mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 04:14:52 +00:00
Support latest moe kernels
This commit is contained in:
parent
d39f896c5c
commit
c1a564e738
@ -12,7 +12,7 @@ from text_generation_server.layers.fp8 import (
|
||||
)
|
||||
|
||||
try:
|
||||
from moe_kernels.fused_moe import fused_moe
|
||||
from .unquantized import fused_moe
|
||||
except Exception:
|
||||
fused_moe = None
|
||||
|
||||
|
@ -252,7 +252,6 @@ def fused_marlin_moe(
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
num_bits: int = 8,
|
||||
override_config: Optional[Dict[str, Any]] = None,
|
||||
use_grouped_topk: bool = False,
|
||||
num_expert_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
@ -279,8 +278,6 @@ def fused_marlin_moe(
|
||||
- w1_zeros (Optional[torch.Tensor]): Optional zero points to be used for w1.
|
||||
- w2_zeros (Optional[torch.Tensor]): Optional zero points to be used for w2.
|
||||
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
||||
- override_config (Optional[Dict[str, Any]]): Optional override
|
||||
for the kernel configuration.
|
||||
- num_bits (bool): The number of bits in expert weights quantization.
|
||||
|
||||
Returns:
|
||||
@ -340,7 +337,6 @@ def fused_marlin_moe(
|
||||
sort_indices2=sort_indices2,
|
||||
w1_zeros=w1_zeros,
|
||||
w2_zeros=w2_zeros,
|
||||
override_config=override_config,
|
||||
num_bits=num_bits,
|
||||
is_k_full=is_k_full,
|
||||
)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Optional
|
||||
from typing import Any, Callable, Dict, List, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -86,7 +86,7 @@ class UnquantizedSparseMoELayer(nn.Module):
|
||||
num_expert_group=self.n_expert_group,
|
||||
topk_group=self.topk_group,
|
||||
)
|
||||
return moe_kernels.fused_moe(
|
||||
return fused_moe(
|
||||
x,
|
||||
w1=self.gate_up_proj,
|
||||
w2=self.down_proj,
|
||||
@ -159,3 +159,110 @@ def _load_expert_weights_row(
|
||||
assert all_weight is not None
|
||||
|
||||
return all_weight
|
||||
|
||||
|
||||
def fused_moe(
|
||||
hidden_states: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
inplace: bool = False,
|
||||
use_grouped_topk: bool = False,
|
||||
num_expert_group: Optional[int] = None,
|
||||
topk_group: Optional[int] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
use_fp8_w8a8: bool = False,
|
||||
use_int8_w8a16: bool = False,
|
||||
use_int4_w4a16: bool = False,
|
||||
w1_scale: Optional[torch.Tensor] = None,
|
||||
w2_scale: Optional[torch.Tensor] = None,
|
||||
a1_scale: Optional[torch.Tensor] = None,
|
||||
a2_scale: Optional[torch.Tensor] = None,
|
||||
block_shape: Optional[List[int]] = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
This function computes a Mixture of Experts (MoE) layer using two sets of
|
||||
weights, w1 and w2, and top-k gating mechanism.
|
||||
|
||||
Parameters:
|
||||
- hidden_states (torch.Tensor): The input tensor to the MoE layer.
|
||||
- w1 (torch.Tensor): The first set of expert weights.
|
||||
- w2 (torch.Tensor): The second set of expert weights.
|
||||
- gating_output (torch.Tensor): The output of the gating operation
|
||||
(before softmax).
|
||||
- topk (int): The number of top-k experts to select.
|
||||
- renormalize (bool): If True, renormalize the top-k weights to sum to 1.
|
||||
- inplace (bool): If True, perform the operation in-place.
|
||||
Defaults to False.
|
||||
- num_expert_group: Optional[int]: additional parameter for grouped_topk
|
||||
- topk_group: Optional[int]: additional parameter for grouped_topk
|
||||
- use_grouped_topk: If True, use grouped_topk instead of fused_topk
|
||||
note: Deepseekv2 model uses grouped_topk
|
||||
- use_fp8_w8a8 (bool): If True, use fp8 arithmetic to compute the inner
|
||||
products for w1 and w2. Defaults to False.
|
||||
- use_int8_w8a16 (bool): If True, use fp8 arithmetic to compute the inner
|
||||
products for w1 and w2. Defaults to False.
|
||||
- use_int4_w4a16 (bool): If True, use matmul of int4 weight and bf16/fp16
|
||||
activation to compute the inner products for w1 and w2.
|
||||
Defaults to False.
|
||||
- w1_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
w1.
|
||||
- w2_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
w2.
|
||||
- a1_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
a1.
|
||||
- a2_scale (Optional[torch.Tensor]): Optional scale to be used for
|
||||
a2.
|
||||
- block_shape: (Optional[List[int]]): Optional block size for block-wise
|
||||
quantization.
|
||||
Returns:
|
||||
- torch.Tensor: The output tensor after applying the MoE layer.
|
||||
"""
|
||||
# Check constraints.
|
||||
assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"
|
||||
|
||||
if use_grouped_topk:
|
||||
assert num_expert_group is not None and topk_group is not None
|
||||
from loguru import logger
|
||||
import inspect
|
||||
|
||||
logger.info(f"{inspect.signature(moe_kernels.grouped_topk)}")
|
||||
topk_weights, topk_ids = moe_kernels.grouped_topk(
|
||||
hidden_states,
|
||||
gating_output,
|
||||
topk,
|
||||
renormalize,
|
||||
num_expert_group,
|
||||
topk_group,
|
||||
scoring_func=scoring_func,
|
||||
e_score_correction_bias=e_score_correction_bias,
|
||||
)
|
||||
elif custom_routing_function is None:
|
||||
topk_weights, topk_ids = moe_kernels.fused_topk(
|
||||
hidden_states, gating_output, topk, renormalize
|
||||
)
|
||||
else:
|
||||
topk_weights, topk_ids = custom_routing_function(
|
||||
hidden_states, gating_output, topk, renormalize
|
||||
)
|
||||
|
||||
return moe_kernels.fused_experts(
|
||||
hidden_states,
|
||||
w1,
|
||||
w2,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=inplace,
|
||||
use_fp8_w8a8=use_fp8_w8a8,
|
||||
use_int8_w8a16=use_int8_w8a16,
|
||||
use_int4_w4a16=use_int4_w4a16,
|
||||
w1_scale=w1_scale,
|
||||
w2_scale=w2_scale,
|
||||
a1_scale=a1_scale,
|
||||
a2_scale=a2_scale,
|
||||
block_shape=block_shape,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user