mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-21 14:52:20 +00:00
Some protection against sharding (illegal access becuase of g_idx)
This commit is contained in:
parent
2c9e1171bc
commit
c3d12ae2d4
@ -175,6 +175,7 @@ class FastLinear(nn.Linear):
|
||||
return tensor.contiguous()
|
||||
|
||||
if isinstance(self, TensorParallelRowLinear):
|
||||
raise ValueError("This is currently not functionning")
|
||||
get_slice = get_row_slice
|
||||
elif isinstance(self, TensorParallelColumnLinear):
|
||||
get_slice = get_col_slice
|
||||
@ -203,6 +204,7 @@ class FastLinear(nn.Linear):
|
||||
torch.testing.assert_close(f.get_tensor(f"{query_name}.q_proj.g_idx"), f.get_tensor(f"{query_name}.v_proj.g_idx"))
|
||||
self.qlinear.g_idx[:] = f.get_tensor(f"{query_name}.q_proj.g_idx")
|
||||
|
||||
|
||||
elif name == "self_attn.o_proj":
|
||||
self.qlinear.qweight[:] = get_slice(f, f"model.layers.{layer}.self_attn.o_proj.qweight")
|
||||
self.qlinear.qzeros[:] = get_slice(f, f"model.layers.{layer}.self_attn.o_proj.qzeros")
|
||||
@ -231,6 +233,11 @@ class FastLinear(nn.Linear):
|
||||
self.qlinear.g_idx[:] = get_slice(f, f"model.layers.{layer}.mlp.down_proj.g_idx")
|
||||
else:
|
||||
raise ValueError("Not handled")
|
||||
print(layer, name)
|
||||
if name == 'self_attn.query_key_value':
|
||||
out = self.qlinear(torch.zeros((6, self.in_features)).cuda().half())
|
||||
if name == "self_attn.o_proj":
|
||||
out = self.qlinear(torch.zeros((6, self.in_features)).cuda().half())
|
||||
|
||||
# Delete reference to data
|
||||
self.weight = None
|
||||
|
@ -1,423 +0,0 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.cuda.amp import custom_bwd, custom_fwd
|
||||
|
||||
try:
|
||||
import triton
|
||||
import triton.language as tl
|
||||
from . import custom_autotune
|
||||
|
||||
# code based https://github.com/fpgaminer/GPTQ-triton
|
||||
@custom_autotune.autotune(
|
||||
configs=[
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 256,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 64,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 64,
|
||||
'BLOCK_SIZE_K': 64,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=3, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 32,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=4),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
nearest_power_of_two=True,
|
||||
prune_configs_by={
|
||||
'early_config_prune': custom_autotune.matmul248_kernel_config_pruner,
|
||||
'perf_model': None,
|
||||
'top_k': None,
|
||||
},
|
||||
)
|
||||
@triton.jit
|
||||
def matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales, stride_zeros,
|
||||
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, K) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, N) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_n
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_n = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
||||
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_k[:, None] // infearure_per_bits) * stride_bk + offs_bn[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_k
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_bn[None, :]
|
||||
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
|
||||
|
||||
shifter = (offs_k % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_bn % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||
|
||||
for k in range(0, num_pid_k):
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs + g_idx[:, None] * stride_scales) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs + g_idx[:, None] * stride_zeros) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_K
|
||||
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
|
||||
g_ptrs += BLOCK_SIZE_K
|
||||
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
|
||||
@custom_autotune.autotune(configs=[
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 256,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 128,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 64,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=4, num_warps=4),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 32,
|
||||
'BLOCK_SIZE_K': 128,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 64,
|
||||
'BLOCK_SIZE_N': 64,
|
||||
'BLOCK_SIZE_K': 64,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=3, num_warps=8),
|
||||
triton.Config({
|
||||
'BLOCK_SIZE_M': 32,
|
||||
'BLOCK_SIZE_N': 128,
|
||||
'BLOCK_SIZE_K': 32,
|
||||
'GROUP_SIZE_M': 8
|
||||
}, num_stages=2, num_warps=4),
|
||||
],
|
||||
key=['M', 'N', 'K'],
|
||||
nearest_power_of_two=True)
|
||||
@triton.jit
|
||||
def transpose_matmul_248_kernel(a_ptr, b_ptr, c_ptr, scales_ptr, zeros_ptr, g_ptr, M, N, K, bits, maxq, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, stride_scales,
|
||||
stride_zeros, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr):
|
||||
"""
|
||||
Compute the matrix multiplication C = A x B.
|
||||
A is of shape (M, N) float16
|
||||
B is of shape (K//8, N) int32
|
||||
C is of shape (M, K) float16
|
||||
scales is of shape (G, N) float16
|
||||
zeros is of shape (G, N) float16
|
||||
g_ptr is of shape (K) int32
|
||||
"""
|
||||
infearure_per_bits = 32 // bits
|
||||
|
||||
pid = tl.program_id(axis=0)
|
||||
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
|
||||
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
|
||||
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
|
||||
num_pid_in_group = GROUP_SIZE_M * num_pid_k
|
||||
group_id = pid // num_pid_in_group
|
||||
first_pid_m = group_id * GROUP_SIZE_M
|
||||
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
|
||||
pid_m = first_pid_m + (pid % group_size_m)
|
||||
pid_k = (pid % num_pid_in_group) // group_size_m
|
||||
|
||||
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
||||
offs_bk = pid_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
|
||||
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
||||
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_n[None, :] * stride_ak) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
a_mask = (offs_am[:, None] < M)
|
||||
# b_ptrs is set up such that it repeats elements along the K axis 8 times
|
||||
b_ptrs = b_ptr + ((offs_bk[:, None] // infearure_per_bits) * stride_bk + offs_n[None, :] * stride_bn) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
|
||||
g_ptrs = g_ptr + offs_bk
|
||||
g_idx = tl.load(g_ptrs)
|
||||
|
||||
# shifter is used to extract the N bits of each element in the 32-bit word from B
|
||||
scales_ptrs = scales_ptr + offs_n[None, :] + g_idx[:, None] * stride_scales
|
||||
zeros_ptrs = zeros_ptr + (offs_n[None, :] // infearure_per_bits) + g_idx[:, None] * stride_zeros
|
||||
|
||||
shifter = (offs_bk % infearure_per_bits) * bits
|
||||
zeros_shifter = (offs_n % infearure_per_bits) * bits
|
||||
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_K), dtype=tl.float32)
|
||||
|
||||
for n in range(0, num_pid_n):
|
||||
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
|
||||
scales = tl.load(scales_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
zeros = tl.load(zeros_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
|
||||
|
||||
zeros = (zeros >> zeros_shifter[None, :]) & maxq
|
||||
zeros = (zeros + 1)
|
||||
|
||||
a = tl.load(a_ptrs, mask=a_mask, other=0.) # (BLOCK_SIZE_M, BLOCK_SIZE_N)
|
||||
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
|
||||
|
||||
# Now we need to unpack b (which is N-bit values) into 32-bit values
|
||||
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
|
||||
b = (b - zeros) * scales # Scale and shift
|
||||
b = tl.trans(b)
|
||||
|
||||
accumulator += tl.dot(a, b)
|
||||
a_ptrs += BLOCK_SIZE_N
|
||||
b_ptrs += BLOCK_SIZE_N
|
||||
scales_ptrs += BLOCK_SIZE_N
|
||||
zeros_ptrs += (BLOCK_SIZE_N // infearure_per_bits)
|
||||
|
||||
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bk[None, :]
|
||||
c_mask = (offs_am[:, None] < M) & (offs_bk[None, :] < K)
|
||||
tl.store(c_ptrs, accumulator, mask=c_mask)
|
||||
except:
|
||||
print('trioton not installed.')
|
||||
|
||||
|
||||
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
with torch.cuda.device(input.device):
|
||||
output = torch.empty((input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16)
|
||||
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(qweight.shape[1], META['BLOCK_SIZE_N']), )
|
||||
matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], input.shape[1], bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
|
||||
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0))
|
||||
return output
|
||||
|
||||
|
||||
def transpose_matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
with torch.cuda.device(input.device):
|
||||
output_dim = (qweight.shape[0] * 32) // bits
|
||||
output = torch.empty((input.shape[0], output_dim), device=input.device, dtype=torch.float16)
|
||||
grid = lambda META: (triton.cdiv(input.shape[0], META['BLOCK_SIZE_M']) * triton.cdiv(output_dim, META['BLOCK_SIZE_K']), )
|
||||
transpose_matmul_248_kernel[grid](input, qweight, output, scales, qzeros, g_idx, input.shape[0], qweight.shape[1], output_dim, bits, maxq, input.stride(0), input.stride(1), qweight.stride(0),
|
||||
qweight.stride(1), output.stride(0), output.stride(1), scales.stride(0), qzeros.stride(0))
|
||||
return output
|
||||
|
||||
|
||||
class QuantLinearFunction(torch.autograd.Function):
|
||||
|
||||
@staticmethod
|
||||
@custom_fwd(cast_inputs=torch.float16)
|
||||
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
|
||||
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
ctx.save_for_backward(qweight, scales, qzeros, g_idx)
|
||||
ctx.bits, ctx.maxq = bits, maxq
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
@custom_bwd
|
||||
def backward(ctx, grad_output):
|
||||
qweight, scales, qzeros, g_idx = ctx.saved_tensors
|
||||
bits, maxq = ctx.bits, ctx.maxq
|
||||
grad_input = None
|
||||
|
||||
if ctx.needs_input_grad[0]:
|
||||
grad_input = transpose_matmul248(grad_output, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
return grad_input, None, None, None, None, None, None
|
||||
|
||||
|
||||
class QuantLinear(nn.Module):
|
||||
|
||||
def __init__(self, bits, groupsize, infeatures, outfeatures, bias):
|
||||
super().__init__()
|
||||
if bits not in [2, 4, 8]:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
self.infeatures = infeatures
|
||||
self.outfeatures = outfeatures
|
||||
self.bits = bits
|
||||
self.maxq = 2**self.bits - 1
|
||||
self.groupsize = groupsize if groupsize != -1 else infeatures
|
||||
|
||||
self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32))
|
||||
self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32))
|
||||
self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16))
|
||||
self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype=torch.int32))
|
||||
if bias:
|
||||
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def pack(self, linear, scales, zeros, g_idx=None):
|
||||
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
|
||||
|
||||
scales = scales.t().contiguous()
|
||||
zeros = zeros.t().contiguous()
|
||||
scale_zeros = zeros * scales
|
||||
self.scales = scales.clone().half()
|
||||
if linear.bias is not None:
|
||||
self.bias = linear.bias.clone().half()
|
||||
|
||||
intweight = []
|
||||
for idx in range(self.infeatures):
|
||||
intweight.append(torch.round((linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:, None])
|
||||
intweight = torch.cat(intweight, dim=1)
|
||||
intweight = intweight.t().contiguous()
|
||||
intweight = intweight.numpy().astype(np.uint32)
|
||||
qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
|
||||
i = 0
|
||||
row = 0
|
||||
while row < qweight.shape[0]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qweight[row] |= intweight[j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
row += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
|
||||
qweight = qweight.astype(np.int32)
|
||||
self.qweight = torch.from_numpy(qweight)
|
||||
|
||||
zeros -= 1
|
||||
zeros = zeros.numpy().astype(np.uint32)
|
||||
qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
|
||||
i = 0
|
||||
col = 0
|
||||
while col < qzeros.shape[1]:
|
||||
if self.bits in [2, 4, 8]:
|
||||
for j in range(i, i + (32 // self.bits)):
|
||||
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
|
||||
i += 32 // self.bits
|
||||
col += 1
|
||||
else:
|
||||
raise NotImplementedError("Only 2,4,8 bits are supported.")
|
||||
|
||||
qzeros = qzeros.astype(np.int32)
|
||||
self.qzeros = torch.from_numpy(qzeros)
|
||||
|
||||
def forward(self, x):
|
||||
out_shape = x.shape[:-1] + (self.outfeatures, )
|
||||
out = QuantLinearFunction.apply(x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq)
|
||||
out = out + self.bias if self.bias is not None else out
|
||||
return out.reshape(out_shape)
|
||||
|
||||
|
||||
def make_quant_linear(module, names, bits, groupsize, name=''):
|
||||
if isinstance(module, QuantLinear):
|
||||
return
|
||||
for attr in dir(module):
|
||||
tmp = getattr(module, attr)
|
||||
name1 = name + '.' + attr if name != '' else attr
|
||||
if name1 in names:
|
||||
delattr(module, attr)
|
||||
setattr(module, attr, QuantLinear(bits, groupsize, tmp.in_features, tmp.out_features, tmp.bias is not None))
|
||||
for name1, child in module.named_children():
|
||||
make_quant_linear(child, names, bits, groupsize, name + '.' + name1 if name != '' else name1)
|
||||
|
||||
|
||||
def autotune_warmup_linear(model, transpose=False):
|
||||
"""
|
||||
Pre-tunes the quantized kernel
|
||||
"""
|
||||
from tqdm import tqdm
|
||||
|
||||
kn_values = {}
|
||||
|
||||
for _, m in model.named_modules():
|
||||
if not isinstance(m, QuantLinear):
|
||||
continue
|
||||
|
||||
k = m.infeatures
|
||||
n = m.outfeatures
|
||||
|
||||
if (k, n) not in kn_values:
|
||||
kn_values[(k, n)] = (m.qweight.cuda(), m.scales.cuda(), m.qzeros.cuda(), m.g_idx.cuda(), m.bits, m.maxq)
|
||||
|
||||
print(f'Found {len(kn_values)} unique KN Linear values.')
|
||||
|
||||
print('Warming up autotune cache ...')
|
||||
with torch.no_grad():
|
||||
for m in tqdm(range(0, 12)):
|
||||
m = 2**m # [1, 2048]
|
||||
for (k, n), (qweight, scales, qzeros, g_idx, bits, maxq) in kn_values.items():
|
||||
a = torch.randn(m, k, dtype=torch.float16, device='cuda')
|
||||
matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
if transpose:
|
||||
a = torch.randn(m, n, dtype=torch.float16, device='cuda')
|
||||
transpose_matmul248(a, qweight, scales, qzeros, g_idx, bits, maxq)
|
||||
del kn_values
|
Loading…
Reference in New Issue
Block a user