
sender: UnboundedSender<InferResult<InferStreamResponse>>,
|
||||
tokens: Vec<u32>,
|
||||
top_k: u32,
|
||||
top_p: f32,
|
||||
temperature: f32,
|
||||
repetition_penalty: f32,
|
||||
frequency_penalty: f32,
|
||||
seed: u64,
|
||||
) {
|
||||
let tokenizer = Arc::clone(&self.tokenizer);
|
||||
let executor = Arc::clone(&self.backend);
|
||||
|
||||
// Let's push this in async context
|
||||
tokio::spawn(async move {
|
||||
// Define the generation state
|
||||
let mut generation = Generation {
|
||||
executor: executor.clone(),
|
||||
done: Arc::new(AtomicBool::new(false)),
|
||||
};
|
||||
|
||||
// Define the context over the generation
|
||||
// TODO(asap): Do we really need so many shared-ownership?
|
||||
let ctx = Box::new(GenerationContext {
|
||||
sender: sender.clone(),
|
||||
tokenizer,
|
||||
tokens: vec![],
|
||||
done: Arc::clone(&generation.done),
|
||||
start: None,
|
||||
queued: Instant::now(),
|
||||
});
|
||||
|
||||
// We are leaking the context on-purpose to avoid the box being dropped while there are
|
||||
// still computation ongoing
|
||||
// TODO(asap): Can we achieve the same with an Arc<Box<T>> without the need to go unsafe?
|
||||
let ctx_ = Box::leak(ctx);
|
||||
|
||||
// Submit the request to the batcher
|
||||
let request_id = span!(Level::DEBUG, "submit")
|
||||
.in_scope(|| async {
|
||||
let mut handle = executor.write().await;
|
||||
let request_id = handle.pin_mut().submit(
|
||||
&tokens,
|
||||
top_k as i32,
|
||||
top_p,
|
||||
temperature,
|
||||
repetition_penalty,
|
||||
frequency_penalty,
|
||||
seed,
|
||||
);
|
||||
|
||||
request_id
|
||||
})
|
||||
.await;
|
||||
|
||||
while let Some(_) = generation.next().await {
|
||||
let mut executor_w = executor.write().await;
|
||||
let executor = executor_w.pin_mut();
|
||||
|
||||
span!(Level::DEBUG, "decode")
|
||||
.in_scope(|| async {
|
||||
unsafe {
|
||||
executor.stream_tokens(
|
||||
request_id,
|
||||
ctx_,
|
||||
|ctx: *mut GenerationContext, step: GenerationStep| {
|
||||
let inner_ctx = &mut *ctx;
|
||||
|
||||
// Update the timestamp at which the request started effectively
|
||||
// Can be a bit off, would need to be before the callback, let's see
|
||||
inner_ctx.start.get_or_insert(Instant::now());
|
||||
inner_ctx.done.store(step.is_final, Ordering::Relaxed);
|
||||
|
||||
// Ensure we are not running into errors
|
||||
let parcel = if !step.has_error {
|
||||
// Insert the latest generated token to the tracker
|
||||
inner_ctx.tokens.push(step.token_id);
|
||||
|
||||
// Decode the token
|
||||
let text = inner_ctx
|
||||
.tokenizer
|
||||
.decode(&[step.token_id], true)
|
||||
.expect("Failed to decode token");
|
||||
|
||||
let special = inner_ctx
|
||||
.tokenizer
|
||||
.get_added_vocabulary()
|
||||
.is_special_token(&text);
|
||||
|
||||
// Create the structure holding the token
|
||||
let token = Token {
|
||||
id: step.token_id,
|
||||
text,
|
||||
logprob: step.log_prob,
|
||||
special,
|
||||
};
|
||||
|
||||
if step.is_final {
|
||||
let generated_text = inner_ctx
|
||||
.tokenizer
|
||||
.decode(&inner_ctx.tokens, true)
|
||||
.expect("Failed to decode generated_tokens");
|
||||
|
||||
Ok(InferStreamResponse::End {
|
||||
token,
|
||||
top_tokens: vec![],
|
||||
generated_text: GeneratedText {
|
||||
text: generated_text,
|
||||
generated_tokens: inner_ctx.tokens.len() as u32,
|
||||
finish_reason: FinishReason::EndOfSequenceToken,
|
||||
seed: None,
|
||||
},
|
||||
start: inner_ctx.start.unwrap_or(Instant::now()),
|
||||
queued: inner_ctx.queued,
|
||||
})
|
||||
} else {
|
||||
Ok(InferStreamResponse::Intermediate {
|
||||
token,
|
||||
top_tokens: vec![],
|
||||
})
|
||||
}
|
||||
} else {
|
||||
error!("Error caught while decoding: {}", &step.error_msg);
|
||||
Err(InferError::GenerationError(step.error_msg))
|
||||
};
|
||||
|
||||
// Send the parcel to the client
|
||||
inner_ctx
|
||||
.sender
|
||||
.send(parcel)
|
||||
.expect("Failed to sent msg through the channel");
|
||||
},
|
||||
);
|
||||
}
|
||||
})
|
||||
.await;
|
||||
}
|
||||
|
||||
// "Properly" free the shared context...
|
||||
// TODO: clean that piece of sh** asap
|
||||
unsafe {
|
||||
let _ = Box::from_raw(ctx_);
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl Backend for TensorRtLlmBackend {
|
||||
#[instrument(skip_all)]
|
||||
fn schedule(
|
||||
&self,
|
||||
request: ValidGenerateRequest,
|
||||
) -> InferResult<UnboundedReceiverStream<InferResult<InferStreamResponse>>> {
|
||||
// Let's add a few more validation
|
||||
let input = TensorRtLlmBackend::validate(&request)?;
|
||||
|
||||
// Channel to stream the generated token as they come from the worker thread back to the transport layer
|
||||
let (sender, receiver) = unbounded_channel();
|
||||
|
||||
// Unpack parameters
|
||||
let params = &request.parameters;
|
||||
|
||||
// Preprocess the inputs to send to TRTLLM backend
|
||||
let encoding = self
|
||||
.tokenizer
|
||||
.encode(input.as_str(), true)
|
||||
.map_err(|e| InferError::GenerationError(e.to_string()))?;
|
||||
|
||||
// Generate the response
|
||||
self.generate(
|
||||
sender,
|
||||
Vec::from(encoding.get_ids()),
|
||||
params.top_k,
|
||||
params.top_p,
|
||||
params.temperature,
|
||||
params.repetition_penalty,
|
||||
params.frequency_penalty,
|
||||
params.seed,
|
||||
);
|
||||
|
||||
Ok(UnboundedReceiverStream::new(receiver))
|
||||
}
|
||||
|
||||
async fn health(&self, _current_health: bool) -> bool {
|
||||
true
|
||||
}
|
||||
}
|
@ -1,9 +1,16 @@
|
||||
use std::path::PathBuf;
|
||||
use thiserror::Error;
|
||||
|
||||
use text_generation_router::server;
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum TensorRtLlmBackendError {
|
||||
#[error("Provided engine folder {0} doesn't exist")]
|
||||
EngineFolderDoesntExists(PathBuf),
|
||||
#[error("Provided executorWorker binary path {0} doesn't exist")]
|
||||
ExecutorWorkerNotFound(PathBuf),
|
||||
#[error("TensorRT-LLM Runtime error: {0}")]
|
||||
Runtime(String),
|
||||
#[error("Tokenizer error: {0}")]
|
||||
Tokenizer(String),
|
||||
#[error("Argument validation error: {0}")]
|
||||
|
@ -3,11 +3,13 @@
|
||||
//
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
#include <exception>
|
||||
#include <filesystem>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <iterator>
|
||||
#include <ranges>
|
||||
#include <vector>
|
||||
|
||||
#include <spdlog/spdlog.h>
|
||||
@ -20,61 +22,59 @@ huggingface::tgi::backends::TensorRtLlmBackendImpl::TensorRtLlmBackendImpl(
|
||||
) : TensorRtLlmBackend(engineFolder, executorWorker) {}
|
||||
|
||||
|
||||
bool huggingface::tgi::backends::TensorRtLlmBackendImpl::IsReady() const {
|
||||
return TensorRtLlmBackend::IsReady();
|
||||
}
|
||||
|
||||
uint64_t huggingface::tgi::backends::TensorRtLlmBackendImpl::Submit(
|
||||
rust::Slice<const uint32_t> tokens, int32_t topK, float_t topP, float_t temperature, float_t repetition_penalty,
|
||||
float_t frequency_penalty, uint64_t seed) {
|
||||
rust::Slice<const uint32_t> tokens, uint32_t maxNewTokens,
|
||||
int32_t topK, float_t topP, float_t temperature,
|
||||
float_t repetition_penalty, float_t frequency_penalty, uint64_t seed) {
|
||||
|
||||
// This will copy all the items from the initial slice
|
||||
std::vector<int32_t> tokens_(std::make_move_iterator(tokens.begin()), std::make_move_iterator(tokens.end()));
|
||||
std::vector<int32_t> tokens_(tokens.begin(), tokens.end());
|
||||
return TensorRtLlmBackend::Submit(
|
||||
std::move(tokens_), topK, topP, temperature, repetition_penalty, frequency_penalty, seed);
|
||||
std::move(tokens_), maxNewTokens, topK, topP, temperature, repetition_penalty, frequency_penalty, seed);
|
||||
}
|
||||
|
||||
size_t huggingface::tgi::backends::TensorRtLlmBackendImpl::StreamTokens(
|
||||
const uint64_t requestId,
|
||||
huggingface::tgi::backends::GenerationContext *ctx,
|
||||
rust::Fn<void(huggingface::tgi::backends::GenerationContext *,
|
||||
huggingface::tgi::backends::GenerationStep)> callback) {
|
||||
std::unique_ptr<std::vector<huggingface::tgi::backends::GenerationStep>>
|
||||
huggingface::tgi::backends::TensorRtLlmBackendImpl::PullTokens() {
|
||||
const auto responses = TensorRtLlmBackend::PullNewTokens();
|
||||
|
||||
size_t numTokens = 0;
|
||||
for (const auto &item: Poll(requestId)) {
|
||||
GenerationStep step;
|
||||
if (!item.hasError()) {
|
||||
SPDLOG_DEBUG("\tStreamTokens -> Decoding token...");
|
||||
const auto decoded = item.getResult();
|
||||
auto steps = std::make_unique<std::vector<GenerationStep>>();
|
||||
steps->reserve(responses.size());
|
||||
|
||||
const auto token = decoded.outputTokenIds[0][0];
|
||||
const auto isFinal = decoded.isFinal;
|
||||
const auto logProb = decoded.logProbs.value()[0][0];
|
||||
#ifndef NDEBUG
|
||||
SPDLOG_DEBUG(FMT_STRING("Pulled out {:d} new tokens"), responses->size());
|
||||
#endif
|
||||
|
||||
++numTokens;
|
||||
|
||||
SPDLOG_DEBUG(FMT_STRING("\tStreamTokens -> {:d} {:.2f} (final = {})"), token, logProb, isFinal);
|
||||
step = huggingface::tgi::backends::GenerationStep{
|
||||
static_cast<uint32_t>(token), logProb, isFinal, false, std::move(std::string())
|
||||
// Transform tle::Response to GenerationStep
|
||||
std::ranges::transform(responses.begin(), responses.end(), std::back_inserter(*steps), [](const tle::Response &r) {
|
||||
const auto reqId = r.getRequestId();
|
||||
if (!r.hasError()) {
|
||||
const auto result = r.getResult();
|
||||
return GenerationStep{
|
||||
reqId,
|
||||
static_cast<uint32_t>(result.outputTokenIds[0][0]),
|
||||
result.logProbs.value()[0][0],
|
||||
result.isFinal,
|
||||
false,
|
||||
std::string()
|
||||
};
|
||||
SPDLOG_DEBUG("\tStreamTokens -> Post callback");
|
||||
} else {
|
||||
// TODO : Return rest::Result with error
|
||||
const auto what = item.getErrorMsg();
|
||||
SPDLOG_WARN("\tStreamTokens -> Got error while decoding: {}", what);
|
||||
step = huggingface::tgi::backends::GenerationStep{
|
||||
std::numeric_limits<uint32_t>::max(), 0.0, true, true, std::move(what)
|
||||
return GenerationStep{
|
||||
reqId,
|
||||
0,
|
||||
0.0,
|
||||
true,
|
||||
true,
|
||||
std::move(r.getErrorMsg())
|
||||
};
|
||||
}
|
||||
});
|
||||
|
||||
callback(std::move(ctx), std::move(step));
|
||||
}
|
||||
|
||||
return numTokens;
|
||||
return steps;
|
||||
}
|
||||
|
||||
std::unique_ptr<huggingface::tgi::backends::TensorRtLlmBackendImpl>
|
||||
huggingface::tgi::backends::CreateTensorRtLlmBackend(rust::Str engineFolder, rust::Str executorWorker) {
|
||||
SPDLOG_INFO("Creating TensorRT-LLM Backend");
|
||||
// Unconditionally call this to initialize and discover TRTLLM plugins
|
||||
InitializeBackend();
|
||||
|
||||
|
@ -1,14 +1,16 @@
|
||||
pub use backend::{GenerationContext, TensorRtLlmBackend};
|
||||
pub use looper::TensorRtLlmBackendV2;
|
||||
|
||||
mod backend;
|
||||
pub mod errors;
|
||||
mod looper;
|
||||
mod utils;
|
||||
|
||||
#[cxx::bridge(namespace = "huggingface::tgi::backends")]
|
||||
mod ffi {
|
||||
|
||||
/// Struct used as shared type between rust and C++ to represent the result
|
||||
/// of a single decoding iteration
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct GenerationStep {
|
||||
request_id: u64,
|
||||
token_id: u32,
|
||||
log_prob: f32,
|
||||
is_final: bool,
|
||||
@ -16,10 +18,6 @@ mod ffi {
|
||||
error_msg: String,
|
||||
}
|
||||
|
||||
extern "Rust" {
|
||||
type GenerationContext;
|
||||
}
|
||||
|
||||
unsafe extern "C++" {
|
||||
include!("backends/trtllm/src/ffi.cpp");
|
||||
|
||||
@ -44,10 +42,7 @@ mod ffi {
|
||||
fn CreateTensorRtLlmBackend(
|
||||
engine_folder: &str,
|
||||
executor_worker: &str,
|
||||
) -> UniquePtr<TensorRtLlmBackendImpl>;
|
||||
|
||||
// #[rust_name = "is_ready"]
|
||||
// fn IsReady(self: &TensorRtLlmBackendImpl) -> bool;
|
||||
) -> Result<UniquePtr<TensorRtLlmBackendImpl>>;
|
||||
|
||||
#[rust_name = "num_responses_ready"]
|
||||
fn NumResponsesReady(self: &TensorRtLlmBackendImpl) -> usize;
|
||||
@ -56,23 +51,18 @@ mod ffi {
|
||||
fn Submit(
|
||||
self: Pin<&mut TensorRtLlmBackendImpl>,
|
||||
tokens: &[u32],
|
||||
max_new_tokens: u32,
|
||||
top_k: i32,
|
||||
top_p: f32,
|
||||
temperature: f32,
|
||||
repetition_penalty: f32,
|
||||
frequency_penalty: f32,
|
||||
seed: u64,
|
||||
) -> u64;
|
||||
) -> Result<u64>;
|
||||
|
||||
#[rust_name = "stream_tokens"]
|
||||
unsafe fn StreamTokens(
|
||||
#[rust_name = "pull_tokens"]
|
||||
fn PullTokens(
|
||||
self: Pin<&mut TensorRtLlmBackendImpl>,
|
||||
request_id: u64,
|
||||
ctx: *mut GenerationContext,
|
||||
cb: unsafe fn(*mut GenerationContext, GenerationStep),
|
||||
) -> usize;
|
||||
|
||||
// #[rust_name = "shutdown"]
|
||||
// fn Shutdown(self: Pin<&mut TensorRtLlmBackendImpl>);
|
||||
) -> Result<UniquePtr<CxxVector<GenerationStep>>>;
|
||||
}
|
||||
}
|
||||
|
395
backends/trtllm/src/looper.rs
Normal file
395
backends/trtllm/src/looper.rs
Normal file
@ -0,0 +1,395 @@
|
||||
use std::hint;
|
||||
use std::ops::Deref;
|
||||
use std::path::Path;
|
||||
|
||||
use async_trait::async_trait;
|
||||
use cxx::UniquePtr;
|
||||
use hashbrown::HashMap;
|
||||
use tokenizers::Tokenizer;
|
||||
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender};
|
||||
use tokio::sync::TryAcquireError;
|
||||
use tokio::task::{spawn_blocking, JoinHandle};
|
||||
use tokio::time::Instant;
|
||||
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||||
use tracing::{debug, error, warn};
|
||||
|
||||
use text_generation_router::infer::InferError::{GenerationError, ValidationError};
|
||||
use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse};
|
||||
use text_generation_router::validation::ValidationError::{
|
||||
EmptyInput, Grammar, TopNTokensDisabled, UnsupportedModality,
|
||||
};
|
||||
use text_generation_router::validation::{Chunk, ValidGenerateRequest};
|
||||
use text_generation_router::{FinishReason, Token};
|
||||
|
||||
use crate::errors::TensorRtLlmBackendError;
|
||||
use crate::ffi::{create_tensorrt_llm_backend, GenerationStep, TensorRtLlmBackendImpl};
|
||||
use crate::utils::first_line;
|
||||
|
||||
type InferResult<T> = Result<T, InferError>;
|
||||
|
||||
struct IdentifiableRequest<T> {
|
||||
request_id: u64,
|
||||
inner: T,
|
||||
}
|
||||
|
||||
/// Wrap the requests along with the channel used to stream back to the client the decoded tokens
|
||||
struct GenerationContext {
|
||||
request: ValidGenerateRequest,
|
||||
start: Option<Instant>,
|
||||
queued: Instant,
|
||||
streamer: UnboundedSender<InferResult<InferStreamResponse>>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
struct DecodedToken {
|
||||
id: u32,
|
||||
log_prob: f32,
|
||||
is_final: bool,
|
||||
}
|
||||
|
||||
impl<'step> TryFrom<&'step GenerationStep> for DecodedToken {
|
||||
type Error = InferError;
|
||||
|
||||
fn try_from(step: &'step GenerationStep) -> Result<Self, Self::Error> {
|
||||
if !step.has_error {
|
||||
Ok(Self {
|
||||
id: step.token_id,
|
||||
log_prob: step.log_prob,
|
||||
is_final: step.is_final,
|
||||
})
|
||||
} else {
|
||||
Err(GenerationError(step.error_msg.clone()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Wraps the decoded token with the channel used to stream back to the client the decoded tokens
|
||||
struct DecodedTokenContext {
|
||||
token: DecodedToken,
|
||||
start: Option<Instant>,
|
||||
queued: Instant,
|
||||
channel: UnboundedSender<InferResult<InferStreamResponse>>,
|
||||
}
|
||||
|
||||
fn executor_status_looper(
|
||||
mut backend: UniquePtr<TensorRtLlmBackendImpl>,
|
||||
max_inflight_requests: usize,
|
||||
mut waiting_requests: UnboundedReceiver<GenerationContext>,
|
||||
post_processor_sender: UnboundedSender<(u64, InferResult<DecodedTokenContext>)>,
|
||||
) {
|
||||
// Track the tuple (request_id, stream) for each request
|
||||
let mut in_flights =
|
||||
HashMap::<u64, GenerationContext>::with_capacity(max_inflight_requests * 2);
|
||||
|
||||
// TODO: Does it need a spin-loop?
|
||||
'scheduler: loop {
|
||||
// Is there any request pending to be scheduled?
|
||||
let awaiting_requests = waiting_requests.len();
|
||||
for _ in 0..awaiting_requests {
|
||||
// Retrieve all the requests
|
||||
if let Some(mut ctx) = waiting_requests.blocking_recv() {
|
||||
// Submit all the request to the executor and move the context to the in-flight tracker
|
||||
let request = &ctx.request;
|
||||
let generation_params = &request.parameters;
|
||||
let stopping_params = &request.stopping_parameters;
|
||||
let input_ids = request.input_ids.as_deref();
|
||||
|
||||
// Submit to the TensorRT-LLM executor for scheduling
|
||||
match backend.pin_mut().submit(
|
||||
&input_ids.unwrap(), // This is checked beforehand in validate()
|
||||
stopping_params.max_new_tokens,
|
||||
generation_params.top_k as i32,
|
||||
generation_params.top_p,
|
||||
generation_params.temperature,
|
||||
generation_params.repetition_penalty,
|
||||
generation_params.frequency_penalty,
|
||||
generation_params.seed,
|
||||
) {
|
||||
Ok(request_id) => {
|
||||
// Insert the context linked to the generated request id in the tracker
|
||||
debug!("[in-flight] Added {}", request_id);
|
||||
ctx.start = Some(Instant::now());
|
||||
in_flights.insert(request_id, ctx);
|
||||
}
|
||||
Err(e) => {
|
||||
// Return to the caller
|
||||
let what = e.to_string();
|
||||
error!(error = what.as_str(), "Failed to schedule request");
|
||||
|
||||
let err = Err(InferError::Overloaded(TryAcquireError::NoPermits));
|
||||
if let Err(_) = ctx.streamer.send(err) {
|
||||
error!("Failed to send back error to the client");
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
if backend.num_responses_ready() > 0 {
|
||||
match backend.pin_mut().pull_tokens() {
|
||||
Ok(responses) => {
|
||||
// Iterate through all the decoded token
|
||||
for step in responses.deref() {
|
||||
if let Some(ctx) = in_flights.get(&step.request_id) {
|
||||
// Remove from tracked requests
|
||||
let parcel =
|
||||
DecodedToken::try_from(step).map(|dt| DecodedTokenContext {
|
||||
token: dt,
|
||||
start: ctx.start,
|
||||
queued: ctx.queued,
|
||||
channel: ctx.streamer.clone(),
|
||||
});
|
||||
|
||||
// Submit the work to p:the post_processor
|
||||
let posted = post_processor_sender.send((step.request_id, parcel));
|
||||
|
||||
if posted.is_err() || step.is_final {
|
||||
debug!("Removing {}", step.request_id);
|
||||
let _ = in_flights.remove(&step.request_id);
|
||||
}
|
||||
} else {
|
||||
warn!("Untracked request {}", step.request_id,);
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(ref err) => {
|
||||
error!("Failed to get responses from the executor: {}.", err.what());
|
||||
break 'scheduler;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Hint the CPU we are spin-locking
|
||||
hint::spin_loop();
|
||||
}
|
||||
}
|
||||
|
||||
fn post_processor_looper(
|
||||
tokenizer: Tokenizer,
|
||||
max_num_tokens: usize,
|
||||
max_inflight_requests: usize,
|
||||
mut decoded_tokens: UnboundedReceiver<(u64, InferResult<DecodedTokenContext>)>,
|
||||
) {
|
||||
let mut states: HashMap<u64, Vec<u32>> = HashMap::with_capacity(max_inflight_requests * 2);
|
||||
|
||||
'post_processor: loop {
|
||||
if decoded_tokens.is_closed() {
|
||||
warn!("Post processor IPC is closed, loop will exit now.");
|
||||
break 'post_processor;
|
||||
}
|
||||
|
||||
if let Some((request_id, decoded)) = decoded_tokens.blocking_recv() {
|
||||
match decoded {
|
||||
Ok(ctx) => {
|
||||
states
|
||||
.entry(request_id)
|
||||
.and_modify(|s| s.push(*&ctx.token.id))
|
||||
.or_insert_with(|| {
|
||||
let mut state = Vec::with_capacity(max_num_tokens);
|
||||
state.push(*&ctx.token.id);
|
||||
state
|
||||
});
|
||||
|
||||
let out = match tokenizer.decode(&[ctx.token.id], false) {
|
||||
Ok(text) => {
|
||||
let is_special =
|
||||
tokenizer.get_added_vocabulary().is_special_token(&text);
|
||||
let token = Token {
|
||||
id: ctx.token.id,
|
||||
text,
|
||||
logprob: ctx.token.log_prob,
|
||||
special: is_special,
|
||||
};
|
||||
|
||||
let out = if !ctx.token.is_final {
|
||||
InferStreamResponse::Intermediate {
|
||||
token,
|
||||
top_tokens: vec![],
|
||||
}
|
||||
} else {
|
||||
let tokens = states.remove(&request_id).unwrap();
|
||||
let text = tokenizer.decode(&tokens, true);
|
||||
let generated_text = GeneratedText {
|
||||
text: text.unwrap(),
|
||||
generated_tokens: tokens.len() as u32,
|
||||
finish_reason: FinishReason::EndOfSequenceToken,
|
||||
seed: None,
|
||||
};
|
||||
|
||||
InferStreamResponse::End {
|
||||
token,
|
||||
top_tokens: vec![],
|
||||
generated_text,
|
||||
start: ctx.start.unwrap(),
|
||||
queued: ctx.queued,
|
||||
}
|
||||
};
|
||||
|
||||
Ok(out)
|
||||
}
|
||||
Err(err) => Err(GenerationError(err.to_string())),
|
||||
};
|
||||
|
||||
if let Err(_) = ctx.channel.send(out) {
|
||||
warn!("Failed to send decoded token back to the user")
|
||||
}
|
||||
}
|
||||
Err(_err) => {
|
||||
todo!("what do we do?")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn ensure_paths_exist<P: AsRef<Path>, PP: AsRef<Path>>(
|
||||
engine_folder: P,
|
||||
executor_worker_path: PP,
|
||||
) -> Result<(String, String), TensorRtLlmBackendError> {
|
||||
// Retrieve paths as &str for the backend creation
|
||||
let engine_folder = engine_folder.as_ref();
|
||||
let executor_worker_path = executor_worker_path.as_ref();
|
||||
|
||||
// Ensure the engine folder exists
|
||||
if !engine_folder.exists() {
|
||||
let err = TensorRtLlmBackendError::EngineFolderDoesntExists(engine_folder.to_path_buf());
|
||||
|
||||
error!("Path validation failed: {}", err,);
|
||||
return Err(err);
|
||||
}
|
||||
|
||||
// Ensure executor worker binary exists
|
||||
if !executor_worker_path.exists() {
|
||||
let err = TensorRtLlmBackendError::ExecutorWorkerNotFound(engine_folder.to_path_buf());
|
||||
|
||||
error!("Path validation failed: {}", err,);
|
||||
return Err(err);
|
||||
}
|
||||
|
||||
let engine_folder = String::from(
|
||||
engine_folder
|
||||
.to_str()
|
||||
.expect("Failed to convert engine_folder to valid UTF-8"),
|
||||
);
|
||||
|
||||
let executor_worker_path = String::from(
|
||||
executor_worker_path
|
||||
.to_str()
|
||||
.expect("Failed to convert executor_worker_path to valid UTF-8"),
|
||||
);
|
||||
|
||||
Ok((engine_folder, executor_worker_path))
|
||||
}
|
||||
|
||||
unsafe impl Send for TensorRtLlmBackendImpl {}
|
||||
|
||||
pub struct TensorRtLlmBackendV2 {
|
||||
executor_looper: JoinHandle<()>,
|
||||
post_processor_looper: JoinHandle<()>,
|
||||
executor: UnboundedSender<GenerationContext>,
|
||||
}
|
||||
|
||||
impl TensorRtLlmBackendV2 {
|
||||
pub fn new<P: AsRef<Path> + Send, PP: AsRef<Path> + Send>(
|
||||
tokenizer: Tokenizer,
|
||||
engine_folder: P,
|
||||
executor_worker_path: PP,
|
||||
max_inflight_requests: usize,
|
||||
) -> Result<Self, TensorRtLlmBackendError> {
|
||||
let (engine_folder, executor_worker_path) =
|
||||
ensure_paths_exist(engine_folder, executor_worker_path)?;
|
||||
|
||||
// Allocate the IPC layer to communicate with the backend
|
||||
let (executor_sender, executor_receiver) = unbounded_channel();
|
||||
let (post_processor_sender, post_processor_receiver) = unbounded_channel();
|
||||
|
||||
// Create the FFI backend
|
||||
let backend = create_tensorrt_llm_backend(&engine_folder, &executor_worker_path)
|
||||
.map_err(|e| TensorRtLlmBackendError::Runtime(first_line(e.what(), "Unknown error")))?;
|
||||
|
||||
// Executor looper is responsible for scheduling and pulling requests state at regular interval
|
||||
let executor_looper = spawn_blocking(move || {
|
||||
executor_status_looper(
|
||||
backend,
|
||||
max_inflight_requests,
|
||||
executor_receiver,
|
||||
post_processor_sender,
|
||||
)
|
||||
});
|
||||
|
||||
// Post processor looper is responsible from receiving a bunch of tokens, decoding them and sending them back to the user
|
||||
let post_processor_looper = spawn_blocking(move || {
|
||||
post_processor_looper(
|
||||
tokenizer,
|
||||
512,
|
||||
max_inflight_requests,
|
||||
post_processor_receiver,
|
||||
)
|
||||
});
|
||||
|
||||
Ok(TensorRtLlmBackendV2 {
|
||||
executor_looper,
|
||||
post_processor_looper,
|
||||
executor: executor_sender,
|
||||
})
|
||||
}
|
||||
|
||||
fn validate(request: &ValidGenerateRequest) -> InferResult<()> {
|
||||
if request.input_ids.is_none() {
|
||||
return Err(ValidationError(UnsupportedModality("No token provided")));
|
||||
}
|
||||
|
||||
if request.top_n_tokens > 1 {
|
||||
return Err(ValidationError(TopNTokensDisabled));
|
||||
}
|
||||
|
||||
// TODO: Is it really needed? How can it be validated before?
|
||||
if request.parameters.grammar.is_some() {
|
||||
return Err(ValidationError(Grammar));
|
||||
}
|
||||
|
||||
match request.inputs.len() {
|
||||
0 => Err(ValidationError(EmptyInput)),
|
||||
2.. => Err(GenerationError(
|
||||
"TensorRT-LLM backend don't support multi-chunk".into(),
|
||||
)),
|
||||
1 => match request.inputs.first().expect("Single item-chunk") {
|
||||
Chunk::Text(_) => Ok(()),
|
||||
Chunk::Image(_) => Err(ValidationError(UnsupportedModality("image"))),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl Backend for TensorRtLlmBackendV2 {
|
||||
fn schedule(
|
||||
&self,
|
||||
inner: ValidGenerateRequest,
|
||||
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
|
||||
Self::validate(&inner)?;
|
||||
|
||||
// Open-up the stream to send tokens
|
||||
let (streamer, receiver) = unbounded_channel::<InferResult<InferStreamResponse>>();
|
||||
|
||||
// Send the context to the executor for scheduling
|
||||
let queued = Instant::now();
|
||||
match self.executor.send(GenerationContext {
|
||||
request: inner,
|
||||
start: None,
|
||||
queued,
|
||||
streamer,
|
||||
}) {
|
||||
Ok(_) => Ok(UnboundedReceiverStream::new(receiver)),
|
||||
Err(_) => Err(GenerationError(
|
||||
"Failed to submit request to the backend".into(),
|
||||
)),
|
||||
}
|
||||
}
|
||||
|
||||
async fn health(&self, current_health: bool) -> bool {
|
||||
current_health
|
||||
& !self.executor_looper.is_finished()
|
||||
& !self.post_processor_looper.is_finished()
|
||||
}
|
||||
}
|
@ -1,10 +1,16 @@
|
||||
use std::path::{Path, PathBuf};
|
||||
|
||||
use clap::Parser;
|
||||
use std::collections::HashMap;
|
||||
use std::path::PathBuf;
|
||||
use hf_hub::api::tokio::{Api, ApiBuilder};
|
||||
use hf_hub::{Cache, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
use tracing::info;
|
||||
|
||||
use text_generation_backends_trtllm::errors::TensorRtLlmBackendError;
|
||||
use text_generation_backends_trtllm::TensorRtLlmBackend;
|
||||
use text_generation_router::server;
|
||||
use tokenizers::{FromPretrainedParameters, Tokenizer};
|
||||
use text_generation_backends_trtllm::TensorRtLlmBackendV2;
|
||||
use text_generation_router::server::get_base_tokenizer;
|
||||
use text_generation_router::usage_stats::UsageStatsLevel;
|
||||
use text_generation_router::{server, HubTokenizerConfig};
|
||||
|
||||
/// App Configuration
|
||||
#[derive(Parser, Debug)]
|
||||
@ -48,14 +54,138 @@ struct Args {
|
||||
otlp_service_name: String,
|
||||
#[clap(long, env)]
|
||||
cors_allow_origin: Option<Vec<String>>,
|
||||
#[clap(long, env, default_value_t = false)]
|
||||
messages_api_enabled: bool,
|
||||
#[clap(default_value = "4", long, env)]
|
||||
max_client_batch_size: usize,
|
||||
#[clap(long, env)]
|
||||
auth_token: Option<String>,
|
||||
#[clap(long, env, help = "Path to the TensorRT-LLM Orchestrator worker")]
|
||||
executor_worker: PathBuf,
|
||||
#[clap(default_value = "on", long, env)]
|
||||
usage_stats: usage_stats::UsageStatsLevel,
|
||||
}
|
||||
|
||||
async fn get_tokenizer(
|
||||
tokenizer_name: &str,
|
||||
tokenizer_config_path: Option<&str>,
|
||||
revision: Option<&str>,
|
||||
) -> Option<Tokenizer> {
|
||||
// Parse Huggingface hub token
|
||||
let authorization_token = std::env::var("HF_TOKEN")
|
||||
.or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
|
||||
.ok();
|
||||
|
||||
// Tokenizer instance
|
||||
let local_path = Path::new(tokenizer_name);
|
||||
|
||||
// Shared API builder initialization
|
||||
let api_builder = || {
|
||||
let mut builder = ApiBuilder::new()
|
||||
.with_progress(false)
|
||||
.with_token(authorization_token);
|
||||
|
||||
if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
|
||||
builder = builder.with_cache_dir(cache_dir.into());
|
||||
}
|
||||
|
||||
builder
|
||||
};
|
||||
|
||||
// Decide if we need to use the API based on the revision and local path
|
||||
let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
|
||||
|
||||
// Initialize API if needed
|
||||
#[derive(Clone)]
|
||||
enum Type {
|
||||
Api(Api),
|
||||
Cache(Cache),
|
||||
None,
|
||||
}
|
||||
let api = if use_api {
|
||||
if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
|
||||
let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
|
||||
.map_err(|_| ())
|
||||
.map(|cache_dir| Cache::new(cache_dir.into()))
|
||||
.unwrap_or_else(|_| Cache::default());
|
||||
tracing::warn!("Offline mode active using cache defaults");
|
||||
Type::Cache(cache)
|
||||
} else {
|
||||
tracing::info!("Using the Hugging Face API");
|
||||
match api_builder().build() {
|
||||
Ok(api) => Type::Api(api),
|
||||
Err(_) => {
|
||||
tracing::warn!("Unable to build the Hugging Face API");
|
||||
Type::None
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
Type::None
|
||||
};
|
||||
|
||||
// Load tokenizer and model info
|
||||
let (
|
||||
tokenizer_filename,
|
||||
_config_filename,
|
||||
tokenizer_config_filename,
|
||||
_preprocessor_config_filename,
|
||||
_processor_config_filename,
|
||||
) = match api {
|
||||
Type::None => (
|
||||
Some(local_path.join("tokenizer.json")),
|
||||
Some(local_path.join("config.json")),
|
||||
Some(local_path.join("tokenizer_config.json")),
|
||||
Some(local_path.join("preprocessor_config.json")),
|
||||
Some(local_path.join("processor_config.json")),
|
||||
),
|
||||
Type::Api(api) => {
|
||||
let api_repo = api.repo(Repo::with_revision(
|
||||
tokenizer_name.to_string(),
|
||||
RepoType::Model,
|
||||
revision.unwrap_or_else(|| "main").to_string(),
|
||||
));
|
||||
|
||||
let tokenizer_filename = match api_repo.get("tokenizer.json").await {
|
||||
Ok(tokenizer_filename) => Some(tokenizer_filename),
|
||||
Err(_) => get_base_tokenizer(&api, &api_repo).await,
|
||||
};
|
||||
let config_filename = api_repo.get("config.json").await.ok();
|
||||
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
|
||||
let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
|
||||
let processor_config_filename = api_repo.get("processor_config.json").await.ok();
|
||||
|
||||
(
|
||||
tokenizer_filename,
|
||||
config_filename,
|
||||
tokenizer_config_filename,
|
||||
preprocessor_config_filename,
|
||||
processor_config_filename,
|
||||
)
|
||||
}
|
||||
Type::Cache(cache) => {
|
||||
let repo = cache.repo(Repo::with_revision(
|
||||
tokenizer_name.to_string(),
|
||||
RepoType::Model,
|
||||
revision.clone().unwrap_or_else(|| "main").to_string(),
|
||||
));
|
||||
(
|
||||
repo.get("tokenizer.json"),
|
||||
repo.get("config.json"),
|
||||
repo.get("tokenizer_config.json"),
|
||||
repo.get("preprocessor_config.json"),
|
||||
repo.get("processor_config.json"),
|
||||
)
|
||||
}
|
||||
};
|
||||
|
||||
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
|
||||
let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
|
||||
{
|
||||
HubTokenizerConfig::from_file(filename)
|
||||
} else {
|
||||
tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
|
||||
};
|
||||
|
||||
tokenizer_filename.and_then(|filename| Tokenizer::from_file(filename).ok())
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
@ -83,10 +213,10 @@ async fn main() -> Result<(), TensorRtLlmBackendError> {
|
||||
otlp_endpoint,
|
||||
otlp_service_name,
|
||||
cors_allow_origin,
|
||||
messages_api_enabled,
|
||||
max_client_batch_size,
|
||||
auth_token,
|
||||
executor_worker,
|
||||
usage_stats,
|
||||
} = args;
|
||||
|
||||
// Launch Tokio runtime
|
||||
@ -124,18 +254,26 @@ async fn main() -> Result<(), TensorRtLlmBackendError> {
|
||||
)));
|
||||
}
|
||||
|
||||
// Run server
|
||||
let tokenizer = Tokenizer::from_pretrained(
|
||||
tokenizer_name.clone(),
|
||||
Some(FromPretrainedParameters {
|
||||
revision: revision.clone().unwrap_or(String::from("main")),
|
||||
user_agent: HashMap::new(),
|
||||
auth_token,
|
||||
}),
|
||||
// Create the backend
|
||||
let tokenizer = get_tokenizer(
|
||||
&tokenizer_name,
|
||||
tokenizer_config_path.as_deref(),
|
||||
revision.as_deref(),
|
||||
)
|
||||
.map_err(|e| TensorRtLlmBackendError::Tokenizer(e.to_string()))?;
|
||||
.await
|
||||
.expect("Failed to retrieve tokenizer implementation");
|
||||
|
||||
let backend = TensorRtLlmBackend::new(tokenizer, model_id, executor_worker)?;
|
||||
info!("Successfully retrieved tokenizer {}", &tokenizer_name);
|
||||
let backend = TensorRtLlmBackendV2::new(
|
||||
tokenizer,
|
||||
model_id,
|
||||
executor_worker,
|
||||
max_concurrent_requests,
|
||||
)?;
|
||||
|
||||
info!("Successfully created backend");
|
||||
|
||||
// Run server
|
||||
server::run(
|
||||
backend,
|
||||
max_concurrent_requests,
|
||||
@ -145,7 +283,7 @@ async fn main() -> Result<(), TensorRtLlmBackendError> {
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
validation_workers,
|
||||
None,
|
||||
auth_token,
|
||||
tokenizer_name,
|
||||
tokenizer_config_path,
|
||||
revision,
|
||||
@ -155,11 +293,9 @@ async fn main() -> Result<(), TensorRtLlmBackendError> {
|
||||
false,
|
||||
None,
|
||||
None,
|
||||
messages_api_enabled,
|
||||
true,
|
||||
max_client_batch_size,
|
||||
false,
|
||||
false,
|
||||
usage_stats,
|
||||
)
|
||||
.await?;
|
||||
Ok(())
|
||||
|
22
backends/trtllm/src/utils.rs
Normal file
22
backends/trtllm/src/utils.rs
Normal file
@ -0,0 +1,22 @@
|
||||
///
|
||||
/// Extract the first line of the provided string reference.
|
||||
/// If there is no lines in the buffer, it returns a string
|
||||
/// which content is defined by the content of `fail`
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `s`: The string buffer to extract the first-line from
|
||||
/// * `fail`: A string content which is returned if no lines are
|
||||
/// present in `s`
|
||||
///
|
||||
/// returns: String
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// let s = "My name is Morgan.\n I'm working at Hugging Face.";
|
||||
/// first_line(s, "No line in string");
|
||||
/// ```
|
||||
#[inline]
|
||||
pub(crate) fn first_line(s: &str, fail: &str) -> String {
|
||||
s.lines().next().unwrap_or(fail).to_string()
|
||||
}
|
@ -44,6 +44,8 @@ struct Args {
|
||||
tokenizer_config_path: Option<String>,
|
||||
#[clap(long, env)]
|
||||
revision: Option<String>,
|
||||
#[clap(long, env, value_enum)]
|
||||
trust_remote_code: bool,
|
||||
#[clap(default_value = "2", long, env)]
|
||||
validation_workers: usize,
|
||||
#[clap(long, env)]
|
||||
@ -63,8 +65,6 @@ struct Args {
|
||||
#[clap(long, env)]
|
||||
ngrok_edge: Option<String>,
|
||||
#[clap(long, env, default_value_t = false)]
|
||||
messages_api_enabled: bool,
|
||||
#[clap(long, env, default_value_t = false)]
|
||||
disable_grammar_support: bool,
|
||||
#[clap(default_value = "4", long, env)]
|
||||
max_client_batch_size: usize,
|
||||
@ -101,6 +101,7 @@ async fn main() -> Result<(), RouterError> {
|
||||
tokenizer_name,
|
||||
tokenizer_config_path,
|
||||
revision,
|
||||
trust_remote_code,
|
||||
validation_workers,
|
||||
api_key,
|
||||
json_output,
|
||||
@ -110,7 +111,6 @@ async fn main() -> Result<(), RouterError> {
|
||||
ngrok,
|
||||
ngrok_authtoken,
|
||||
ngrok_edge,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
usage_stats,
|
||||
@ -184,13 +184,13 @@ async fn main() -> Result<(), RouterError> {
|
||||
tokenizer_name,
|
||||
tokenizer_config_path,
|
||||
revision,
|
||||
trust_remote_code,
|
||||
hostname,
|
||||
port,
|
||||
cors_allow_origin,
|
||||
ngrok,
|
||||
ngrok_authtoken,
|
||||
ngrok_edge,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
usage_stats,
|
||||
|
@ -44,6 +44,8 @@ struct Args {
|
||||
tokenizer_config_path: Option<String>,
|
||||
#[clap(long, env)]
|
||||
revision: Option<String>,
|
||||
#[clap(long, env, value_enum)]
|
||||
trust_remote_code: bool,
|
||||
#[clap(default_value = "2", long, env)]
|
||||
validation_workers: usize,
|
||||
#[clap(long, env)]
|
||||
@ -63,8 +65,6 @@ struct Args {
|
||||
#[clap(long, env)]
|
||||
ngrok_edge: Option<String>,
|
||||
#[clap(long, env, default_value_t = false)]
|
||||
messages_api_enabled: bool,
|
||||
#[clap(long, env, default_value_t = false)]
|
||||
disable_grammar_support: bool,
|
||||
#[clap(default_value = "4", long, env)]
|
||||
max_client_batch_size: usize,
|
||||
@ -101,6 +101,7 @@ async fn main() -> Result<(), RouterError> {
|
||||
tokenizer_name,
|
||||
tokenizer_config_path,
|
||||
revision,
|
||||
trust_remote_code,
|
||||
validation_workers,
|
||||
api_key,
|
||||
json_output,
|
||||
@ -110,7 +111,6 @@ async fn main() -> Result<(), RouterError> {
|
||||
ngrok,
|
||||
ngrok_authtoken,
|
||||
ngrok_edge,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
usage_stats,
|
||||
@ -200,13 +200,13 @@ async fn main() -> Result<(), RouterError> {
|
||||
tokenizer_name,
|
||||
tokenizer_config_path,
|
||||
revision,
|
||||
trust_remote_code,
|
||||
hostname,
|
||||
port,
|
||||
cors_allow_origin,
|
||||
ngrok,
|
||||
ngrok_authtoken,
|
||||
ngrok_edge,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
usage_stats,
|
||||
|
@ -316,6 +316,98 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"/invocations": {
|
||||
"post": {
|
||||
"tags": [
|
||||
"Text Generation Inference"
|
||||
],
|
||||
"summary": "Generate tokens from Sagemaker request",
|
||||
"operationId": "sagemaker_compatibility",
|
||||
"requestBody": {
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/SagemakerRequest"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": true
|
||||
},
|
||||
"responses": {
|
||||
"200": {
|
||||
"description": "Generated Chat Completion",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/SagemakerResponse"
|
||||
}
|
||||
},
|
||||
"text/event-stream": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/SagemakerStreamResponse"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"422": {
|
||||
"description": "Input validation error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Input validation error",
|
||||
"error_type": "validation"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"424": {
|
||||
"description": "Generation Error",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Request failed during generation",
|
||||
"error_type": "generation"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"429": {
|
||||
"description": "Model is overloaded",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Model is overloaded",
|
||||
"error_type": "overloaded"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"500": {
|
||||
"description": "Incomplete generation",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/ErrorResponse"
|
||||
},
|
||||
"example": {
|
||||
"error": "Incomplete generation",
|
||||
"error_type": "incomplete_generation"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"/metrics": {
|
||||
"get": {
|
||||
"tags": [
|
||||
@ -1865,6 +1957,45 @@
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"SagemakerRequest": {
|
||||
"oneOf": [
|
||||
{
|
||||
"$ref": "#/components/schemas/CompatGenerateRequest"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/ChatRequest"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/CompletionRequest"
|
||||
}
|
||||
]
|
||||
},
|
||||
"SagemakerResponse": {
|
||||
"oneOf": [
|
||||
{
|
||||
"$ref": "#/components/schemas/GenerateResponse"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/ChatCompletion"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/CompletionFinal"
|
||||
}
|
||||
]
|
||||
},
|
||||
"SagemakerStreamResponse": {
|
||||
"oneOf": [
|
||||
{
|
||||
"$ref": "#/components/schemas/StreamResponse"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/ChatCompletionChunk"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/Chunk"
|
||||
}
|
||||
]
|
||||
},
|
||||
"SimpleToken": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
|
@ -141,9 +141,7 @@ TGI can be deployed on various cloud providers for scalable and robust text gene
|
||||
|
||||
## Amazon SageMaker
|
||||
|
||||
To enable the Messages API in Amazon SageMaker you need to set the environment variable `MESSAGES_API_ENABLED=true`.
|
||||
|
||||
This will modify the `/invocations` route to accept Messages dictonaries consisting out of role and content. See the example below on how to deploy Llama with the new Messages API.
|
||||
Amazon Sagemaker natively supports the message API:
|
||||
|
||||
```python
|
||||
import json
|
||||
@ -161,12 +159,11 @@ except ValueError:
|
||||
hub = {
|
||||
'HF_MODEL_ID':'HuggingFaceH4/zephyr-7b-beta',
|
||||
'SM_NUM_GPUS': json.dumps(1),
|
||||
'MESSAGES_API_ENABLED': True
|
||||
}
|
||||
|
||||
# create Hugging Face Model Class
|
||||
huggingface_model = HuggingFaceModel(
|
||||
image_uri=get_huggingface_llm_image_uri("huggingface",version="1.4.0"),
|
||||
image_uri=get_huggingface_llm_image_uri("huggingface",version="2.3.2"),
|
||||
env=hub,
|
||||
role=role,
|
||||
)
|
||||
|
@ -8,6 +8,7 @@ Text Generation Inference enables serving optimized models. The following sectio
|
||||
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
|
||||
- [Llama](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f)
|
||||
- [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
|
||||
- [Granite](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct)
|
||||
- [Gemma](https://huggingface.co/google/gemma-7b)
|
||||
- [PaliGemma](https://huggingface.co/google/paligemma-3b-pt-224)
|
||||
- [Gemma2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315)
|
||||
|
@ -26,7 +26,6 @@ As of release 2.1.2 this is an example of the data collected:
|
||||
"max_top_n_tokens": 5,
|
||||
"max_total_tokens": 2048,
|
||||
"max_waiting_tokens": 20,
|
||||
"messages_api_enabled": false,
|
||||
"model_config": {
|
||||
"model_type": "Bloom"
|
||||
},
|
||||
|
@ -978,15 +978,16 @@
|
||||
"nixpkgs": "nixpkgs_6"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1728381423,
|
||||
"narHash": "sha256-gpHy1WtlA8ZTd8XmxsdCoDd4Z7DE7co37lH7P+nsADA=",
|
||||
"lastModified": 1729531056,
|
||||
"narHash": "sha256-dW9IOA31+j3VS19WAWAmkJW2YCzeVZGqd6HpIJfODtI=",
|
||||
"owner": "huggingface",
|
||||
"repo": "text-generation-inference-nix",
|
||||
"rev": "93123736c97e9f7bfe825bfaf3d7de0fc9a21a1e",
|
||||
"rev": "a84a90281a17b15762873845c947e5c78f5a8dd1",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "huggingface",
|
||||
"ref": "marlin-kernels-0.3.0",
|
||||
"repo": "text-generation-inference-nix",
|
||||
"type": "github"
|
||||
}
|
||||
|
@ -5,7 +5,7 @@
|
||||
inputs.nixpkgs.follows = "tgi-nix/nixpkgs";
|
||||
};
|
||||
nix-filter.url = "github:numtide/nix-filter";
|
||||
tgi-nix.url = "github:huggingface/text-generation-inference-nix";
|
||||
tgi-nix.url = "github:huggingface/text-generation-inference-nix/marlin-kernels-0.3.0";
|
||||
nixpkgs.follows = "tgi-nix/nixpkgs";
|
||||
flake-utils.url = "github:numtide/flake-utils";
|
||||
rust-overlay = {
|
||||
@ -137,6 +137,11 @@
|
||||
|
||||
impure = callPackage ./nix/impure-shell.nix { inherit server; };
|
||||
|
||||
impureWithCuda = callPackage ./nix/impure-shell.nix {
|
||||
inherit server;
|
||||
withCuda = true;
|
||||
};
|
||||
|
||||
impure-flash-attn-v1 = callPackage ./nix/impure-shell.nix {
|
||||
server = server.override { flash-attn = python3.pkgs.flash-attn-v1; };
|
||||
};
|
||||
|
@ -11,27 +11,27 @@
|
||||
},
|
||||
{
|
||||
"id": 3923,
|
||||
"logprob": -5.6328125,
|
||||
"logprob": -6.1875,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.2265625,
|
||||
"logprob": -0.93359375,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 5655,
|
||||
"logprob": -9.1015625,
|
||||
"logprob": -9.875,
|
||||
"text": " deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -1.8085938,
|
||||
"logprob": -1.1796875,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 30,
|
||||
"logprob": -1.0439453,
|
||||
"logprob": -1.75,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
@ -39,66 +39,66 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 18682,
|
||||
"logprob": -2.1992188,
|
||||
"logprob": -1.109375,
|
||||
"special": false,
|
||||
"text": " Deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.079956055,
|
||||
"logprob": -0.005432129,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -0.2763672,
|
||||
"logprob": -0.028808594,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.37548828,
|
||||
"logprob": -0.013671875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 27084,
|
||||
"logprob": -1.4628906,
|
||||
"logprob": -0.69921875,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.02885437,
|
||||
"logprob": -0.0005874634,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5780,
|
||||
"logprob": -0.2565918,
|
||||
"logprob": -0.026855469,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.0063438416,
|
||||
"logprob": -0.00020885468,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 430,
|
||||
"logprob": -1.3056641,
|
||||
"logprob": -0.17773438,
|
||||
"special": false,
|
||||
"text": " that"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.6035156,
|
||||
"id": 18065,
|
||||
"logprob": -0.703125,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
"text": " involves"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " Deep learning is a subset of machine learning that is"
|
||||
"generated_text": " Deep learning is a subset of machine learning that involves"
|
||||
}
|
||||
|
@ -1,8 +1,8 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "eos_token",
|
||||
"generated_tokens": 3,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 128000,
|
||||
@ -11,22 +11,22 @@
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -22.96875,
|
||||
"logprob": -18.0,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 5655,
|
||||
"logprob": -10.71875,
|
||||
"logprob": -11.75,
|
||||
"text": " deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -2.6992188,
|
||||
"logprob": -2.0625,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 30,
|
||||
"logprob": -4.8398438,
|
||||
"logprob": -6.0,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
@ -34,24 +34,66 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 720,
|
||||
"logprob": -0.4411621,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " \n"
|
||||
},
|
||||
{
|
||||
"id": 220,
|
||||
"logprob": -0.35864258,
|
||||
"id": 34564,
|
||||
"logprob": -0.11279297,
|
||||
"special": false,
|
||||
"text": " "
|
||||
"text": "Deep"
|
||||
},
|
||||
{
|
||||
"id": 128001,
|
||||
"id": 6975,
|
||||
"logprob": -0.16015625,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 320,
|
||||
"logprob": -0.25195312,
|
||||
"special": false,
|
||||
"text": " ("
|
||||
},
|
||||
{
|
||||
"id": 16931,
|
||||
"logprob": -1.703125,
|
||||
"special": false,
|
||||
"text": "DL"
|
||||
},
|
||||
{
|
||||
"id": 8,
|
||||
"logprob": 0.0,
|
||||
"special": true,
|
||||
"text": "<|end_of_text|>"
|
||||
"special": false,
|
||||
"text": ")"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.140625,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1207,
|
||||
"logprob": -1.3125,
|
||||
"special": false,
|
||||
"text": " sub"
|
||||
},
|
||||
{
|
||||
"id": 2630,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "field"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "What is deep learning? \n "
|
||||
"generated_text": "What is deep learning? \nDeep learning (DL) is a subfield"
|
||||
}
|
||||
|
@ -12,27 +12,27 @@
|
||||
},
|
||||
{
|
||||
"id": 3923,
|
||||
"logprob": -5.6328125,
|
||||
"logprob": -6.1875,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.2265625,
|
||||
"logprob": -0.93359375,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 5655,
|
||||
"logprob": -9.1015625,
|
||||
"logprob": -9.875,
|
||||
"text": " deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -1.8085938,
|
||||
"logprob": -1.1796875,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 30,
|
||||
"logprob": -1.0439453,
|
||||
"logprob": -1.75,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
@ -40,68 +40,68 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 18682,
|
||||
"logprob": -2.1992188,
|
||||
"logprob": -1.109375,
|
||||
"special": false,
|
||||
"text": " Deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.07897949,
|
||||
"logprob": -0.0047912598,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -0.27734375,
|
||||
"logprob": -0.025512695,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.37402344,
|
||||
"logprob": -0.012145996,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 27084,
|
||||
"logprob": -1.4511719,
|
||||
"logprob": -0.72265625,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.02909851,
|
||||
"logprob": -0.0005760193,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5780,
|
||||
"logprob": -0.25854492,
|
||||
"logprob": -0.02722168,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.0061798096,
|
||||
"logprob": -0.00023651123,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 430,
|
||||
"logprob": -1.3046875,
|
||||
"logprob": -0.17285156,
|
||||
"special": false,
|
||||
"text": " that"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.5537109,
|
||||
"id": 18065,
|
||||
"logprob": -0.703125,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
"text": " involves"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " Deep learning is a subset of machine learning that is"
|
||||
"generated_text": " Deep learning is a subset of machine learning that involves"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
@ -116,27 +116,27 @@
|
||||
},
|
||||
{
|
||||
"id": 3923,
|
||||
"logprob": -5.6328125,
|
||||
"logprob": -6.21875,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.2265625,
|
||||
"logprob": -0.95703125,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 5655,
|
||||
"logprob": -9.1015625,
|
||||
"logprob": -9.9375,
|
||||
"text": " deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -1.8085938,
|
||||
"logprob": -1.1328125,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 30,
|
||||
"logprob": -1.0439453,
|
||||
"logprob": -1.75,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
@ -144,68 +144,68 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 18682,
|
||||
"logprob": -2.1992188,
|
||||
"logprob": -1.1796875,
|
||||
"special": false,
|
||||
"text": " Deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.07897949,
|
||||
"logprob": -0.005432129,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -0.27734375,
|
||||
"logprob": -0.02758789,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.37402344,
|
||||
"logprob": -0.013366699,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 27084,
|
||||
"logprob": -1.4511719,
|
||||
"logprob": -0.6953125,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.02909851,
|
||||
"logprob": -0.0004863739,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5780,
|
||||
"logprob": -0.25854492,
|
||||
"logprob": -0.02709961,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.0061798096,
|
||||
"logprob": -0.00022506714,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 430,
|
||||
"logprob": -1.3046875,
|
||||
"logprob": -0.19726562,
|
||||
"special": false,
|
||||
"text": " that"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.5537109,
|
||||
"id": 18065,
|
||||
"logprob": -0.77734375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
"text": " involves"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " Deep learning is a subset of machine learning that is"
|
||||
"generated_text": " Deep learning is a subset of machine learning that involves"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
@ -220,27 +220,27 @@
|
||||
},
|
||||
{
|
||||
"id": 3923,
|
||||
"logprob": -5.6328125,
|
||||
"logprob": -6.21875,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.2265625,
|
||||
"logprob": -0.95703125,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 5655,
|
||||
"logprob": -9.1015625,
|
||||
"logprob": -9.9375,
|
||||
"text": " deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -1.8085938,
|
||||
"logprob": -1.1328125,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 30,
|
||||
"logprob": -1.0439453,
|
||||
"logprob": -1.75,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
@ -248,68 +248,68 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 18682,
|
||||
"logprob": -2.1992188,
|
||||
"logprob": -1.1796875,
|
||||
"special": false,
|
||||
"text": " Deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.07897949,
|
||||
"logprob": -0.005432129,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -0.27734375,
|
||||
"logprob": -0.02758789,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.37402344,
|
||||
"logprob": -0.013366699,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 27084,
|
||||
"logprob": -1.4511719,
|
||||
"logprob": -0.6953125,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.02909851,
|
||||
"logprob": -0.0004863739,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5780,
|
||||
"logprob": -0.25854492,
|
||||
"logprob": -0.02709961,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.0061798096,
|
||||
"logprob": -0.00022506714,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 430,
|
||||
"logprob": -1.3046875,
|
||||
"logprob": -0.19726562,
|
||||
"special": false,
|
||||
"text": " that"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.5537109,
|
||||
"id": 18065,
|
||||
"logprob": -0.77734375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
"text": " involves"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " Deep learning is a subset of machine learning that is"
|
||||
"generated_text": " Deep learning is a subset of machine learning that involves"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
@ -324,27 +324,27 @@
|
||||
},
|
||||
{
|
||||
"id": 3923,
|
||||
"logprob": -5.6328125,
|
||||
"logprob": -6.21875,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.2265625,
|
||||
"logprob": -0.95703125,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 5655,
|
||||
"logprob": -9.1015625,
|
||||
"logprob": -9.9375,
|
||||
"text": " deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -1.8085938,
|
||||
"logprob": -1.1328125,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 30,
|
||||
"logprob": -1.0439453,
|
||||
"logprob": -1.75,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
@ -352,67 +352,67 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 18682,
|
||||
"logprob": -2.1992188,
|
||||
"logprob": -1.1796875,
|
||||
"special": false,
|
||||
"text": " Deep"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.07897949,
|
||||
"logprob": -0.005432129,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -0.27734375,
|
||||
"logprob": -0.02758789,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.37402344,
|
||||
"logprob": -0.013366699,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 27084,
|
||||
"logprob": -1.4511719,
|
||||
"logprob": -0.6953125,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.02909851,
|
||||
"logprob": -0.0004863739,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5780,
|
||||
"logprob": -0.25854492,
|
||||
"logprob": -0.02709961,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 6975,
|
||||
"logprob": -0.0061798096,
|
||||
"logprob": -0.00022506714,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 430,
|
||||
"logprob": -1.3046875,
|
||||
"logprob": -0.19726562,
|
||||
"special": false,
|
||||
"text": " that"
|
||||
},
|
||||
{
|
||||
"id": 374,
|
||||
"logprob": -1.5537109,
|
||||
"id": 18065,
|
||||
"logprob": -0.77734375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
"text": " involves"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " Deep learning is a subset of machine learning that is"
|
||||
"generated_text": " Deep learning is a subset of machine learning that involves"
|
||||
}
|
||||
]
|
||||
|
@ -11,32 +11,32 @@
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -0.7133789,
|
||||
"logprob": -0.6201172,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 16030,
|
||||
"logprob": -13.9296875,
|
||||
"logprob": -13.6484375,
|
||||
"text": "gradient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.048919678,
|
||||
"logprob": -0.003894806,
|
||||
"text": "descent"
|
||||
},
|
||||
{
|
||||
"id": 29973,
|
||||
"logprob": -3.0078125,
|
||||
"logprob": -2.6386719,
|
||||
"text": "?"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -2.8105469,
|
||||
"logprob": -6.46875,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.84521484,
|
||||
"logprob": -6.6875,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
@ -44,66 +44,66 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 25584,
|
||||
"logprob": -0.017028809,
|
||||
"logprob": -0.008979797,
|
||||
"special": false,
|
||||
"text": "Grad"
|
||||
},
|
||||
{
|
||||
"id": 993,
|
||||
"logprob": -0.0027313232,
|
||||
"logprob": -8.34465e-07,
|
||||
"special": false,
|
||||
"text": "ient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.023254395,
|
||||
"logprob": -0.0009407997,
|
||||
"special": false,
|
||||
"text": " descent"
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -2.0623207e-05,
|
||||
"logprob": -0.0003838539,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 263,
|
||||
"logprob": -0.5361328,
|
||||
"id": 385,
|
||||
"logprob": -0.24499512,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 937,
|
||||
"logprob": -0.17578125,
|
||||
"special": false,
|
||||
"text": " first"
|
||||
},
|
||||
{
|
||||
"id": 29899,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2098,
|
||||
"logprob": -0.00011539459,
|
||||
"special": false,
|
||||
"text": "order"
|
||||
"text": " an"
|
||||
},
|
||||
{
|
||||
"id": 13883,
|
||||
"logprob": -0.47436523,
|
||||
"logprob": -0.010406494,
|
||||
"special": false,
|
||||
"text": " optimization"
|
||||
},
|
||||
{
|
||||
"id": 5687,
|
||||
"logprob": -0.00027680397,
|
||||
"logprob": -0.00024354458,
|
||||
"special": false,
|
||||
"text": " algorithm"
|
||||
},
|
||||
{
|
||||
"id": 15574,
|
||||
"logprob": -0.6582031,
|
||||
"special": false,
|
||||
"text": " commonly"
|
||||
},
|
||||
{
|
||||
"id": 1304,
|
||||
"logprob": -0.00092840195,
|
||||
"special": false,
|
||||
"text": " used"
|
||||
},
|
||||
{
|
||||
"id": 297,
|
||||
"logprob": -0.19470215,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Gradient descent is a first-order optimization algorithm"
|
||||
"generated_text": "Gradient descent is an optimization algorithm commonly used in"
|
||||
}
|
||||
|
@ -5,95 +5,95 @@
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 16030,
|
||||
"id": 338,
|
||||
"logprob": null,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 16030,
|
||||
"logprob": -13.328125,
|
||||
"text": "gradient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -6.4960938,
|
||||
"logprob": -0.24023438,
|
||||
"text": "descent"
|
||||
},
|
||||
{
|
||||
"id": 29973,
|
||||
"logprob": -5.1484375,
|
||||
"logprob": -3.1386719,
|
||||
"text": "?"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -4.0351562,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -5.2265625,
|
||||
"logprob": -3.0878906,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
"seed": 0,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 10994,
|
||||
"logprob": -1.1542969,
|
||||
"special": false,
|
||||
"text": "Hello"
|
||||
},
|
||||
{
|
||||
"id": 29991,
|
||||
"id": 25584,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "!"
|
||||
"text": "Grad"
|
||||
},
|
||||
{
|
||||
"id": 739,
|
||||
"id": 993,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " It"
|
||||
"text": "ient"
|
||||
},
|
||||
{
|
||||
"id": 2444,
|
||||
"logprob": -0.42260742,
|
||||
"special": false,
|
||||
"text": " seems"
|
||||
},
|
||||
{
|
||||
"id": 366,
|
||||
"id": 2726,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " you"
|
||||
"text": " Des"
|
||||
},
|
||||
{
|
||||
"id": 29915,
|
||||
"id": 1760,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "'"
|
||||
"text": "cent"
|
||||
},
|
||||
{
|
||||
"id": 276,
|
||||
"logprob": -0.9838867,
|
||||
"id": 313,
|
||||
"logprob": -0.12322998,
|
||||
"special": false,
|
||||
"text": "re"
|
||||
"text": " ("
|
||||
},
|
||||
{
|
||||
"id": 3211,
|
||||
"id": 29954,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " address"
|
||||
"text": "G"
|
||||
},
|
||||
{
|
||||
"id": 292,
|
||||
"id": 29928,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "ing"
|
||||
"text": "D"
|
||||
},
|
||||
{
|
||||
"id": 263,
|
||||
"logprob": -0.15124512,
|
||||
"id": 29897,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
"text": ")"
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -0.6040039,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 385,
|
||||
"logprob": -0.1796875,
|
||||
"special": false,
|
||||
"text": " an"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "What is gradient descent?\n\nHello! It seems you're addressing a"
|
||||
"generated_text": "What is gradient descent?\nGradient Descent (GD) is an"
|
||||
}
|
||||
|
@ -12,32 +12,32 @@
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -0.7133789,
|
||||
"logprob": -0.6201172,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 16030,
|
||||
"logprob": -13.9296875,
|
||||
"logprob": -13.6484375,
|
||||
"text": "gradient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.048919678,
|
||||
"logprob": -0.003894806,
|
||||
"text": "descent"
|
||||
},
|
||||
{
|
||||
"id": 29973,
|
||||
"logprob": -3.0078125,
|
||||
"logprob": -2.6386719,
|
||||
"text": "?"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -2.8105469,
|
||||
"logprob": -6.46875,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.84521484,
|
||||
"logprob": -6.6875,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
@ -45,68 +45,68 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 25584,
|
||||
"logprob": -0.017028809,
|
||||
"logprob": -0.008979797,
|
||||
"special": false,
|
||||
"text": "Grad"
|
||||
},
|
||||
{
|
||||
"id": 993,
|
||||
"logprob": -0.0028476715,
|
||||
"logprob": -8.34465e-07,
|
||||
"special": false,
|
||||
"text": "ient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.023971558,
|
||||
"logprob": -0.00097084045,
|
||||
"special": false,
|
||||
"text": " descent"
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -2.0384789e-05,
|
||||
"logprob": -0.0003838539,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 263,
|
||||
"logprob": -0.5229492,
|
||||
"id": 385,
|
||||
"logprob": -0.23840332,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 937,
|
||||
"logprob": -0.17602539,
|
||||
"special": false,
|
||||
"text": " first"
|
||||
},
|
||||
{
|
||||
"id": 29899,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2098,
|
||||
"logprob": -0.000116467476,
|
||||
"special": false,
|
||||
"text": "order"
|
||||
"text": " an"
|
||||
},
|
||||
{
|
||||
"id": 13883,
|
||||
"logprob": -0.47436523,
|
||||
"logprob": -0.010406494,
|
||||
"special": false,
|
||||
"text": " optimization"
|
||||
},
|
||||
{
|
||||
"id": 5687,
|
||||
"logprob": -0.00027871132,
|
||||
"logprob": -0.0002501011,
|
||||
"special": false,
|
||||
"text": " algorithm"
|
||||
},
|
||||
{
|
||||
"id": 15574,
|
||||
"logprob": -0.6582031,
|
||||
"special": false,
|
||||
"text": " commonly"
|
||||
},
|
||||
{
|
||||
"id": 1304,
|
||||
"logprob": -0.00092840195,
|
||||
"special": false,
|
||||
"text": " used"
|
||||
},
|
||||
{
|
||||
"id": 297,
|
||||
"logprob": -0.18933105,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Gradient descent is a first-order optimization algorithm"
|
||||
"generated_text": "Gradient descent is an optimization algorithm commonly used in"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
@ -121,32 +121,32 @@
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -0.7128906,
|
||||
"logprob": -0.6113281,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 16030,
|
||||
"logprob": -13.9375,
|
||||
"logprob": -13.6640625,
|
||||
"text": "gradient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.05053711,
|
||||
"logprob": -0.003929138,
|
||||
"text": "descent"
|
||||
},
|
||||
{
|
||||
"id": 29973,
|
||||
"logprob": -3.0058594,
|
||||
"logprob": -2.625,
|
||||
"text": "?"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -2.8242188,
|
||||
"logprob": -6.484375,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.84521484,
|
||||
"logprob": -6.6875,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
@ -154,68 +154,68 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 25584,
|
||||
"logprob": -0.018859863,
|
||||
"logprob": -0.009017944,
|
||||
"special": false,
|
||||
"text": "Grad"
|
||||
},
|
||||
{
|
||||
"id": 993,
|
||||
"logprob": -0.002822876,
|
||||
"logprob": -9.536743e-07,
|
||||
"special": false,
|
||||
"text": "ient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.023254395,
|
||||
"logprob": -0.00097084045,
|
||||
"special": false,
|
||||
"text": " descent"
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -2.0384789e-05,
|
||||
"logprob": -0.0003838539,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 263,
|
||||
"logprob": -0.5229492,
|
||||
"id": 385,
|
||||
"logprob": -0.24499512,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 937,
|
||||
"logprob": -0.17126465,
|
||||
"special": false,
|
||||
"text": " first"
|
||||
},
|
||||
{
|
||||
"id": 29899,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2098,
|
||||
"logprob": -0.0001155138,
|
||||
"special": false,
|
||||
"text": "order"
|
||||
"text": " an"
|
||||
},
|
||||
{
|
||||
"id": 13883,
|
||||
"logprob": -0.47436523,
|
||||
"logprob": -0.010406494,
|
||||
"special": false,
|
||||
"text": " optimization"
|
||||
},
|
||||
{
|
||||
"id": 5687,
|
||||
"logprob": -0.00027036667,
|
||||
"logprob": -0.0002501011,
|
||||
"special": false,
|
||||
"text": " algorithm"
|
||||
},
|
||||
{
|
||||
"id": 15574,
|
||||
"logprob": -0.6435547,
|
||||
"special": false,
|
||||
"text": " commonly"
|
||||
},
|
||||
{
|
||||
"id": 1304,
|
||||
"logprob": -0.0009279251,
|
||||
"special": false,
|
||||
"text": " used"
|
||||
},
|
||||
{
|
||||
"id": 297,
|
||||
"logprob": -0.18933105,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Gradient descent is a first-order optimization algorithm"
|
||||
"generated_text": "Gradient descent is an optimization algorithm commonly used in"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
@ -230,32 +230,32 @@
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -0.71484375,
|
||||
"logprob": -0.609375,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 16030,
|
||||
"logprob": -13.9375,
|
||||
"logprob": -13.671875,
|
||||
"text": "gradient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.049346924,
|
||||
"logprob": -0.0040016174,
|
||||
"text": "descent"
|
||||
},
|
||||
{
|
||||
"id": 29973,
|
||||
"logprob": -3.0078125,
|
||||
"logprob": -2.6230469,
|
||||
"text": "?"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -2.8242188,
|
||||
"logprob": -6.453125,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.86328125,
|
||||
"logprob": -6.6875,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
@ -263,68 +263,68 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 25584,
|
||||
"logprob": -0.017196655,
|
||||
"logprob": -0.008956909,
|
||||
"special": false,
|
||||
"text": "Grad"
|
||||
},
|
||||
{
|
||||
"id": 993,
|
||||
"logprob": -0.0028438568,
|
||||
"logprob": -8.34465e-07,
|
||||
"special": false,
|
||||
"text": "ient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.023254395,
|
||||
"logprob": -0.0009407997,
|
||||
"special": false,
|
||||
"text": " descent"
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -2.026558e-05,
|
||||
"logprob": -0.0003721714,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 263,
|
||||
"logprob": -0.5229492,
|
||||
"id": 385,
|
||||
"logprob": -0.24499512,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 937,
|
||||
"logprob": -0.17602539,
|
||||
"special": false,
|
||||
"text": " first"
|
||||
},
|
||||
{
|
||||
"id": 29899,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2098,
|
||||
"logprob": -0.00011622906,
|
||||
"special": false,
|
||||
"text": "order"
|
||||
"text": " an"
|
||||
},
|
||||
{
|
||||
"id": 13883,
|
||||
"logprob": -0.48608398,
|
||||
"logprob": -0.010406494,
|
||||
"special": false,
|
||||
"text": " optimization"
|
||||
},
|
||||
{
|
||||
"id": 5687,
|
||||
"logprob": -0.00027894974,
|
||||
"logprob": -0.0002501011,
|
||||
"special": false,
|
||||
"text": " algorithm"
|
||||
},
|
||||
{
|
||||
"id": 15574,
|
||||
"logprob": -0.6435547,
|
||||
"special": false,
|
||||
"text": " commonly"
|
||||
},
|
||||
{
|
||||
"id": 1304,
|
||||
"logprob": -0.00092601776,
|
||||
"special": false,
|
||||
"text": " used"
|
||||
},
|
||||
{
|
||||
"id": 297,
|
||||
"logprob": -0.19177246,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Gradient descent is a first-order optimization algorithm"
|
||||
"generated_text": "Gradient descent is an optimization algorithm commonly used in"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
@ -339,32 +339,32 @@
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -0.7192383,
|
||||
"logprob": -0.609375,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 16030,
|
||||
"logprob": -13.9375,
|
||||
"logprob": -13.6640625,
|
||||
"text": "gradient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.050445557,
|
||||
"logprob": -0.0038967133,
|
||||
"text": "descent"
|
||||
},
|
||||
{
|
||||
"id": 29973,
|
||||
"logprob": -3.0078125,
|
||||
"logprob": -2.6347656,
|
||||
"text": "?"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -2.8242188,
|
||||
"logprob": -6.453125,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.8276367,
|
||||
"logprob": -6.6875,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
@ -372,67 +372,67 @@
|
||||
"tokens": [
|
||||
{
|
||||
"id": 25584,
|
||||
"logprob": -0.01727295,
|
||||
"logprob": -0.008979797,
|
||||
"special": false,
|
||||
"text": "Grad"
|
||||
},
|
||||
{
|
||||
"id": 993,
|
||||
"logprob": -0.0027542114,
|
||||
"logprob": -9.536743e-07,
|
||||
"special": false,
|
||||
"text": "ient"
|
||||
},
|
||||
{
|
||||
"id": 26815,
|
||||
"logprob": -0.023254395,
|
||||
"logprob": -0.0009407997,
|
||||
"special": false,
|
||||
"text": " descent"
|
||||
},
|
||||
{
|
||||
"id": 338,
|
||||
"logprob": -2.0384789e-05,
|
||||
"logprob": -0.00038409233,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 263,
|
||||
"logprob": -0.5229492,
|
||||
"id": 385,
|
||||
"logprob": -0.24499512,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 937,
|
||||
"logprob": -0.17126465,
|
||||
"special": false,
|
||||
"text": " first"
|
||||
},
|
||||
{
|
||||
"id": 29899,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2098,
|
||||
"logprob": -0.00011301041,
|
||||
"special": false,
|
||||
"text": "order"
|
||||
"text": " an"
|
||||
},
|
||||
{
|
||||
"id": 13883,
|
||||
"logprob": -0.48608398,
|
||||
"logprob": -0.010414124,
|
||||
"special": false,
|
||||
"text": " optimization"
|
||||
},
|
||||
{
|
||||
"id": 5687,
|
||||
"logprob": -0.00027894974,
|
||||
"logprob": -0.00024354458,
|
||||
"special": false,
|
||||
"text": " algorithm"
|
||||
},
|
||||
{
|
||||
"id": 15574,
|
||||
"logprob": -0.6435547,
|
||||
"special": false,
|
||||
"text": " commonly"
|
||||
},
|
||||
{
|
||||
"id": 1304,
|
||||
"logprob": -0.0009279251,
|
||||
"special": false,
|
||||
"text": " used"
|
||||
},
|
||||
{
|
||||
"id": 297,
|
||||
"logprob": -0.19470215,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Gradient descent is a first-order optimization algorithm"
|
||||
"generated_text": "Gradient descent is an optimization algorithm commonly used in"
|
||||
}
|
||||
]
|
||||
|
@ -4,7 +4,9 @@ import pytest
|
||||
@pytest.fixture(scope="module")
|
||||
def flash_llama_fp8_kv_cache_handle(launcher):
|
||||
with launcher(
|
||||
"meta-llama/Meta-Llama-3-8B", num_shard=2, kv_cache_dtype="fp8_e5m2"
|
||||
"neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV",
|
||||
num_shard=2,
|
||||
kv_cache_dtype="fp8_e4m3fn",
|
||||
) as handle:
|
||||
yield handle
|
||||
|
||||
@ -25,7 +27,7 @@ async def test_flash_llama_fp8_kv_cache(flash_llama_fp8_kv_cache, response_snaps
|
||||
|
||||
assert (
|
||||
response.generated_text
|
||||
== " Deep learning is a subset of machine learning that is"
|
||||
== " Deep learning is a subset of machine learning that involves"
|
||||
)
|
||||
assert response.details.generated_tokens == 10
|
||||
assert response == response_snapshot
|
||||
@ -69,7 +71,7 @@ async def test_flash_llama_fp8_kv_cache_load(
|
||||
assert len(responses) == 4
|
||||
assert (
|
||||
responses[0].generated_text
|
||||
== " Deep learning is a subset of machine learning that is"
|
||||
== " Deep learning is a subset of machine learning that involves"
|
||||
)
|
||||
assert all(
|
||||
[r.generated_text == responses[0].generated_text for r in responses]
|
||||
|
@ -25,7 +25,7 @@ async def test_flash_phi35_moe(flash_phi35_moe, response_snapshot):
|
||||
assert response.details.generated_tokens == 10
|
||||
assert (
|
||||
response.generated_text
|
||||
== "Gradient descent is a first-order optimization algorithm"
|
||||
== "Gradient descent is an optimization algorithm commonly used in"
|
||||
)
|
||||
assert response == response_snapshot
|
||||
|
||||
@ -33,7 +33,7 @@ async def test_flash_phi35_moe(flash_phi35_moe, response_snapshot):
|
||||
@pytest.mark.asyncio
|
||||
async def test_flash_phi35_moe_all_params(flash_phi35_moe, response_snapshot):
|
||||
response = await flash_phi35_moe.generate(
|
||||
"What is gradient descent?\n\n",
|
||||
"What is gradient descent?\n",
|
||||
max_new_tokens=10,
|
||||
repetition_penalty=1.2,
|
||||
return_full_text=True,
|
||||
@ -51,7 +51,7 @@ async def test_flash_phi35_moe_all_params(flash_phi35_moe, response_snapshot):
|
||||
assert response.details.generated_tokens == 10
|
||||
assert (
|
||||
response.generated_text
|
||||
== "What is gradient descent?\n\nHello! It seems you're addressing a"
|
||||
== "What is gradient descent?\nGradient Descent (GD) is an"
|
||||
)
|
||||
assert response == response_snapshot
|
||||
|
||||
@ -66,7 +66,7 @@ async def test_flash_phi35_moe_load(flash_phi35_moe, generate_load, response_sna
|
||||
assert responses[0].details.generated_tokens == 10
|
||||
assert (
|
||||
responses[0].generated_text
|
||||
== "Gradient descent is a first-order optimization algorithm"
|
||||
== "Gradient descent is an optimization algorithm commonly used in"
|
||||
)
|
||||
assert all(
|
||||
[r.generated_text == responses[0].generated_text for r in responses]
|
||||
|
@ -1108,6 +1108,8 @@ fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1519,6 +1521,10 @@ fn spawn_webserver(
|
||||
router_args.push(revision.to_string())
|
||||
}
|
||||
|
||||
if args.trust_remote_code {
|
||||
router_args.push("--trust-remote-code".to_string());
|
||||
}
|
||||
|
||||
if args.json_output {
|
||||
router_args.push("--json-output".to_string());
|
||||
}
|
||||
|
@ -1,7 +1,12 @@
|
||||
{
|
||||
lib,
|
||||
mkShell,
|
||||
black,
|
||||
cmake,
|
||||
isort,
|
||||
ninja,
|
||||
which,
|
||||
cudaPackages,
|
||||
openssl,
|
||||
pkg-config,
|
||||
protobuf,
|
||||
@ -11,14 +16,17 @@
|
||||
ruff,
|
||||
rust-bin,
|
||||
server,
|
||||
|
||||
# Enable dependencies for building CUDA packages. Useful for e.g.
|
||||
# developing marlin/moe-kernels in-place.
|
||||
withCuda ? false,
|
||||
}:
|
||||
|
||||
mkShell {
|
||||
buildInputs =
|
||||
nativeBuildInputs =
|
||||
[
|
||||
black
|
||||
isort
|
||||
openssl.dev
|
||||
pkg-config
|
||||
(rust-bin.stable.latest.default.override {
|
||||
extensions = [
|
||||
@ -31,6 +39,19 @@ mkShell {
|
||||
redocly
|
||||
ruff
|
||||
]
|
||||
++ (lib.optionals withCuda [
|
||||
cmake
|
||||
ninja
|
||||
which
|
||||
|
||||
# For most Torch-based extensions, setting CUDA_HOME is enough, but
|
||||
# some custom CMake builds (e.g. vLLM) also need to have nvcc in PATH.
|
||||
cudaPackages.cuda_nvcc
|
||||
]);
|
||||
buildInputs =
|
||||
[
|
||||
openssl.dev
|
||||
]
|
||||
++ (with python3.pkgs; [
|
||||
venvShellHook
|
||||
docker
|
||||
@ -40,10 +61,29 @@ mkShell {
|
||||
pytest
|
||||
pytest-asyncio
|
||||
syrupy
|
||||
]);
|
||||
])
|
||||
++ (lib.optionals withCuda (
|
||||
with cudaPackages;
|
||||
[
|
||||
cuda_cccl
|
||||
cuda_cudart
|
||||
cuda_nvrtc
|
||||
cuda_nvtx
|
||||
cuda_profiler_api
|
||||
cudnn
|
||||
libcublas
|
||||
libcusolver
|
||||
libcusparse
|
||||
]
|
||||
));
|
||||
|
||||
inputsFrom = [ server ];
|
||||
|
||||
env = lib.optionalAttrs withCuda {
|
||||
CUDA_HOME = "${lib.getDev cudaPackages.cuda_nvcc}";
|
||||
TORCH_CUDA_ARCH_LIST = lib.concatStringsSep ";" python3.pkgs.torch.cudaCapabilities;
|
||||
};
|
||||
|
||||
venvDir = "./.venv";
|
||||
|
||||
postVenvCreation = ''
|
||||
@ -51,6 +91,7 @@ mkShell {
|
||||
( cd server ; python -m pip install --no-dependencies -e . )
|
||||
( cd clients/python ; python -m pip install --no-dependencies -e . )
|
||||
'';
|
||||
|
||||
postShellHook = ''
|
||||
unset SOURCE_DATE_EPOCH
|
||||
export PATH=$PATH:~/.cargo/bin
|
||||
|
@ -150,6 +150,7 @@ pub enum Config {
|
||||
Idefics2(Idefics2),
|
||||
Ssm,
|
||||
GptBigcode,
|
||||
Granite,
|
||||
Santacoder,
|
||||
Bloom,
|
||||
Mpt,
|
||||
|
@ -8,6 +8,7 @@ pub mod validation;
|
||||
mod kserve;
|
||||
pub mod logging;
|
||||
|
||||
mod sagemaker;
|
||||
pub mod usage_stats;
|
||||
mod vertex;
|
||||
|
||||
|
@ -1,748 +0,0 @@
|
||||
use axum::http::HeaderValue;
|
||||
use clap::Parser;
|
||||
use clap::Subcommand;
|
||||
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
|
||||
use hf_hub::{Cache, Repo, RepoType};
|
||||
use opentelemetry::sdk::propagation::TraceContextPropagator;
|
||||
use opentelemetry::sdk::trace;
|
||||
use opentelemetry::sdk::trace::Sampler;
|
||||
use opentelemetry::sdk::Resource;
|
||||
use opentelemetry::{global, KeyValue};
|
||||
use opentelemetry_otlp::WithExportConfig;
|
||||
use std::fs::File;
|
||||
use std::io::BufReader;
|
||||
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
|
||||
use std::path::{Path, PathBuf};
|
||||
use text_generation_router::config::Config;
|
||||
use text_generation_router::usage_stats;
|
||||
use text_generation_router::{
|
||||
server, HubModelInfo, HubPreprocessorConfig, HubProcessorConfig, HubTokenizerConfig,
|
||||
};
|
||||
use thiserror::Error;
|
||||
use tokenizers::{processors::template::TemplateProcessing, Tokenizer};
|
||||
use tower_http::cors::AllowOrigin;
|
||||
use tracing_subscriber::layer::SubscriberExt;
|
||||
use tracing_subscriber::util::SubscriberInitExt;
|
||||
use tracing_subscriber::{filter::LevelFilter, EnvFilter, Layer};
|
||||
|
||||
/// App Configuration
|
||||
#[derive(Parser, Debug)]
|
||||
#[clap(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
#[command(subcommand)]
|
||||
command: Option<Commands>,
|
||||
|
||||
#[clap(default_value = "128", long, env)]
|
||||
max_concurrent_requests: usize,
|
||||
#[clap(default_value = "2", long, env)]
|
||||
max_best_of: usize,
|
||||
#[clap(default_value = "4", long, env)]
|
||||
max_stop_sequences: usize,
|
||||
#[clap(default_value = "5", long, env)]
|
||||
max_top_n_tokens: u32,
|
||||
#[clap(default_value = "1024", long, env)]
|
||||
max_input_tokens: usize,
|
||||
#[clap(default_value = "2048", long, env)]
|
||||
max_total_tokens: usize,
|
||||
#[clap(default_value = "1.2", long, env)]
|
||||
waiting_served_ratio: f32,
|
||||
#[clap(default_value = "4096", long, env)]
|
||||
max_batch_prefill_tokens: u32,
|
||||
#[clap(long, env)]
|
||||
max_batch_total_tokens: Option<u32>,
|
||||
#[clap(default_value = "20", long, env)]
|
||||
max_waiting_tokens: usize,
|
||||
#[clap(long, env)]
|
||||
max_batch_size: Option<usize>,
|
||||
#[clap(default_value = "0.0.0.0", long, env)]
|
||||
hostname: String,
|
||||
#[clap(default_value = "3000", long, short, env)]
|
||||
port: u16,
|
||||
#[clap(default_value = "/tmp/text-generation-server-0", long, env)]
|
||||
master_shard_uds_path: String,
|
||||
#[clap(default_value = "bigscience/bloom", long, env)]
|
||||
tokenizer_name: String,
|
||||
#[clap(long, env)]
|
||||
tokenizer_config_path: Option<String>,
|
||||
#[clap(long, env)]
|
||||
revision: Option<String>,
|
||||
#[clap(default_value = "2", long, env)]
|
||||
validation_workers: usize,
|
||||
#[clap(long, env)]
|
||||
json_output: bool,
|
||||
#[clap(long, env)]
|
||||
otlp_endpoint: Option<String>,
|
||||
#[clap(default_value = "text-generation-inference.router", long, env)]
|
||||
otlp_service_name: String,
|
||||
#[clap(long, env)]
|
||||
cors_allow_origin: Option<Vec<String>>,
|
||||
#[clap(long, env)]
|
||||
api_key: Option<String>,
|
||||
#[clap(long, env)]
|
||||
ngrok: bool,
|
||||
#[clap(long, env)]
|
||||
ngrok_authtoken: Option<String>,
|
||||
#[clap(long, env)]
|
||||
ngrok_edge: Option<String>,
|
||||
#[clap(long, env, default_value_t = false)]
|
||||
messages_api_enabled: bool,
|
||||
#[clap(long, env, default_value_t = false)]
|
||||
disable_grammar_support: bool,
|
||||
#[clap(default_value = "4", long, env)]
|
||||
max_client_batch_size: usize,
|
||||
#[clap(long, env, default_value_t)]
|
||||
disable_usage_stats: bool,
|
||||
#[clap(long, env, default_value_t)]
|
||||
disable_crash_reports: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Subcommand)]
|
||||
enum Commands {
|
||||
PrintSchema,
|
||||
}
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<(), RouterError> {
|
||||
let args = Args::parse();
|
||||
|
||||
// Pattern match configuration
|
||||
let Args {
|
||||
max_concurrent_requests,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
hostname,
|
||||
port,
|
||||
master_shard_uds_path,
|
||||
tokenizer_name,
|
||||
tokenizer_config_path,
|
||||
revision,
|
||||
validation_workers,
|
||||
json_output,
|
||||
otlp_endpoint,
|
||||
otlp_service_name,
|
||||
cors_allow_origin,
|
||||
api_key,
|
||||
ngrok,
|
||||
ngrok_authtoken,
|
||||
ngrok_edge,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
disable_usage_stats,
|
||||
disable_crash_reports,
|
||||
command,
|
||||
} = args;
|
||||
|
||||
let print_schema_command = match command {
|
||||
Some(Commands::PrintSchema) => true,
|
||||
None => {
|
||||
// only init logging if we are not running the print schema command
|
||||
init_logging(otlp_endpoint, otlp_service_name, json_output);
|
||||
false
|
||||
}
|
||||
};
|
||||
|
||||
// Validate args
|
||||
if max_input_tokens >= max_total_tokens {
|
||||
return Err(RouterError::ArgumentValidation(
|
||||
"`max_input_tokens` must be < `max_total_tokens`".to_string(),
|
||||
));
|
||||
}
|
||||
if max_input_tokens as u32 > max_batch_prefill_tokens {
|
||||
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}")));
|
||||
}
|
||||
|
||||
if validation_workers == 0 {
|
||||
return Err(RouterError::ArgumentValidation(
|
||||
"`validation_workers` must be > 0".to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
if let Some(ref max_batch_total_tokens) = max_batch_total_tokens {
|
||||
if max_batch_prefill_tokens > *max_batch_total_tokens {
|
||||
return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}")));
|
||||
}
|
||||
if max_total_tokens as u32 > *max_batch_total_tokens {
|
||||
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}")));
|
||||
}
|
||||
}
|
||||
|
||||
// CORS allowed origins
|
||||
// map to go inside the option and then map to parse from String to HeaderValue
|
||||
// Finally, convert to AllowOrigin
|
||||
let cors_allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
|
||||
AllowOrigin::list(
|
||||
cors_allow_origin
|
||||
.iter()
|
||||
.map(|origin| origin.parse::<HeaderValue>().unwrap()),
|
||||
)
|
||||
});
|
||||
|
||||
// Parse Huggingface hub token
|
||||
let authorization_token = std::env::var("HF_TOKEN")
|
||||
.or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
|
||||
.ok();
|
||||
|
||||
// Tokenizer instance
|
||||
// This will only be used to validate payloads
|
||||
let local_path = Path::new(&tokenizer_name);
|
||||
|
||||
// Shared API builder initialization
|
||||
let api_builder = || {
|
||||
let mut builder = ApiBuilder::new()
|
||||
.with_progress(false)
|
||||
.with_token(authorization_token);
|
||||
|
||||
if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
|
||||
builder = builder.with_cache_dir(cache_dir.into());
|
||||
}
|
||||
|
||||
builder
|
||||
};
|
||||
|
||||
// Decide if we need to use the API based on the revision and local path
|
||||
let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
|
||||
|
||||
// Initialize API if needed
|
||||
#[derive(Clone)]
|
||||
enum Type {
|
||||
Api(Api),
|
||||
Cache(Cache),
|
||||
None,
|
||||
}
|
||||
let api = if use_api {
|
||||
if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
|
||||
let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
|
||||
.map_err(|_| ())
|
||||
.map(|cache_dir| Cache::new(cache_dir.into()))
|
||||
.unwrap_or_else(|_| Cache::default());
|
||||
|
||||
tracing::warn!("Offline mode active using cache defaults");
|
||||
Type::Cache(cache)
|
||||
} else {
|
||||
tracing::info!("Using the Hugging Face API");
|
||||
match api_builder().build() {
|
||||
Ok(api) => Type::Api(api),
|
||||
Err(_) => {
|
||||
tracing::warn!("Unable to build the Hugging Face API");
|
||||
Type::None
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
Type::None
|
||||
};
|
||||
|
||||
// Load tokenizer and model info
|
||||
let (
|
||||
tokenizer_filename,
|
||||
config_filename,
|
||||
tokenizer_config_filename,
|
||||
preprocessor_config_filename,
|
||||
processor_config_filename,
|
||||
model_info,
|
||||
) = match api {
|
||||
Type::None => (
|
||||
Some(local_path.join("tokenizer.json")),
|
||||
Some(local_path.join("config.json")),
|
||||
Some(local_path.join("tokenizer_config.json")),
|
||||
Some(local_path.join("preprocessor_config.json")),
|
||||
Some(local_path.join("processor_config.json")),
|
||||
None,
|
||||
),
|
||||
Type::Api(api) => {
|
||||
let api_repo = api.repo(Repo::with_revision(
|
||||
tokenizer_name.to_string(),
|
||||
RepoType::Model,
|
||||
revision.clone().unwrap_or_else(|| "main".to_string()),
|
||||
));
|
||||
|
||||
let tokenizer_filename = match api_repo.get("tokenizer.json").await {
|
||||
Ok(tokenizer_filename) => Some(tokenizer_filename),
|
||||
Err(_) => get_base_tokenizer(&api, &api_repo).await,
|
||||
};
|
||||
let config_filename = api_repo.get("config.json").await.ok();
|
||||
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
|
||||
let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
|
||||
let processor_config_filename = api_repo.get("processor_config.json").await.ok();
|
||||
|
||||
let model_info = if let Some(model_info) = get_model_info(&api_repo).await {
|
||||
Some(model_info)
|
||||
} else {
|
||||
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
|
||||
None
|
||||
};
|
||||
(
|
||||
tokenizer_filename,
|
||||
config_filename,
|
||||
tokenizer_config_filename,
|
||||
preprocessor_config_filename,
|
||||
processor_config_filename,
|
||||
model_info,
|
||||
)
|
||||
}
|
||||
Type::Cache(cache) => {
|
||||
let repo = cache.repo(Repo::with_revision(
|
||||
tokenizer_name.to_string(),
|
||||
RepoType::Model,
|
||||
revision.clone().unwrap_or_else(|| "main".to_string()),
|
||||
));
|
||||
(
|
||||
repo.get("tokenizer.json"),
|
||||
repo.get("config.json"),
|
||||
repo.get("tokenizer_config.json"),
|
||||
repo.get("preprocessor_config.json"),
|
||||
repo.get("processor_config.json"),
|
||||
None,
|
||||
)
|
||||
}
|
||||
};
|
||||
let config: Option<Config> = config_filename.and_then(|filename| {
|
||||
std::fs::read_to_string(filename)
|
||||
.ok()
|
||||
.as_ref()
|
||||
.and_then(|c| {
|
||||
let config: Result<Config, _> = serde_json::from_str(c);
|
||||
if let Err(err) = &config {
|
||||
tracing::warn!("Could not parse config {err:?}");
|
||||
}
|
||||
config.ok()
|
||||
})
|
||||
});
|
||||
let model_info = model_info.unwrap_or_else(|| HubModelInfo {
|
||||
model_id: tokenizer_name.to_string(),
|
||||
sha: None,
|
||||
pipeline_tag: None,
|
||||
});
|
||||
|
||||
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
|
||||
let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
|
||||
{
|
||||
HubTokenizerConfig::from_file(filename)
|
||||
} else {
|
||||
tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
|
||||
};
|
||||
let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
|
||||
tracing::warn!("Could not find tokenizer config locally and no API specified");
|
||||
HubTokenizerConfig::default()
|
||||
});
|
||||
let tokenizer_class = tokenizer_config.tokenizer_class.clone();
|
||||
|
||||
let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
|
||||
let mut tokenizer = Tokenizer::from_file(filename).ok();
|
||||
if let Some(tokenizer) = &mut tokenizer {
|
||||
if let Some(class) = &tokenizer_config.tokenizer_class {
|
||||
if class == "LlamaTokenizer" || class == "LlamaTokenizerFast"{
|
||||
if let Ok(post_processor) = create_post_processor(tokenizer, &tokenizer_config) {
|
||||
tracing::info!("Overriding LlamaTokenizer with TemplateProcessing to follow python override defined in https://github.com/huggingface/transformers/blob/4aa17d00690b7f82c95bb2949ea57e22c35b4336/src/transformers/models/llama/tokenization_llama_fast.py#L203-L205");
|
||||
tokenizer.with_post_processor(post_processor);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
tokenizer
|
||||
});
|
||||
|
||||
let preprocessor_config =
|
||||
preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);
|
||||
let processor_config = processor_config_filename
|
||||
.and_then(HubProcessorConfig::from_file)
|
||||
.unwrap_or_default();
|
||||
|
||||
tracing::info!("Using config {config:?}");
|
||||
if tokenizer.is_none() {
|
||||
tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
|
||||
tracing::warn!("Rust input length validation and truncation is disabled");
|
||||
}
|
||||
|
||||
// if pipeline-tag == text-generation we default to return_full_text = true
|
||||
let compat_return_full_text = match &model_info.pipeline_tag {
|
||||
None => {
|
||||
tracing::warn!("no pipeline tag found for model {tokenizer_name}");
|
||||
true
|
||||
}
|
||||
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
|
||||
};
|
||||
|
||||
// Determine the server port based on the feature and environment variable.
|
||||
let port = if cfg!(feature = "google") {
|
||||
std::env::var("AIP_HTTP_PORT")
|
||||
.map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
|
||||
.unwrap_or(port)
|
||||
} else {
|
||||
port
|
||||
};
|
||||
|
||||
let addr = match hostname.parse() {
|
||||
Ok(ip) => SocketAddr::new(ip, port),
|
||||
Err(_) => {
|
||||
tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
|
||||
SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
|
||||
}
|
||||
};
|
||||
|
||||
// Only send usage stats when TGI is run in container and the function returns Some
|
||||
let is_container = matches!(usage_stats::is_container(), Ok(true));
|
||||
|
||||
let user_agent = if !disable_usage_stats && is_container {
|
||||
let reduced_args = usage_stats::Args::new(
|
||||
config.clone(),
|
||||
tokenizer_class,
|
||||
max_concurrent_requests,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
revision,
|
||||
validation_workers,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
disable_usage_stats,
|
||||
disable_crash_reports,
|
||||
);
|
||||
Some(usage_stats::UserAgent::new(reduced_args))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
if let Some(ref ua) = user_agent {
|
||||
let start_event =
|
||||
usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
|
||||
tokio::spawn(async move {
|
||||
start_event.send().await;
|
||||
});
|
||||
};
|
||||
|
||||
// Run server
|
||||
let result = server::run(
|
||||
master_shard_uds_path,
|
||||
model_info,
|
||||
compat_return_full_text,
|
||||
max_concurrent_requests,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
tokenizer,
|
||||
config,
|
||||
validation_workers,
|
||||
addr,
|
||||
cors_allow_origin,
|
||||
api_key,
|
||||
ngrok,
|
||||
ngrok_authtoken,
|
||||
ngrok_edge,
|
||||
tokenizer_config,
|
||||
preprocessor_config,
|
||||
processor_config,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
print_schema_command,
|
||||
)
|
||||
.await;
|
||||
|
||||
match result {
|
||||
Ok(_) => {
|
||||
if let Some(ref ua) = user_agent {
|
||||
let stop_event = usage_stats::UsageStatsEvent::new(
|
||||
ua.clone(),
|
||||
usage_stats::EventType::Stop,
|
||||
None,
|
||||
);
|
||||
stop_event.send().await;
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
Err(e) => {
|
||||
if let Some(ref ua) = user_agent {
|
||||
if !disable_crash_reports {
|
||||
let error_event = usage_stats::UsageStatsEvent::new(
|
||||
ua.clone(),
|
||||
usage_stats::EventType::Error,
|
||||
Some(e.to_string()),
|
||||
);
|
||||
error_event.send().await;
|
||||
} else {
|
||||
let unknow_error_event = usage_stats::UsageStatsEvent::new(
|
||||
ua.clone(),
|
||||
usage_stats::EventType::Error,
|
||||
Some("unknow_error".to_string()),
|
||||
);
|
||||
unknow_error_event.send().await;
|
||||
}
|
||||
};
|
||||
Err(RouterError::WebServer(e))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Init logging using env variables LOG_LEVEL and LOG_FORMAT:
|
||||
/// - otlp_endpoint is an optional URL to an Open Telemetry collector
|
||||
/// - otlp_service_name service name to appear in APM
|
||||
/// - LOG_LEVEL may be TRACE, DEBUG, INFO, WARN or ERROR (default to INFO)
|
||||
/// - LOG_FORMAT may be TEXT or JSON (default to TEXT)
|
||||
/// - LOG_COLORIZE may be "false" or "true" (default to "true" or ansi supported platforms)
|
||||
fn init_logging(otlp_endpoint: Option<String>, otlp_service_name: String, json_output: bool) {
|
||||
let mut layers = Vec::new();
|
||||
|
||||
// STDOUT/STDERR layer
|
||||
let ansi = std::env::var("LOG_COLORIZE") != Ok("1".to_string());
|
||||
let fmt_layer = tracing_subscriber::fmt::layer()
|
||||
.with_file(true)
|
||||
.with_ansi(ansi)
|
||||
.with_line_number(true);
|
||||
|
||||
let fmt_layer = match json_output {
|
||||
true => fmt_layer.json().flatten_event(true).boxed(),
|
||||
false => fmt_layer.boxed(),
|
||||
};
|
||||
layers.push(fmt_layer);
|
||||
|
||||
// OpenTelemetry tracing layer
|
||||
if let Some(otlp_endpoint) = otlp_endpoint {
|
||||
global::set_text_map_propagator(TraceContextPropagator::new());
|
||||
|
||||
let tracer = opentelemetry_otlp::new_pipeline()
|
||||
.tracing()
|
||||
.with_exporter(
|
||||
opentelemetry_otlp::new_exporter()
|
||||
.tonic()
|
||||
.with_endpoint(otlp_endpoint),
|
||||
)
|
||||
.with_trace_config(
|
||||
trace::config()
|
||||
.with_resource(Resource::new(vec![KeyValue::new(
|
||||
"service.name",
|
||||
otlp_service_name,
|
||||
)]))
|
||||
.with_sampler(Sampler::AlwaysOn),
|
||||
)
|
||||
.install_batch(opentelemetry::runtime::Tokio);
|
||||
|
||||
if let Ok(tracer) = tracer {
|
||||
layers.push(tracing_opentelemetry::layer().with_tracer(tracer).boxed());
|
||||
init_tracing_opentelemetry::init_propagator().unwrap();
|
||||
};
|
||||
}
|
||||
|
||||
// Filter events with LOG_LEVEL
|
||||
let varname = "LOG_LEVEL";
|
||||
let env_filter = if let Ok(log_level) = std::env::var(varname) {
|
||||
// Override to avoid simple logs to be spammed with tokio level informations
|
||||
let log_level = match &log_level[..] {
|
||||
"warn" => "text_generation_launcher=warn,text_generation_router=warn",
|
||||
"info" => "text_generation_launcher=info,text_generation_router=info",
|
||||
"debug" => "text_generation_launcher=debug,text_generation_router=debug",
|
||||
log_level => log_level,
|
||||
};
|
||||
EnvFilter::builder()
|
||||
.with_default_directive(LevelFilter::INFO.into())
|
||||
.parse_lossy(log_level)
|
||||
} else {
|
||||
EnvFilter::new("info")
|
||||
};
|
||||
|
||||
tracing_subscriber::registry()
|
||||
.with(env_filter)
|
||||
.with(layers)
|
||||
.init();
|
||||
}
|
||||
|
||||
/// get model info from the Huggingface Hub
|
||||
pub async fn get_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
|
||||
let response = api.info_request().send().await.ok()?;
|
||||
|
||||
if response.status().is_success() {
|
||||
let hub_model_info: HubModelInfo =
|
||||
serde_json::from_str(&response.text().await.ok()?).ok()?;
|
||||
if let Some(sha) = &hub_model_info.sha {
|
||||
tracing::info!(
|
||||
"Serving revision {sha} of model {}",
|
||||
hub_model_info.model_id
|
||||
);
|
||||
}
|
||||
Some(hub_model_info)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// get base tokenizer
|
||||
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
|
||||
let config_filename = api_repo.get("config.json").await.ok()?;
|
||||
|
||||
// Open the file in read-only mode with buffer.
|
||||
let file = File::open(config_filename).ok()?;
|
||||
let reader = BufReader::new(file);
|
||||
|
||||
// Read the JSON contents of the file as an instance of `User`.
|
||||
let config: serde_json::Value = serde_json::from_reader(reader).ok()?;
|
||||
|
||||
if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
|
||||
let api_base_repo = api.repo(Repo::with_revision(
|
||||
base_model_id.to_string(),
|
||||
RepoType::Model,
|
||||
"main".to_string(),
|
||||
));
|
||||
|
||||
api_base_repo.get("tokenizer.json").await.ok()
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
/// get tokenizer_config from the Huggingface Hub
|
||||
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
|
||||
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;
|
||||
|
||||
// Open the file in read-only mode with buffer.
|
||||
let file = File::open(tokenizer_config_filename).ok()?;
|
||||
let reader = BufReader::new(file);
|
||||
|
||||
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
|
||||
let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
|
||||
.map_err(|e| {
|
||||
tracing::warn!("Unable to parse tokenizer config: {}", e);
|
||||
e
|
||||
})
|
||||
.ok()?;
|
||||
|
||||
Some(tokenizer_config)
|
||||
}
|
||||
|
||||
/// Create a post_processor for the LlamaTokenizer
|
||||
pub fn create_post_processor(
|
||||
tokenizer: &Tokenizer,
|
||||
tokenizer_config: &HubTokenizerConfig,
|
||||
) -> Result<TemplateProcessing, tokenizers::processors::template::TemplateProcessingBuilderError> {
|
||||
let add_bos_token = tokenizer_config.add_bos_token.unwrap_or(true);
|
||||
let add_eos_token = tokenizer_config.add_eos_token.unwrap_or(false);
|
||||
|
||||
let bos_token = tokenizer_config.bos_token.as_ref();
|
||||
let eos_token = tokenizer_config.eos_token.as_ref();
|
||||
|
||||
if add_bos_token && bos_token.is_none() {
|
||||
panic!("add_bos_token = true but bos_token is None");
|
||||
}
|
||||
|
||||
if add_eos_token && eos_token.is_none() {
|
||||
panic!("add_eos_token = true but eos_token is None");
|
||||
}
|
||||
|
||||
let mut single = Vec::new();
|
||||
let mut pair = Vec::new();
|
||||
let mut special_tokens = Vec::new();
|
||||
|
||||
if add_bos_token {
|
||||
if let Some(bos) = bos_token {
|
||||
let bos_token_id = tokenizer
|
||||
.token_to_id(bos.as_str())
|
||||
.expect("Should have found the bos token id");
|
||||
special_tokens.push((bos.as_str(), bos_token_id));
|
||||
single.push(format!("{}:0", bos.as_str()));
|
||||
pair.push(format!("{}:0", bos.as_str()));
|
||||
}
|
||||
}
|
||||
|
||||
single.push("$A:0".to_string());
|
||||
pair.push("$A:0".to_string());
|
||||
|
||||
if add_eos_token {
|
||||
if let Some(eos) = eos_token {
|
||||
let eos_token_id = tokenizer
|
||||
.token_to_id(eos.as_str())
|
||||
.expect("Should have found the eos token id");
|
||||
special_tokens.push((eos.as_str(), eos_token_id));
|
||||
single.push(format!("{}:0", eos.as_str()));
|
||||
pair.push(format!("{}:0", eos.as_str()));
|
||||
}
|
||||
}
|
||||
|
||||
if add_bos_token {
|
||||
if let Some(bos) = bos_token {
|
||||
pair.push(format!("{}:1", bos.as_str()));
|
||||
}
|
||||
}
|
||||
|
||||
pair.push("$B:1".to_string());
|
||||
|
||||
if add_eos_token {
|
||||
if let Some(eos) = eos_token {
|
||||
pair.push(format!("{}:1", eos.as_str()));
|
||||
}
|
||||
}
|
||||
|
||||
let post_processor = TemplateProcessing::builder()
|
||||
.try_single(single)?
|
||||
.try_pair(pair)?
|
||||
.special_tokens(special_tokens)
|
||||
.build()?;
|
||||
|
||||
Ok(post_processor)
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
enum RouterError {
|
||||
#[error("Argument validation error: {0}")]
|
||||
ArgumentValidation(String),
|
||||
#[error("WebServer error: {0}")]
|
||||
WebServer(#[from] server::WebServerError),
|
||||
#[error("Tokio runtime failed to start: {0}")]
|
||||
Tokio(#[from] std::io::Error),
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use text_generation_router::TokenizerConfigToken;
|
||||
|
||||
#[test]
|
||||
fn test_create_post_processor() {
|
||||
let tokenizer_config = HubTokenizerConfig {
|
||||
add_bos_token: None,
|
||||
add_eos_token: None,
|
||||
bos_token: Some(TokenizerConfigToken::String("<s>".to_string())),
|
||||
eos_token: Some(TokenizerConfigToken::String("</s>".to_string())),
|
||||
chat_template: None,
|
||||
tokenizer_class: None,
|
||||
completion_template: None,
|
||||
};
|
||||
|
||||
let tokenizer =
|
||||
Tokenizer::from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0", None).unwrap();
|
||||
let post_processor = create_post_processor(&tokenizer, &tokenizer_config).unwrap();
|
||||
|
||||
let expected = TemplateProcessing::builder()
|
||||
.try_single("<s>:0 $A:0")
|
||||
.unwrap()
|
||||
.try_pair("<s>:0 $A:0 <s>:1 $B:1")
|
||||
.unwrap()
|
||||
.special_tokens(vec![("<s>".to_string(), 1)])
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(post_processor, expected);
|
||||
}
|
||||
}
|
82
router/src/sagemaker.rs
Normal file
82
router/src/sagemaker.rs
Normal file
@ -0,0 +1,82 @@
|
||||
use crate::infer::Infer;
|
||||
use crate::server::{chat_completions, compat_generate, completions, ComputeType};
|
||||
use crate::{
|
||||
ChatCompletion, ChatCompletionChunk, ChatRequest, Chunk, CompatGenerateRequest,
|
||||
CompletionFinal, CompletionRequest, ErrorResponse, GenerateResponse, Info, StreamResponse,
|
||||
};
|
||||
use axum::extract::Extension;
|
||||
use axum::http::StatusCode;
|
||||
use axum::response::Response;
|
||||
use axum::Json;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use tracing::instrument;
|
||||
use utoipa::ToSchema;
|
||||
|
||||
#[derive(Clone, Deserialize, ToSchema)]
|
||||
#[serde(untagged)]
|
||||
pub(crate) enum SagemakerRequest {
|
||||
Generate(CompatGenerateRequest),
|
||||
Chat(ChatRequest),
|
||||
Completion(CompletionRequest),
|
||||
}
|
||||
|
||||
// Used for OpenAPI specs
|
||||
#[allow(dead_code)]
|
||||
#[derive(Serialize, ToSchema)]
|
||||
#[serde(untagged)]
|
||||
pub(crate) enum SagemakerResponse {
|
||||
Generate(GenerateResponse),
|
||||
Chat(ChatCompletion),
|
||||
Completion(CompletionFinal),
|
||||
}
|
||||
|
||||
// Used for OpenAPI specs
|
||||
#[allow(dead_code)]
|
||||
#[derive(Serialize, ToSchema)]
|
||||
#[serde(untagged)]
|
||||
pub(crate) enum SagemakerStreamResponse {
|
||||
Generate(StreamResponse),
|
||||
Chat(ChatCompletionChunk),
|
||||
Completion(Chunk),
|
||||
}
|
||||
|
||||
/// Generate tokens from Sagemaker request
|
||||
#[utoipa::path(
|
||||
post,
|
||||
tag = "Text Generation Inference",
|
||||
path = "/invocations",
|
||||
request_body = SagemakerRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Chat Completion",
|
||||
content(
|
||||
("application/json" = SagemakerResponse),
|
||||
("text/event-stream" = SagemakerStreamResponse),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation", "error_type": "generation"})),
|
||||
(status = 429, description = "Model is overloaded", body = ErrorResponse,
|
||||
example = json ! ({"error": "Model is overloaded", "error_type": "overloaded"})),
|
||||
(status = 422, description = "Input validation error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Input validation error", "error_type": "validation"})),
|
||||
(status = 500, description = "Incomplete generation", body = ErrorResponse,
|
||||
example = json ! ({"error": "Incomplete generation", "error_type": "incomplete_generation"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(skip_all)]
|
||||
pub(crate) async fn sagemaker_compatibility(
|
||||
default_return_full_text: Extension<bool>,
|
||||
infer: Extension<Infer>,
|
||||
compute_type: Extension<ComputeType>,
|
||||
info: Extension<Info>,
|
||||
Json(req): Json<SagemakerRequest>,
|
||||
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
||||
match req {
|
||||
SagemakerRequest::Generate(req) => {
|
||||
compat_generate(default_return_full_text, infer, compute_type, Json(req)).await
|
||||
}
|
||||
SagemakerRequest::Chat(req) => chat_completions(infer, compute_type, info, Json(req)).await,
|
||||
SagemakerRequest::Completion(req) => {
|
||||
completions(infer, compute_type, info, Json(req)).await
|
||||
}
|
||||
}
|
||||
}
|
@ -7,6 +7,10 @@ use crate::kserve::{
|
||||
kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
|
||||
kserve_model_metadata, kserve_model_metadata_ready,
|
||||
};
|
||||
use crate::sagemaker::{
|
||||
sagemaker_compatibility, SagemakerRequest, SagemakerResponse, SagemakerStreamResponse,
|
||||
__path_sagemaker_compatibility,
|
||||
};
|
||||
use crate::validation::ValidationError;
|
||||
use crate::vertex::vertex_compatibility;
|
||||
use crate::ChatTokenizeResponse;
|
||||
@ -83,7 +87,7 @@ example = json ! ({"error": "Incomplete generation"})),
|
||||
)
|
||||
)]
|
||||
#[instrument(skip(infer, req))]
|
||||
async fn compat_generate(
|
||||
pub(crate) async fn compat_generate(
|
||||
Extension(default_return_full_text): Extension<bool>,
|
||||
infer: Extension<Infer>,
|
||||
compute_type: Extension<ComputeType>,
|
||||
@ -678,7 +682,7 @@ time_per_token,
|
||||
seed,
|
||||
)
|
||||
)]
|
||||
async fn completions(
|
||||
pub(crate) async fn completions(
|
||||
Extension(infer): Extension<Infer>,
|
||||
Extension(compute_type): Extension<ComputeType>,
|
||||
Extension(info): Extension<Info>,
|
||||
@ -1202,7 +1206,7 @@ time_per_token,
|
||||
seed,
|
||||
)
|
||||
)]
|
||||
async fn chat_completions(
|
||||
pub(crate) async fn chat_completions(
|
||||
Extension(infer): Extension<Infer>,
|
||||
Extension(compute_type): Extension<ComputeType>,
|
||||
Extension(info): Extension<Info>,
|
||||
@ -1513,11 +1517,13 @@ completions,
|
||||
tokenize,
|
||||
metrics,
|
||||
openai_get_model_info,
|
||||
sagemaker_compatibility,
|
||||
),
|
||||
components(
|
||||
schemas(
|
||||
Info,
|
||||
CompatGenerateRequest,
|
||||
SagemakerRequest,
|
||||
GenerateRequest,
|
||||
GrammarType,
|
||||
ChatRequest,
|
||||
@ -1540,6 +1546,8 @@ ChatCompletionTopLogprob,
|
||||
ChatCompletion,
|
||||
CompletionRequest,
|
||||
CompletionComplete,
|
||||
SagemakerResponse,
|
||||
SagemakerStreamResponse,
|
||||
Chunk,
|
||||
Completion,
|
||||
CompletionFinal,
|
||||
@ -1601,13 +1609,13 @@ pub async fn run(
|
||||
tokenizer_name: String,
|
||||
tokenizer_config_path: Option<String>,
|
||||
revision: Option<String>,
|
||||
trust_remote_code: bool,
|
||||
hostname: String,
|
||||
port: u16,
|
||||
cors_allow_origin: Option<Vec<String>>,
|
||||
ngrok: bool,
|
||||
_ngrok_authtoken: Option<String>,
|
||||
_ngrok_edge: Option<String>,
|
||||
messages_api_enabled: bool,
|
||||
disable_grammar_support: bool,
|
||||
max_client_batch_size: usize,
|
||||
usage_stats_level: usage_stats::UsageStatsLevel,
|
||||
@ -1761,10 +1769,13 @@ pub async fn run(
|
||||
let auto = transformers.getattr("AutoTokenizer")?;
|
||||
let from_pretrained = auto.getattr("from_pretrained")?;
|
||||
let args = (tokenizer_name.to_string(),);
|
||||
let kwargs = [(
|
||||
"revision",
|
||||
revision.clone().unwrap_or_else(|| "main".to_string()),
|
||||
)]
|
||||
let kwargs = [
|
||||
(
|
||||
"revision",
|
||||
(revision.clone().unwrap_or_else(|| "main".to_string())).into_py(py),
|
||||
),
|
||||
("trust_remote_code", trust_remote_code.into_py(py)),
|
||||
]
|
||||
.into_py_dict_bound(py);
|
||||
let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
|
||||
let save = tokenizer.getattr("save_pretrained")?;
|
||||
@ -1836,7 +1847,6 @@ pub async fn run(
|
||||
// max_batch_size,
|
||||
revision.clone(),
|
||||
validation_workers,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
usage_stats_level,
|
||||
@ -1878,7 +1888,6 @@ pub async fn run(
|
||||
ngrok,
|
||||
_ngrok_authtoken,
|
||||
_ngrok_edge,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
model_info,
|
||||
@ -1938,7 +1947,6 @@ async fn start(
|
||||
ngrok: bool,
|
||||
_ngrok_authtoken: Option<String>,
|
||||
_ngrok_edge: Option<String>,
|
||||
messages_api_enabled: bool,
|
||||
disable_grammar_support: bool,
|
||||
max_client_batch_size: usize,
|
||||
model_info: HubModelInfo,
|
||||
@ -2253,6 +2261,7 @@ async fn start(
|
||||
.route("/v1/chat/completions", post(chat_completions))
|
||||
.route("/v1/completions", post(completions))
|
||||
.route("/vertex", post(vertex_compatibility))
|
||||
.route("/invocations", post(sagemaker_compatibility))
|
||||
.route("/tokenize", post(tokenize));
|
||||
|
||||
if let Some(api_key) = api_key {
|
||||
@ -2288,13 +2297,6 @@ async fn start(
|
||||
.route("/metrics", get(metrics))
|
||||
.route("/v1/models", get(openai_get_model_info));
|
||||
|
||||
// Conditional AWS Sagemaker route
|
||||
let aws_sagemaker_route = if messages_api_enabled {
|
||||
Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
|
||||
} else {
|
||||
Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
|
||||
};
|
||||
|
||||
let compute_type =
|
||||
ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
|
||||
|
||||
@ -2302,8 +2304,7 @@ async fn start(
|
||||
let mut app = Router::new()
|
||||
.merge(swagger_ui)
|
||||
.merge(base_routes)
|
||||
.merge(info_routes)
|
||||
.merge(aws_sagemaker_route);
|
||||
.merge(info_routes);
|
||||
|
||||
#[cfg(feature = "google")]
|
||||
{
|
||||
|
@ -93,7 +93,6 @@ pub struct Args {
|
||||
// max_batch_size: Option<usize>,
|
||||
revision: Option<String>,
|
||||
validation_workers: usize,
|
||||
messages_api_enabled: bool,
|
||||
disable_grammar_support: bool,
|
||||
max_client_batch_size: usize,
|
||||
usage_stats_level: UsageStatsLevel,
|
||||
@ -117,7 +116,6 @@ impl Args {
|
||||
// max_batch_size: Option<usize>,
|
||||
revision: Option<String>,
|
||||
validation_workers: usize,
|
||||
messages_api_enabled: bool,
|
||||
disable_grammar_support: bool,
|
||||
max_client_batch_size: usize,
|
||||
usage_stats_level: UsageStatsLevel,
|
||||
@ -138,7 +136,6 @@ impl Args {
|
||||
// max_batch_size,
|
||||
revision,
|
||||
validation_workers,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
usage_stats_level,
|
||||
|
@ -31,7 +31,7 @@ install: install-cuda
|
||||
echo "Installed server"
|
||||
|
||||
install-cuda: install-server install-flash-attention-v2-cuda install-vllm-cuda install-flash-attention install-fbgemm
|
||||
pip install -e ".[bnb]"
|
||||
pip install -e ".[bnb,marlin,moe]"
|
||||
pip install nvidia-nccl-cu12==2.22.3
|
||||
|
||||
install-rocm: install-server install-flash-attention-v2-rocm install-vllm-rocm
|
||||
|
1379
server/poetry.lock
generated
1379
server/poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -41,10 +41,10 @@ py-cpuinfo = "^9.0.0"
|
||||
numpy = "^1.26"
|
||||
|
||||
marlin-kernels = [
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true },
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", python = "~3.10", optional = true },
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true },
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true },
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.0/marlin_kernels-0.3.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true },
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.0/marlin_kernels-0.3.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", python = "~3.10", optional = true },
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.0/marlin_kernels-0.3.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true },
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.3.0/marlin_kernels-0.3.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true },
|
||||
]
|
||||
moe-kernels = [
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true },
|
||||
|
@ -1,5 +1,5 @@
|
||||
certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13"
|
||||
charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
charset-normalizer==3.4.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
click==8.1.7 ; python_version >= "3.9" and python_version < "3.13"
|
||||
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows")
|
||||
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
|
||||
@ -10,7 +10,7 @@ googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version <
|
||||
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio==1.67.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13"
|
||||
huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
idna==3.10 ; python_version >= "3.9" and python_version < "3.13"
|
||||
@ -38,14 +38,14 @@ pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13"
|
||||
requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
rich==13.9.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
setuptools==75.2.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tokenizers==0.20.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
transformers==4.45.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
|
@ -1,5 +1,5 @@
|
||||
certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13"
|
||||
charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
charset-normalizer==3.4.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
click==8.1.7 ; python_version >= "3.9" and python_version < "3.13"
|
||||
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows")
|
||||
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
|
||||
@ -10,7 +10,7 @@ googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version <
|
||||
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio==1.67.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13"
|
||||
huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
idna==3.10 ; python_version >= "3.9" and python_version < "3.13"
|
||||
@ -38,14 +38,14 @@ pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13"
|
||||
requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
rich==13.9.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
setuptools==75.2.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tokenizers==0.20.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
transformers==4.45.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
|
@ -1,5 +1,5 @@
|
||||
certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13"
|
||||
charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
charset-normalizer==3.4.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
click==8.1.7 ; python_version >= "3.9" and python_version < "3.13"
|
||||
colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows")
|
||||
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
|
||||
@ -10,7 +10,7 @@ googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version <
|
||||
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
grpcio==1.67.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13"
|
||||
huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
idna==3.10 ; python_version >= "3.9" and python_version < "3.13"
|
||||
@ -38,14 +38,14 @@ pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13"
|
||||
requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
rich==13.9.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
setuptools==75.2.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tokenizers==0.20.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13"
|
||||
transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
transformers==4.45.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
|
@ -28,10 +28,11 @@ else:
|
||||
raise ImportError(f"System {SYSTEM} doesn't support flash/paged attention")
|
||||
|
||||
# KVCache needs `reshape_and_cache`, so ensure that it is defined already.
|
||||
from .kv_cache import KVCache
|
||||
from .kv_cache import KVCache, get_kv_scales
|
||||
|
||||
__all__ = [
|
||||
"attention",
|
||||
"get_kv_scales",
|
||||
"paged_attention",
|
||||
"SUPPORTS_WINDOWING",
|
||||
"KVCache",
|
||||
|
@ -1,5 +1,5 @@
|
||||
import torch
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.models.globals import (
|
||||
ATTENTION,
|
||||
@ -8,6 +8,7 @@ from text_generation_server.models.globals import (
|
||||
from text_generation_server.layers.attention import Seqlen
|
||||
from typing import Optional
|
||||
|
||||
|
||||
major, minor = torch.cuda.get_device_capability()
|
||||
is_sm75 = major == 7 and minor == 5
|
||||
_PARTITION_SIZE = 512
|
||||
@ -21,6 +22,8 @@ def paged_attention(
|
||||
block_tables: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
*,
|
||||
kv_scales: KVScales,
|
||||
softcap: Optional[float] = None,
|
||||
):
|
||||
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
|
||||
@ -46,6 +49,8 @@ def paged_attention(
|
||||
num_seqs, num_heads, head_size = query.shape
|
||||
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
|
||||
|
||||
can_scale = kv_cache.can_scale(kv_scales)
|
||||
|
||||
# NOTE(woosuk): We use a simple heuristic to decide whether to use
|
||||
# PagedAttention V1 or V2. If the number of partitions is 1, we use
|
||||
# V1 to avoid the overhead of reduction. Also, if the number of
|
||||
@ -55,10 +60,13 @@ def paged_attention(
|
||||
from text_generation_server.layers.attention.flashinfer import decode_state
|
||||
|
||||
return decode_state.get().forward(
|
||||
# TODO: remove `contiguous` call once https://github.com/flashinfer-ai/flashinfer/pull/553 is merged.
|
||||
query.contiguous(),
|
||||
paged_kv_cache=(kv_cache.key, kv_cache.value),
|
||||
logits_soft_cap=softcap,
|
||||
sm_scale=softmax_scale,
|
||||
k_scale=kv_scales.key_scale_cpu if can_scale else 1.0,
|
||||
v_scale=kv_scales.value_scale_cpu if can_scale else 1.0,
|
||||
)
|
||||
elif ATTENTION == "flashdecoding":
|
||||
max_q = 1
|
||||
@ -204,6 +212,7 @@ def attention(
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
kv_scales: KVScales,
|
||||
seqlen: Seqlen,
|
||||
block_tables: torch.Tensor,
|
||||
softmax_scale: float,
|
||||
@ -211,6 +220,8 @@ def attention(
|
||||
causal: bool = True,
|
||||
softcap: Optional[float] = None,
|
||||
):
|
||||
can_scale = kv_cache.can_scale(kv_scales)
|
||||
|
||||
if ATTENTION == "flashinfer":
|
||||
from text_generation_server.layers.attention.flashinfer import (
|
||||
prefill_with_paged_kv_state,
|
||||
@ -220,12 +231,15 @@ def attention(
|
||||
softcap = 0.0
|
||||
|
||||
return prefill_with_paged_kv_state.get().forward(
|
||||
# TODO: remove `contiguous` call once https://github.com/flashinfer-ai/flashinfer/pull/553 is merged.
|
||||
query.contiguous(),
|
||||
causal=causal,
|
||||
paged_kv_cache=(kv_cache.key, kv_cache.value),
|
||||
logits_soft_cap=softcap,
|
||||
sm_scale=softmax_scale,
|
||||
window_left=window_size_left,
|
||||
k_scale=kv_scales.key_scale_cpu if can_scale else 1.0,
|
||||
v_scale=kv_scales.value_scale_cpu if can_scale else 1.0,
|
||||
)
|
||||
|
||||
# If we are using flashdecoding or paged, we always use flash-attn for
|
||||
|
@ -204,6 +204,7 @@ def use_decode_state(
|
||||
num_kv_heads: int,
|
||||
head_size: int,
|
||||
page_size: int,
|
||||
kv_cache_dtype: torch.dtype,
|
||||
dtype: torch.dtype,
|
||||
window_left: int,
|
||||
):
|
||||
@ -240,7 +241,7 @@ def use_decode_state(
|
||||
num_kv_heads=num_kv_heads,
|
||||
head_dim=head_size,
|
||||
page_size=page_size,
|
||||
data_type=dtype,
|
||||
data_type=kv_cache_dtype,
|
||||
q_data_type=dtype,
|
||||
window_left=window_left,
|
||||
)
|
||||
|
@ -1,6 +1,6 @@
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import torch
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
|
||||
from text_generation_server.models.flash_causal_lm import BLOCK_SIZE
|
||||
from text_generation_server.layers.attention import Seqlen
|
||||
from typing import Optional
|
||||
@ -14,6 +14,7 @@ def attention(
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
kv_scales: KVScales,
|
||||
seqlen: Seqlen,
|
||||
block_tables: torch.Tensor,
|
||||
softmax_scale: float,
|
||||
@ -55,6 +56,8 @@ def paged_attention(
|
||||
block_tables: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
*,
|
||||
kv_scales: KVScales,
|
||||
softcap: Optional[float] = None,
|
||||
):
|
||||
if softcap is not None:
|
||||
|
@ -1,8 +1,38 @@
|
||||
from typing import Tuple
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from loguru import logger
|
||||
import torch
|
||||
|
||||
from text_generation_server.layers.fp8 import fp8_quantize
|
||||
from text_generation_server.models.globals import ATTENTION, BLOCK_SIZE
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.log import log_once
|
||||
from text_generation_server.utils.weights import Weights
|
||||
|
||||
|
||||
@dataclass
|
||||
class KVScales:
|
||||
"""
|
||||
Key-value scales for FP8 KV cache.
|
||||
|
||||
This data class stores key and value scales both as a GPU tensor and
|
||||
as a GPU float. This inconvenience is necessary because some functions
|
||||
(e.g. scaling kernels) take scales as a GPU tensor, whereas others
|
||||
(e.g. flashinfer) take scales as a CPU scalar.
|
||||
"""
|
||||
|
||||
key_scale: torch.Tensor
|
||||
value_scale: torch.Tensor
|
||||
key_scale_cpu: float = field(init=False)
|
||||
value_scale_cpu: float = field(init=False)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.key_scale.numel() != 1 or self.value_scale.numel() != 1:
|
||||
raise ValueError("Key and value scales must be scalar tensors.")
|
||||
|
||||
self.key_scale_cpu = self.key_scale.item()
|
||||
self.value_scale_cpu = self.value_scale.item()
|
||||
|
||||
|
||||
class KVCache:
|
||||
@ -76,6 +106,33 @@ class KVCache:
|
||||
),
|
||||
)
|
||||
|
||||
def can_scale(self, kv_scales: KVScales) -> bool:
|
||||
"""Check if the cache can be scaled by the given scales."""
|
||||
if kv_scales.key_scale_cpu == 1.0 and kv_scales.value_scale_cpu == 1.0:
|
||||
return False
|
||||
elif (
|
||||
self.dtype == torch.float8_e4m3fn
|
||||
and ATTENTION == "flashinfer"
|
||||
and SYSTEM == "cuda"
|
||||
):
|
||||
log_once(
|
||||
logger.info,
|
||||
"Using FP8 KV cache scales",
|
||||
)
|
||||
return True
|
||||
else:
|
||||
# We have scales, but not the correct FP8 cache type, so warn once.
|
||||
log_once(
|
||||
logger.info,
|
||||
"Ignoring FP8 KV cache scales, only float8_e4m3fn KV cache on flashinfer is supported",
|
||||
)
|
||||
return False
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
"""Get the data type of the cache."""
|
||||
return self.kv_cache[0].dtype
|
||||
|
||||
@property
|
||||
def key(self):
|
||||
"""Get the key cache."""
|
||||
@ -94,17 +151,33 @@ class KVCache:
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
kv_scales: KVScales,
|
||||
):
|
||||
"""Store the key and value at the given slots."""
|
||||
|
||||
key_cache = self.kv_cache[0]
|
||||
value_cache = self.kv_cache[1]
|
||||
|
||||
if self.can_scale(kv_scales):
|
||||
if kv_scales.key_scale_cpu != 1.0:
|
||||
key = fp8_quantize(
|
||||
key.float(),
|
||||
scale=kv_scales.key_scale,
|
||||
qdtype=self.dtype,
|
||||
scalar=True,
|
||||
)[0]
|
||||
if kv_scales.value_scale_cpu != 1.0:
|
||||
value = fp8_quantize(
|
||||
value.float(),
|
||||
scale=kv_scales.value_scale,
|
||||
qdtype=self.dtype,
|
||||
scalar=True,
|
||||
)[0]
|
||||
|
||||
if ATTENTION in {"flashdecoding", "flashinfer"}:
|
||||
# TODO: add scale
|
||||
key = key.to(key_cache.dtype)
|
||||
value = value.to(value_cache.dtype)
|
||||
if key_cache.dtype in {torch.float8_e5m2, torch.float8_e4m3fn}:
|
||||
if key_cache.dtype in {torch.float8_e4m3fn, torch.float8_e5m2}:
|
||||
# Torch index_put does not support float8_{e5m2,e4m3fn} yet, so
|
||||
# put as raw data instead.
|
||||
key_cache = key_cache.view(torch.uint8)
|
||||
@ -151,5 +224,23 @@ def paged_reshape_and_cache(
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Cannot reshape and cache for paged attention, system '{SYSTEM}' not supportedattention"
|
||||
f"Cannot reshape and cache for paged attention, system '{SYSTEM}' not supported"
|
||||
)
|
||||
|
||||
|
||||
def get_kv_scales(weights: Weights, prefix: str) -> KVScales:
|
||||
"""Load KV cache scales."""
|
||||
|
||||
key_scale = torch.tensor(1.0, dtype=torch.float32, device=weights.device)
|
||||
value_scale = key_scale
|
||||
if weights.has_tensor(f"{prefix}.k_scale") and weights.has_tensor(
|
||||
f"{prefix}.v_scale"
|
||||
):
|
||||
key_scale = weights.get_tensor(f"{prefix}.k_scale", to_dtype=False).float()
|
||||
value_scale = weights.get_tensor(f"{prefix}.v_scale", to_dtype=False).float()
|
||||
elif weights.has_tensor(f"{prefix}.kv_scale"):
|
||||
# Fall back to older more coarse-grained scale when available.
|
||||
key_scale = weights.get_tensor(f"{prefix}.kv_scale").float()
|
||||
value_scale = key_scale
|
||||
|
||||
return KVScales(key_scale=key_scale, value_scale=value_scale)
|
||||
|
@ -1,7 +1,7 @@
|
||||
import os
|
||||
from typing import Optional
|
||||
import torch
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers.attention import Seqlen
|
||||
from text_generation_server.utils.log import log_master
|
||||
@ -36,6 +36,8 @@ def paged_attention(
|
||||
block_tables: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
*,
|
||||
kv_scales: KVScales,
|
||||
softcap: Optional[float] = None,
|
||||
):
|
||||
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
|
||||
@ -210,6 +212,7 @@ def attention(
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
kv_scales: KVScales,
|
||||
seqlen: Seqlen,
|
||||
block_tables: torch.Tensor,
|
||||
softmax_scale: float,
|
||||
|
@ -26,6 +26,12 @@ def is_fbgemm_gpu_available():
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
import marlin_kernels
|
||||
except ImportError:
|
||||
marlin_kernels = None
|
||||
|
||||
|
||||
if is_fbgemm_gpu_available():
|
||||
if SYSTEM == "cuda":
|
||||
major, _ = torch.cuda.get_device_capability()
|
||||
@ -94,6 +100,17 @@ def fp8_quantize(
|
||||
)
|
||||
return qweight, scale
|
||||
|
||||
if marlin_kernels is not None:
|
||||
shape = weight.shape
|
||||
qweight, scale = marlin_kernels.scaled_fp8_quant(
|
||||
weight.reshape(-1, shape[-1]),
|
||||
dtype=qdtype,
|
||||
scale=scale,
|
||||
scale_ub=scale_upper_bound,
|
||||
)
|
||||
|
||||
return qweight.reshape(shape), scale
|
||||
|
||||
# weight, scale = quant_weights(weight, torch.int8, False)
|
||||
finfo = torch.finfo(qdtype)
|
||||
|
||||
|
@ -11,7 +11,7 @@ from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
|
||||
if SYSTEM == "ipex":
|
||||
from .ipex import QuantLinear
|
||||
elif SYSTEM in {"cuda", "rocm"}:
|
||||
from .cuda import QuantLinear
|
||||
from .triton import QuantLinear
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -195,6 +195,11 @@ class ModelType(enum.Enum):
|
||||
"name": "Phi 3",
|
||||
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
|
||||
}
|
||||
GRANITE = {
|
||||
"type": "granite",
|
||||
"name": "Granite",
|
||||
"url": "https://huggingface.co/ibm-granite/granite-3.0-8b-instruct",
|
||||
}
|
||||
GEMMA = {
|
||||
"type": "gemma",
|
||||
"name": "Gemma",
|
||||
@ -862,7 +867,12 @@ def get_model(
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
|
||||
elif (
|
||||
model_type == LLAMA
|
||||
or model_type == BAICHUAN
|
||||
or model_type == PHI3
|
||||
or model_type == GRANITE
|
||||
):
|
||||
if FLASH_ATTENTION:
|
||||
return FlashCausalLM(
|
||||
model_id=model_id,
|
||||
@ -876,7 +886,9 @@ def get_model(
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format(f"Sharded {model_type}")
|
||||
)
|
||||
else:
|
||||
return CausalLM.fallback(
|
||||
model_id,
|
||||
|
@ -30,6 +30,7 @@ from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
Seqlen,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
@ -227,6 +228,7 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.use_qk_norm = config.use_qk_norm
|
||||
if self.use_qk_norm:
|
||||
@ -289,7 +291,12 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
|
||||
self.rotary_emb(query, key, cos, sin)
|
||||
|
||||
kv_cache.store(key=key, value=value, slots=slots)
|
||||
kv_cache.store(
|
||||
key=key,
|
||||
value=value,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -299,6 +306,7 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
key=key,
|
||||
value=value,
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -313,6 +321,7 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(
|
||||
|
@ -20,6 +20,7 @@ from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple, Any
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
|
||||
if SYSTEM != "ipex":
|
||||
@ -288,6 +289,7 @@ class DbrxAttention(torch.nn.Module):
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
@ -328,7 +330,12 @@ class DbrxAttention(torch.nn.Module):
|
||||
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -338,6 +345,7 @@ class DbrxAttention(torch.nn.Module):
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -352,6 +360,7 @@ class DbrxAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -34,6 +34,7 @@ from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
paged_attention,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
|
||||
from text_generation_server.layers.layernorm import FastRMSNorm
|
||||
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
|
||||
@ -230,6 +231,8 @@ class DeepseekV2Attention(torch.nn.Module):
|
||||
),
|
||||
)
|
||||
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.kv_a_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.kv_a_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
@ -258,7 +261,7 @@ class DeepseekV2Attention(torch.nn.Module):
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
cu_seqlen_prefill: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor],
|
||||
kv_cache: KVCache,
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
@ -319,7 +322,12 @@ class DeepseekV2Attention(torch.nn.Module):
|
||||
value, (0, self.head_pad_size - self.value_head_size), value=0
|
||||
)
|
||||
|
||||
kv_cache.store(key=key, value=value, slots=slots)
|
||||
kv_cache.store(
|
||||
key=key,
|
||||
value=value,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -329,6 +337,7 @@ class DeepseekV2Attention(torch.nn.Module):
|
||||
key=key,
|
||||
value=value,
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -343,6 +352,7 @@ class DeepseekV2Attention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Remove padding.
|
||||
|
@ -39,6 +39,7 @@ from text_generation_server.layers import (
|
||||
TensorParallelMultiAdapterLinear,
|
||||
TensorParallelAdapterRowLinear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
@ -206,6 +207,7 @@ class FlashGemma2Attention(torch.nn.Module):
|
||||
],
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
@ -251,7 +253,12 @@ class FlashGemma2Attention(torch.nn.Module):
|
||||
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -261,6 +268,7 @@ class FlashGemma2Attention(torch.nn.Module):
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -278,6 +286,7 @@ class FlashGemma2Attention(torch.nn.Module):
|
||||
seqlen,
|
||||
max_s,
|
||||
softcap=self.softcap,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(
|
||||
|
@ -37,6 +37,7 @@ from text_generation_server.layers import (
|
||||
SpeculativeHead,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
@ -185,6 +186,7 @@ class FlashGemmaAttention(torch.nn.Module):
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
@ -222,7 +224,12 @@ class FlashGemmaAttention(torch.nn.Module):
|
||||
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -232,6 +239,7 @@ class FlashGemmaAttention(torch.nn.Module):
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -247,6 +255,7 @@ class FlashGemmaAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -36,6 +36,7 @@ from text_generation_server.layers import (
|
||||
SpeculativeHead,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
|
||||
|
||||
def load_qkv(config, prefix: str, weights, head_size, num_heads):
|
||||
@ -193,6 +194,7 @@ class FlashGPT2Attention(torch.nn.Module):
|
||||
head_size=self.head_size,
|
||||
num_heads=self.num_heads,
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = load_row(
|
||||
config,
|
||||
@ -222,7 +224,12 @@ class FlashGPT2Attention(torch.nn.Module):
|
||||
key = key.view(-1, self.num_heads, self.head_size)
|
||||
value = value.view(-1, self.num_heads, self.head_size)
|
||||
|
||||
kv_cache.store(key=key, value=value, slots=slots)
|
||||
kv_cache.store(
|
||||
key=key,
|
||||
value=value,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -232,6 +239,7 @@ class FlashGPT2Attention(torch.nn.Module):
|
||||
key=key,
|
||||
value=value,
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -246,6 +254,7 @@ class FlashGPT2Attention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -24,6 +24,7 @@ import torch.distributed
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from typing import Optional, List, Tuple
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers.attention import (
|
||||
paged_attention,
|
||||
@ -138,6 +139,7 @@ class FlashGPTJAttention(torch.nn.Module):
|
||||
prefix=prefix,
|
||||
weights=weights,
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = load_row(
|
||||
config,
|
||||
@ -184,7 +186,12 @@ class FlashGPTJAttention(torch.nn.Module):
|
||||
else:
|
||||
self.rotary_emb(query, key, cos, sin)
|
||||
|
||||
kv_cache.store(key=key, value=value, slots=slots)
|
||||
kv_cache.store(
|
||||
key=key,
|
||||
value=value,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -194,6 +201,7 @@ class FlashGPTJAttention(torch.nn.Module):
|
||||
key=key,
|
||||
value=value,
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -208,6 +216,7 @@ class FlashGPTJAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -27,7 +27,10 @@ import torch.distributed
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
|
||||
from text_generation_server.layers.attention import KVCache
|
||||
from text_generation_server.layers.attention import (
|
||||
KVCache,
|
||||
get_kv_scales,
|
||||
)
|
||||
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers.attention import (
|
||||
@ -156,7 +159,10 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
self.softmax_scale = self.head_size**-0.5
|
||||
# `config.attention_multiplier` is used in Granite
|
||||
self.softmax_scale = getattr(
|
||||
config, "attention_multiplier", self.head_size**-0.5
|
||||
)
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
@ -176,11 +182,13 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
self.query_key_value = load_attention(config, prefix, weights, index)
|
||||
self.index = index
|
||||
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
bias=getattr(config, "attention_bias", False),
|
||||
)
|
||||
|
||||
self.o_proj = TensorParallelAdapterRowLinear.load(
|
||||
@ -221,7 +229,12 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -230,6 +243,7 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
query=query,
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
kv_scales=self.kv_scales,
|
||||
kv_cache=kv_cache,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
@ -245,6 +259,7 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(
|
||||
@ -436,6 +451,11 @@ class FlashLlamaLayer(nn.Module):
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
# Used in Granite
|
||||
# This could eventually be baked into the weights like we do for the embeddings/lm_head
|
||||
# but this would mean modifying the lora code
|
||||
self.residual_multiplier = getattr(config, "residual_multiplier", None)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
@ -466,13 +486,16 @@ class FlashLlamaLayer(nn.Module):
|
||||
max_s,
|
||||
adapter_data,
|
||||
)
|
||||
if self.residual_multiplier is not None:
|
||||
attn_output *= self.residual_multiplier
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, attn_res = self.post_attention_layernorm(
|
||||
attn_output, res
|
||||
)
|
||||
|
||||
mlp_output = self.dense(normed_attn_res_output, adapter_data)
|
||||
if self.residual_multiplier is not None:
|
||||
mlp_output *= self.residual_multiplier
|
||||
|
||||
return mlp_output, attn_res
|
||||
|
||||
@ -624,6 +647,11 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
else:
|
||||
suffix = "lm_head"
|
||||
|
||||
# Used in Granite
|
||||
embedding_multiplier = getattr(config, "embedding_multiplier", None)
|
||||
if embedding_multiplier is not None:
|
||||
self.embed_tokens.weight.data *= embedding_multiplier
|
||||
|
||||
with no_fp8(weights):
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
@ -631,6 +659,16 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
# Used in Granite
|
||||
self.logits_scaling = getattr(config, "logits_scaling", None)
|
||||
if self.logits_scaling is not None and self.lm_head.head is not None:
|
||||
try:
|
||||
# Scale the weights directly
|
||||
self.lm_head.head.linear.weight.data /= self.logits_scaling
|
||||
self.logits_scaled = True
|
||||
except Exception:
|
||||
self.logits_scaled = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
@ -664,4 +702,11 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.lm_head(hidden_states)
|
||||
|
||||
# Used in Granite
|
||||
if self.logits_scaling is not None and not self.logits_scaled:
|
||||
logits /= self.logits_scaling
|
||||
if speculative_logits is not None:
|
||||
speculative_logits /= self.logits_scaling
|
||||
|
||||
return logits, speculative_logits
|
||||
|
@ -26,6 +26,7 @@ from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers.attention import (
|
||||
paged_attention,
|
||||
@ -158,6 +159,7 @@ class MistralAttention(torch.nn.Module):
|
||||
],
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
@ -208,7 +210,12 @@ class MistralAttention(torch.nn.Module):
|
||||
else:
|
||||
kv_to_cache = kv
|
||||
|
||||
kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -218,6 +225,7 @@ class MistralAttention(torch.nn.Module):
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -233,6 +241,7 @@ class MistralAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(
|
||||
|
@ -38,6 +38,7 @@ from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
paged_attention,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.layernorm import FastRMSNorm
|
||||
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
@ -213,6 +214,7 @@ class MixtralAttention(torch.nn.Module):
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
@ -256,7 +258,12 @@ class MixtralAttention(torch.nn.Module):
|
||||
else:
|
||||
kv_to_cache = kv
|
||||
|
||||
kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -266,6 +273,7 @@ class MixtralAttention(torch.nn.Module):
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -281,6 +289,7 @@ class MixtralAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -38,6 +38,7 @@ from text_generation_server.layers import (
|
||||
SpeculativeHead,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastLayerNorm,
|
||||
)
|
||||
@ -130,6 +131,7 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
head_size=self.head_size,
|
||||
hidden_size=self.hidden_size,
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
self.dense = load_row(
|
||||
config, prefix=f"{prefix}.dense", weights=weights, bias=True
|
||||
)
|
||||
@ -163,7 +165,12 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
qkv[:, 0] = torch.cat((query_rot, query_pass), dim=-1)
|
||||
qkv[:, 1] = torch.cat((key_rot, key_pass), dim=-1)
|
||||
|
||||
kv_cache.store(key=qkv[:, 1], value=qkv[:, 2], slots=slots)
|
||||
kv_cache.store(
|
||||
key=qkv[:, 1],
|
||||
value=qkv[:, 2],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -173,6 +180,7 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
key=qkv[:, 1],
|
||||
value=qkv[:, 2],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -187,6 +195,7 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -18,6 +18,7 @@ from text_generation_server.layers import (
|
||||
SpeculativeHead,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastLayerNorm,
|
||||
)
|
||||
@ -137,6 +138,7 @@ class FlashPhiAttention(torch.nn.Module):
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
# in llama the dense layer is called "o_proj" and has bias=False
|
||||
self.dense = TensorParallelRowLinear.load(
|
||||
@ -186,7 +188,12 @@ class FlashPhiAttention(torch.nn.Module):
|
||||
)
|
||||
|
||||
# Reshape key and value and cache
|
||||
kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -194,6 +201,7 @@ class FlashPhiAttention(torch.nn.Module):
|
||||
query=query,
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
kv_scales=self.kv_scales,
|
||||
kv_cache=kv_cache,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
@ -209,6 +217,7 @@ class FlashPhiAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -16,6 +16,7 @@ from text_generation_server.layers import (
|
||||
TensorParallelEmbedding,
|
||||
SpeculativeHead,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
@ -84,6 +85,8 @@ class Qwen2Attention(torch.nn.Module):
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
@ -126,7 +129,12 @@ class Qwen2Attention(torch.nn.Module):
|
||||
else:
|
||||
kv_to_cache = kv
|
||||
|
||||
kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -136,6 +144,7 @@ class Qwen2Attention(torch.nn.Module):
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -151,6 +160,7 @@ class Qwen2Attention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -12,6 +12,7 @@ from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.layernorm import FastLayerNorm
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.attention import (
|
||||
@ -158,6 +159,7 @@ class FlashRWAttention(torch.nn.Module):
|
||||
weights=weights,
|
||||
bias=config.bias,
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
self.dense = load_row(
|
||||
config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias
|
||||
)
|
||||
@ -198,7 +200,12 @@ class FlashRWAttention(torch.nn.Module):
|
||||
# Inplace rotary
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -208,6 +215,7 @@ class FlashRWAttention(torch.nn.Module):
|
||||
key=kv[:, 0],
|
||||
value=kv[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -222,6 +230,7 @@ class FlashRWAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
@ -276,6 +285,7 @@ class FlashRWLargeAttention(torch.nn.Module):
|
||||
weights=weights,
|
||||
bias=config.bias,
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
self.dense = load_row(
|
||||
config, prefix=f"{prefix}.dense", weights=weights, bias=config.bias
|
||||
)
|
||||
@ -311,7 +321,10 @@ class FlashRWLargeAttention(torch.nn.Module):
|
||||
self.rotary_emb(query, torch.select(kv, dim=2, index=0), cos, sin)
|
||||
|
||||
kv_cache.store(
|
||||
key=kv[:, :, 0].contiguous(), value=kv[:, :, 1].contiguous(), slots=slots
|
||||
key=kv[:, :, 0].contiguous(),
|
||||
value=kv[:, :, 1].contiguous(),
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
@ -322,6 +335,7 @@ class FlashRWLargeAttention(torch.nn.Module):
|
||||
key=kv[:, :, 0],
|
||||
value=kv[:, :, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -336,6 +350,7 @@ class FlashRWLargeAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.dense(
|
||||
|
@ -17,6 +17,7 @@ from text_generation_server.layers import (
|
||||
TensorParallelEmbedding,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.gptq import GPTQWeightsLoader
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastLayerNorm,
|
||||
@ -257,6 +258,7 @@ class FlashMQAttention(torch.nn.Module):
|
||||
self.c_proj = load_row(
|
||||
config, prefix=f"{prefix}.c_proj", weights=weights, bias=True
|
||||
)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
self.kv_head_mapping = torch.zeros(
|
||||
self.num_heads, dtype=torch.int32, device=weights.device
|
||||
)
|
||||
@ -282,7 +284,12 @@ class FlashMQAttention(torch.nn.Module):
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
key_value = key_value.view(-1, 2, 1, self.head_size)
|
||||
|
||||
kv_cache.store(key=key_value[:, 0], value=key_value[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=key_value[:, 0],
|
||||
value=key_value[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -292,6 +299,7 @@ class FlashMQAttention(torch.nn.Module):
|
||||
key=key_value[:, 0],
|
||||
value=key_value[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -306,6 +314,7 @@ class FlashMQAttention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.c_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -38,6 +38,7 @@ from text_generation_server.layers import (
|
||||
SpeculativeHead,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastLayerNorm,
|
||||
FastRMSNorm,
|
||||
@ -188,6 +189,7 @@ class Starcoder2Attention(torch.nn.Module):
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
@ -231,7 +233,12 @@ class Starcoder2Attention(torch.nn.Module):
|
||||
else:
|
||||
kv_to_cache = kv
|
||||
|
||||
kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots)
|
||||
kv_cache.store(
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
@ -241,6 +248,7 @@ class Starcoder2Attention(torch.nn.Module):
|
||||
key=kv_to_cache[:, 0],
|
||||
value=kv_to_cache[:, 1],
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
@ -256,6 +264,7 @@ class Starcoder2Attention(torch.nn.Module):
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
@ -2313,6 +2313,7 @@ class FlashCausalLM(Model):
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
head_size=self.head_size,
|
||||
page_size=BLOCK_SIZE,
|
||||
kv_cache_dtype=self.kv_cache_dtype,
|
||||
dtype=self.dtype,
|
||||
window_left=self.sliding_window,
|
||||
)
|
||||
|
@ -207,7 +207,9 @@ class Weights:
|
||||
def get_shape(self, tensor_name: str):
|
||||
return self._get_slice(tensor_name).get_shape()
|
||||
|
||||
def get_tensor(self, tensor_name: str, to_device=True, to_dtype=True):
|
||||
def get_tensor(
|
||||
self, tensor_name: str, to_device: bool = True, to_dtype: bool = True
|
||||
) -> torch.Tensor:
|
||||
filename, tensor_name = self.get_filename(tensor_name)
|
||||
f = self._get_handle(filename)
|
||||
tensor = f.get_tensor(tensor_name)
|
||||
|
@ -172,6 +172,8 @@ def check_openapi(check: bool):
|
||||
# allow for trailing whitespace since it's not significant
|
||||
# and the precommit hook will remove it
|
||||
"lint",
|
||||
"--skip-rule",
|
||||
"security-defined",
|
||||
filename,
|
||||
],
|
||||
capture_output=True,
|
||||
|
Loading…
Reference in New Issue
Block a user