mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 04:14:52 +00:00
Support latest moe kernels
This commit is contained in:
parent
d39f896c5c
commit
c1a564e738
@ -12,7 +12,7 @@ from text_generation_server.layers.fp8 import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from moe_kernels.fused_moe import fused_moe
|
from .unquantized import fused_moe
|
||||||
except Exception:
|
except Exception:
|
||||||
fused_moe = None
|
fused_moe = None
|
||||||
|
|
||||||
|
@ -252,7 +252,6 @@ def fused_marlin_moe(
|
|||||||
topk: int,
|
topk: int,
|
||||||
renormalize: bool,
|
renormalize: bool,
|
||||||
num_bits: int = 8,
|
num_bits: int = 8,
|
||||||
override_config: Optional[Dict[str, Any]] = None,
|
|
||||||
use_grouped_topk: bool = False,
|
use_grouped_topk: bool = False,
|
||||||
num_expert_group: Optional[int] = None,
|
num_expert_group: Optional[int] = None,
|
||||||
custom_routing_function: Optional[Callable] = None,
|
custom_routing_function: Optional[Callable] = None,
|
||||||
@ -279,8 +278,6 @@ def fused_marlin_moe(
|
|||||||
- w1_zeros (Optional[torch.Tensor]): Optional zero points to be used for w1.
|
- w1_zeros (Optional[torch.Tensor]): Optional zero points to be used for w1.
|
||||||
- w2_zeros (Optional[torch.Tensor]): Optional zero points to be used for w2.
|
- w2_zeros (Optional[torch.Tensor]): Optional zero points to be used for w2.
|
||||||
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
||||||
- override_config (Optional[Dict[str, Any]]): Optional override
|
|
||||||
for the kernel configuration.
|
|
||||||
- num_bits (bool): The number of bits in expert weights quantization.
|
- num_bits (bool): The number of bits in expert weights quantization.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
@ -340,7 +337,6 @@ def fused_marlin_moe(
|
|||||||
sort_indices2=sort_indices2,
|
sort_indices2=sort_indices2,
|
||||||
w1_zeros=w1_zeros,
|
w1_zeros=w1_zeros,
|
||||||
w2_zeros=w2_zeros,
|
w2_zeros=w2_zeros,
|
||||||
override_config=override_config,
|
|
||||||
num_bits=num_bits,
|
num_bits=num_bits,
|
||||||
is_k_full=is_k_full,
|
is_k_full=is_k_full,
|
||||||
)
|
)
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
from typing import Optional
|
from typing import Any, Callable, Dict, List, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -86,7 +86,7 @@ class UnquantizedSparseMoELayer(nn.Module):
|
|||||||
num_expert_group=self.n_expert_group,
|
num_expert_group=self.n_expert_group,
|
||||||
topk_group=self.topk_group,
|
topk_group=self.topk_group,
|
||||||
)
|
)
|
||||||
return moe_kernels.fused_moe(
|
return fused_moe(
|
||||||
x,
|
x,
|
||||||
w1=self.gate_up_proj,
|
w1=self.gate_up_proj,
|
||||||
w2=self.down_proj,
|
w2=self.down_proj,
|
||||||
@ -159,3 +159,110 @@ def _load_expert_weights_row(
|
|||||||
assert all_weight is not None
|
assert all_weight is not None
|
||||||
|
|
||||||
return all_weight
|
return all_weight
|
||||||
|
|
||||||
|
|
||||||
|
def fused_moe(
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
w1: torch.Tensor,
|
||||||
|
w2: torch.Tensor,
|
||||||
|
gating_output: torch.Tensor,
|
||||||
|
topk: int,
|
||||||
|
renormalize: bool,
|
||||||
|
inplace: bool = False,
|
||||||
|
use_grouped_topk: bool = False,
|
||||||
|
num_expert_group: Optional[int] = None,
|
||||||
|
topk_group: Optional[int] = None,
|
||||||
|
custom_routing_function: Optional[Callable] = None,
|
||||||
|
scoring_func: str = "softmax",
|
||||||
|
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||||
|
use_fp8_w8a8: bool = False,
|
||||||
|
use_int8_w8a16: bool = False,
|
||||||
|
use_int4_w4a16: bool = False,
|
||||||
|
w1_scale: Optional[torch.Tensor] = None,
|
||||||
|
w2_scale: Optional[torch.Tensor] = None,
|
||||||
|
a1_scale: Optional[torch.Tensor] = None,
|
||||||
|
a2_scale: Optional[torch.Tensor] = None,
|
||||||
|
block_shape: Optional[List[int]] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
This function computes a Mixture of Experts (MoE) layer using two sets of
|
||||||
|
weights, w1 and w2, and top-k gating mechanism.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- hidden_states (torch.Tensor): The input tensor to the MoE layer.
|
||||||
|
- w1 (torch.Tensor): The first set of expert weights.
|
||||||
|
- w2 (torch.Tensor): The second set of expert weights.
|
||||||
|
- gating_output (torch.Tensor): The output of the gating operation
|
||||||
|
(before softmax).
|
||||||
|
- topk (int): The number of top-k experts to select.
|
||||||
|
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
||||||
|
- inplace (bool): If True, perform the operation in-place.
|
||||||
|
Defaults to False.
|
||||||
|
- num_expert_group: Optional[int]: additional parameter for grouped_topk
|
||||||
|
- topk_group: Optional[int]: additional parameter for grouped_topk
|
||||||
|
- use_grouped_topk: If True, use grouped_topk instead of fused_topk
|
||||||
|
note: Deepseekv2 model uses grouped_topk
|
||||||
|
- use_fp8_w8a8 (bool): If True, use fp8 arithmetic to compute the inner
|
||||||
|
products for w1 and w2. Defaults to False.
|
||||||
|
- use_int8_w8a16 (bool): If True, use fp8 arithmetic to compute the inner
|
||||||
|
products for w1 and w2. Defaults to False.
|
||||||
|
- use_int4_w4a16 (bool): If True, use matmul of int4 weight and bf16/fp16
|
||||||
|
activation to compute the inner products for w1 and w2.
|
||||||
|
Defaults to False.
|
||||||
|
- w1_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||||
|
w1.
|
||||||
|
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||||
|
w2.
|
||||||
|
- a1_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||||
|
a1.
|
||||||
|
- a2_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||||
|
a2.
|
||||||
|
- block_shape: (Optional[List[int]]): Optional block size for block-wise
|
||||||
|
quantization.
|
||||||
|
Returns:
|
||||||
|
- torch.Tensor: The output tensor after applying the MoE layer.
|
||||||
|
"""
|
||||||
|
# Check constraints.
|
||||||
|
assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
|
||||||
|
|
||||||
|
if use_grouped_topk:
|
||||||
|
assert num_expert_group is not None and topk_group is not None
|
||||||
|
from loguru import logger
|
||||||
|
import inspect
|
||||||
|
|
||||||
|
logger.info(f"{inspect.signature(moe_kernels.grouped_topk)}")
|
||||||
|
topk_weights, topk_ids = moe_kernels.grouped_topk(
|
||||||
|
hidden_states,
|
||||||
|
gating_output,
|
||||||
|
topk,
|
||||||
|
renormalize,
|
||||||
|
num_expert_group,
|
||||||
|
topk_group,
|
||||||
|
scoring_func=scoring_func,
|
||||||
|
e_score_correction_bias=e_score_correction_bias,
|
||||||
|
)
|
||||||
|
elif custom_routing_function is None:
|
||||||
|
topk_weights, topk_ids = moe_kernels.fused_topk(
|
||||||
|
hidden_states, gating_output, topk, renormalize
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
topk_weights, topk_ids = custom_routing_function(
|
||||||
|
hidden_states, gating_output, topk, renormalize
|
||||||
|
)
|
||||||
|
|
||||||
|
return moe_kernels.fused_experts(
|
||||||
|
hidden_states,
|
||||||
|
w1,
|
||||||
|
w2,
|
||||||
|
topk_weights,
|
||||||
|
topk_ids,
|
||||||
|
inplace=inplace,
|
||||||
|
use_fp8_w8a8=use_fp8_w8a8,
|
||||||
|
use_int8_w8a16=use_int8_w8a16,
|
||||||
|
use_int4_w4a16=use_int4_w4a16,
|
||||||
|
w1_scale=w1_scale,
|
||||||
|
w2_scale=w2_scale,
|
||||||
|
a1_scale=a1_scale,
|
||||||
|
a2_scale=a2_scale,
|
||||||
|
block_shape=block_shape,
|
||||||
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user