Merge pull request #187 from yuanwu2017/v2.0.4

This commit is contained in:
regisss 2024-08-12 23:59:03 +02:00 committed by GitHub
commit c09f5bc930
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
151 changed files with 12972 additions and 3326 deletions

1
.gitignore vendored
View File

@ -13,3 +13,4 @@ server/exllama_kernels/exllama_kernels/hip_buffers.cuh
server/exllama_kernels/exllama_kernels/exllama_ext_hip.cpp server/exllama_kernels/exllama_kernels/exllama_ext_hip.cpp
data/ data/
load_tests/*.json

13
Cargo.lock generated
View File

@ -78,9 +78,9 @@ dependencies = [
[[package]] [[package]]
name = "anstyle-query" name = "anstyle-query"
version = "1.1.0" version = "1.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ad186efb764318d35165f1758e7dcef3b10628e26d41a44bc5550652e6804391" checksum = "a64c907d4e79225ac72e2a354c9ce84d50ebb4586dee56c82b3ee73004f537f5"
dependencies = [ dependencies = [
"windows-sys 0.52.0", "windows-sys 0.52.0",
] ]
@ -3552,7 +3552,7 @@ dependencies = [
[[package]] [[package]]
name = "text-generation-benchmark" name = "text-generation-benchmark"
version = "2.0.1" version = "2.0.4"
dependencies = [ dependencies = [
"average", "average",
"clap", "clap",
@ -3573,7 +3573,7 @@ dependencies = [
[[package]] [[package]]
name = "text-generation-client" name = "text-generation-client"
version = "2.0.1" version = "2.0.4"
dependencies = [ dependencies = [
"futures", "futures",
"grpc-metadata", "grpc-metadata",
@ -3590,7 +3590,7 @@ dependencies = [
[[package]] [[package]]
name = "text-generation-launcher" name = "text-generation-launcher"
version = "2.0.1" version = "2.0.4"
dependencies = [ dependencies = [
"clap", "clap",
"ctrlc", "ctrlc",
@ -3601,6 +3601,7 @@ dependencies = [
"reqwest", "reqwest",
"serde", "serde",
"serde_json", "serde_json",
"thiserror",
"tracing", "tracing",
"tracing-subscriber", "tracing-subscriber",
"vergen", "vergen",
@ -3608,7 +3609,7 @@ dependencies = [
[[package]] [[package]]
name = "text-generation-router" name = "text-generation-router"
version = "2.0.1" version = "2.0.4"
dependencies = [ dependencies = [
"async-stream", "async-stream",
"axum", "axum",

View File

@ -9,7 +9,7 @@ members = [
resolver = "2" resolver = "2"
[workspace.package] [workspace.package]
version = "2.0.2" version = "2.0.4"
edition = "2021" edition = "2021"
authors = ["Olivier Dehaene"] authors = ["Olivier Dehaene"]
homepage = "https://github.com/huggingface/text-generation-inference" homepage = "https://github.com/huggingface/text-generation-inference"

View File

@ -1,5 +1,5 @@
# Rust builder # Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.75 AS chef FROM lukemathwalker/cargo-chef:latest-rust-1.78 AS chef
WORKDIR /usr/src WORKDIR /usr/src
FROM chef as planner FROM chef as planner
@ -50,6 +50,7 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins
ca-certificates \ ca-certificates \
make \ make \
curl \ curl \
git \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*
# Install server # Install server

View File

@ -1,5 +1,5 @@
# Rust builder # Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.75 AS chef FROM lukemathwalker/cargo-chef:latest-rust-1.78 AS chef
WORKDIR /usr/src WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
@ -36,7 +36,7 @@ COPY launcher launcher
RUN cargo build --release RUN cargo build --release
# Text Generation Inference base image for RoCm # Text Generation Inference base image for RoCm
FROM rocm/dev-ubuntu-22.04:5.7 as base FROM rocm/dev-ubuntu-22.04:6.1.1_hip_update as base
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \ build-essential \
@ -50,13 +50,24 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins
# Needed to build VLLM & flash. # Needed to build VLLM & flash.
rocthrust-dev \ rocthrust-dev \
hipsparse-dev \ hipsparse-dev \
hipblas-dev && \ hipblas-dev \
hipblaslt-dev \
rocblas-dev \
hiprand-dev \
rocrand-dev \
miopen-hip-dev \
hipfft-dev \
hipcub-dev \
hipsolver-dev \
rccl-dev \
cmake \
python3-dev && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
# Keep in sync with `server/pyproject.toml # Keep in sync with `server/pyproject.toml
ARG MAMBA_VERSION=23.1.0-1 ARG MAMBA_VERSION=23.1.0-1
ARG PYTORCH_VERSION='2.2.0.dev0' ARG PYTORCH_VERSION='2.3.0'
ARG ROCM_VERSION='5.7' ARG ROCM_VERSION='6.0.2'
ARG PYTHON_VERSION='3.10.10' ARG PYTHON_VERSION='3.10.10'
# Automatically set by buildx # Automatically set by buildx
ARG TARGETPLATFORM ARG TARGETPLATFORM
@ -75,12 +86,44 @@ RUN chmod +x ~/mambaforge.sh && \
mamba init && \ mamba init && \
rm ~/mambaforge.sh rm ~/mambaforge.sh
# Install PyTorch 2.2 RC compiled against RoCm 5.7, as VLLM can not be compiled with RoCm 5.6. # Install flash-attention, torch dependencies
RUN pip install torch --index-url https://download.pytorch.org/whl/test/rocm5.7/ RUN pip install numpy einops ninja --no-cache-dir
RUN conda install intel::mkl-static intel::mkl-include
RUN pip uninstall -y triton && \
git clone --depth 1 --single-branch https://github.com/ROCm/triton.git && \
cd triton/python && \
pip install .
RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir
ARG _GLIBCXX_USE_CXX11_ABI="1"
ARG CMAKE_PREFIX_PATH="/opt/conda"
ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942"
ARG BUILD_CAFFE2="0" \
BUILD_CAFFE2_OPS="0" \
USE_CUDA="0" \
USE_ROCM="1" \
BUILD_TEST="0" \
USE_FBGEMM="0" \
USE_NNPACK="0" \
USE_QNNPACK="0" \
USE_XNNPACK="0" \
USE_FLASH_ATTENTION="1" \
USE_MEM_EFF_ATTENTION="0"
RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install
# Set as recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm
ENV HIP_FORCE_DEV_KERNARG=1
# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK.
# However, Triton requires a tunning for each prompt length, which is prohibitive.
ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0
FROM base AS kernel-builder FROM base AS kernel-builder
# Build vllm kernels # # Build vllm kernels
FROM kernel-builder AS vllm-builder FROM kernel-builder AS vllm-builder
WORKDIR /usr/src WORKDIR /usr/src
@ -102,21 +145,21 @@ RUN make build-flash-attention-v2-rocm
FROM kernel-builder as custom-kernels-builder FROM kernel-builder as custom-kernels-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/custom_kernels/ . COPY server/custom_kernels/ .
RUN PYTORCH_ROCM_ARCH=gfx90a python setup.py build RUN python setup.py build
# Build exllama kernels # Build exllama kernels
FROM kernel-builder as exllama-kernels-builder FROM kernel-builder as exllama-kernels-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/exllama_kernels/ . COPY server/exllama_kernels/ .
RUN PYTORCH_ROCM_ARCH="gfx90a" python setup.py build RUN python setup.py build
# Build exllama v2 kernels # Build exllama v2 kernels
FROM kernel-builder as exllamav2-kernels-builder FROM kernel-builder as exllamav2-kernels-builder
WORKDIR /usr/src WORKDIR /usr/src
COPY server/exllamav2_kernels/ . COPY server/exllamav2_kernels/ .
RUN PYTORCH_ROCM_ARCH="gfx90a" python setup.py build RUN python setup.py build
FROM base as base-copy FROM base as base-copy
@ -140,9 +183,6 @@ COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310
# Copy build artifacts from exllamav2 kernels builder # Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Install flash-attention dependencies
RUN pip install einops --no-cache-dir
# Install server # Install server
COPY proto proto COPY proto proto
COPY server server COPY server server
@ -160,7 +200,8 @@ COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bi
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher
# AWS Sagemaker compatible image # AWS Sagemaker compatible image
FROM base-copy as sagemaker FROM base as sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh RUN chmod +x entrypoint.sh
@ -169,5 +210,8 @@ ENTRYPOINT ["./entrypoint.sh"]
# Final image # Final image
FROM base-copy FROM base-copy
ENTRYPOINT ["text-generation-launcher"] COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh
ENTRYPOINT ["/tgi-entrypoint.sh"]
CMD ["--json-output"] CMD ["--json-output"]

View File

@ -1,4 +1,4 @@
FROM lukemathwalker/cargo-chef:latest-rust-1.75 AS chef FROM lukemathwalker/cargo-chef:latest-rust-1.78 AS chef
WORKDIR /usr/src WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
@ -36,18 +36,19 @@ RUN cargo build --release
# Text Generation Inference base image for Intel # Text Generation Inference base image for Intel
FROM intel/intel-extension-for-pytorch:2.1.10-xpu as base FROM intel/intel-extension-for-pytorch:2.1.30-xpu as base
USER root USER root
# libssl.so.1.1 is not installed on Ubuntu 22.04 by default, install it # libssl.so.1.1 is not installed on Ubuntu 22.04 by default, install it
RUN wget http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb && \ RUN wget http://nz2.archive.ubuntu.com/ubuntu/pool/main/o/openssl/libssl1.1_1.1.1f-1ubuntu2_amd64.deb && \
dpkg -i ./libssl1.1_1.1.1f-1ubuntu2_amd64.deb dpkg -i ./libssl1.1_1.1.1f-1ubuntu2_amd64.deb
RUN wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --dearmor | tee /usr/share/keyrings/intel-graphics.gpg > /dev/null
RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \ RUN wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
| gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list | gpg --dearmor | tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null && echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | tee /etc/apt/sources.list.d/oneAPI.list
RUN apt-get update && apt install -y intel-basekit xpu-smi cmake python3-dev ninja-build RUN apt-get update && apt install -y intel-basekit xpu-smi
# Text Generation Inference base env # Text Generation Inference base env
ENV HUGGINGFACE_HUB_CACHE=/data \ ENV HUGGINGFACE_HUB_CACHE=/data \
@ -56,9 +57,8 @@ ENV HUGGINGFACE_HUB_CACHE=/data \
WORKDIR /usr/src WORKDIR /usr/src
# Build pytorch and ipex RUN wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/xpu/intel_extension_for_pytorch-2.1.30a0-cp310-cp310-linux_x86_64.whl
RUN git clone https://github.com/intel/intel-extension-for-pytorch && cd intel-extension-for-pytorch && git checkout -b xpu_main origin/xpu-main RUN pip install intel_extension_for_pytorch-2.1.30a0-cp310-cp310-linux_x86_64.whl
RUN git clone https://github.com/pytorch/pytorch.git && cd pytorch && git checkout 209f2fa8ff86652f67d75c2f19bf9cb9942fd018 && git apply /usr/src/intel-extension-for-pytorch/torch_patches/00*.patch
# Install server # Install server
COPY proto proto COPY proto proto
@ -72,25 +72,11 @@ RUN cd server && \
ENV CCL_ROOT=/opt/intel/oneapi/ccl/latest ENV CCL_ROOT=/opt/intel/oneapi/ccl/latest
ENV I_MPI_ROOT=/opt/intel/oneapi/mpi/latest ENV I_MPI_ROOT=/opt/intel/oneapi/mpi/latest
ENV FI_PROVIDER_PATH=/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/lib/prov:/usr/lib/x86_64-linux-gnu/libfabric ENV FI_PROVIDER_PATH=/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/lib/prov:/usr/lib/x86_64-linux-gnu/libfabric
ENV DIAGUTIL_PATH=/opt/intel/oneapi/compiler/latest/etc/compiler/sys_check/sys_check.sh
ENV CCL_CONFIGURATION=cpu_gpu_dpcpp
ENV MANPATH=/opt/intel/oneapi/mpi/latest/share/man:/opt/intel/oneapi/mpi/latest/share/man:/opt/intel/oneapi/compiler/latest/share/man
ENV CMAKE_PREFIX_PATH=/opt/intel/oneapi/mkl/latest/lib/cmake:/opt/intel/oneapi/compiler/latest
ENV CMPLR_ROOT=/opt/intel/oneapi/compiler/latest
ENV LIBRARY_PATH=/opt/intel/oneapi/mpi/latest/lib:/opt/intel/oneapi/ccl/latest/lib/:/opt/intel/oneapi/mkl/latest/lib/:/opt/intel/oneapi/compiler/latest/lib ENV LIBRARY_PATH=/opt/intel/oneapi/mpi/latest/lib:/opt/intel/oneapi/ccl/latest/lib/:/opt/intel/oneapi/mkl/latest/lib/:/opt/intel/oneapi/compiler/latest/lib
ENV OCL_ICD_FILENAMES=libintelocl_emu.so:libalteracl.so:/opt/intel/oneapi/compiler/latest/lib/libintelocl.so
ENV CLASSPATH=/opt/intel/oneapi/mpi/latest/share/java/mpi.jar:/opt/intel/oneapi/mpi/latest/share/java/mpi.jar
ENV LD_LIBRARY_PATH=/opt/intel/oneapi/ccl/latest/lib/:/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/lib:/opt/intel/oneapi/mpi/latest/lib:/opt/intel/oneapi/mkl/latest/lib:/opt/intel/oneapi/compiler/latest/opt/compiler/lib:/opt/intel/oneapi/compiler/latest/lib:/opt/intel/oneapi/lib:/opt/intel/oneapi/lib/intel64: ENV LD_LIBRARY_PATH=/opt/intel/oneapi/ccl/latest/lib/:/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/lib:/opt/intel/oneapi/mpi/latest/lib:/opt/intel/oneapi/mkl/latest/lib:/opt/intel/oneapi/compiler/latest/opt/compiler/lib:/opt/intel/oneapi/compiler/latest/lib:/opt/intel/oneapi/lib:/opt/intel/oneapi/lib/intel64:
ENV MKLROOT=/opt/intel/oneapi/mkl/latest
ENV NLSPATH=/opt/intel/oneapi/mkl/latest/share/locale/%l_%t/%N:/opt/intel/oneapi/compiler/latest/lib/locale/%l_%t/%N
ENV PATH=/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/bin:/opt/intel/oneapi/mpi/latest/bin:/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/bin:/opt/intel/oneapi/mkl/latest/bin/:/opt/intel/oneapi/compiler/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin ENV PATH=/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/bin:/opt/intel/oneapi/mpi/latest/bin:/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/bin:/opt/intel/oneapi/mkl/latest/bin/:/opt/intel/oneapi/compiler/latest/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV CPATH=/opt/intel/oneapi/mpi/latest/include:/opt/intel/oneapi/ccl/latest/include:/opt/intel/oneapi/mkl/latest/include
ENV CCL_ZE_IPC_EXCHANGE=sockets ENV CCL_ZE_IPC_EXCHANGE=sockets
RUN pip uninstall -y torch && cd pytorch && git submodule update --init --recursive && python setup.py install
RUN pip uninstall -y intel-extension-for-pytorch && cd intel-extension-for-pytorch && git submodule update --init --recursive && USE_AOT_DEVLIST='pvc' BUILD_SEPARATE_OPS=ON BUILD_WITH_CPU=ON USE_XETLA=ON python setup.py install
# Install benchmarker # Install benchmarker
COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router # Install router

3999
assets/tgi_grafana.json Normal file

File diff suppressed because it is too large Load Diff

View File

@ -11,7 +11,7 @@ pub(crate) enum Event {
/// Key press. /// Key press.
Key(event::KeyEvent), Key(event::KeyEvent),
/// Terminal resize. /// Terminal resize.
Resize(u16, u16), Resize,
} }
pub(crate) async fn terminal_event_task( pub(crate) async fn terminal_event_task(
@ -47,8 +47,8 @@ async fn event_loop(fps: u32, event_sender: mpsc::Sender<Event>) {
if event::poll(Duration::from_secs(0)).expect("no events available") { if event::poll(Duration::from_secs(0)).expect("no events available") {
match event::read().expect("unable to read event") { match event::read().expect("unable to read event") {
event::Event::Key(e) => event_sender.send(Event::Key(e)).await.unwrap_or(()), event::Event::Key(e) => event_sender.send(Event::Key(e)).await.unwrap_or(()),
event::Event::Resize(w, h) => { event::Event::Resize(_w, _h) => {
event_sender.send(Event::Resize(w, h)).await.unwrap_or(()) event_sender.send(Event::Resize).await.unwrap_or(())
} }
_ => (), _ => (),
} }

View File

@ -14,5 +14,10 @@
__version__ = "0.6.0" __version__ = "0.6.0"
DEPRECATION_WARNING = (
"`text_generation` clients are deprecated and will be removed in the near future. "
"Please use the `InferenceClient` from the `huggingface_hub` package instead."
)
from text_generation.client import Client, AsyncClient from text_generation.client import Client, AsyncClient
from text_generation.inference_api import InferenceAPIClient, InferenceAPIAsyncClient from text_generation.inference_api import InferenceAPIClient, InferenceAPIAsyncClient

View File

@ -1,16 +1,21 @@
import json import json
import requests import requests
import warnings
from aiohttp import ClientSession, ClientTimeout from aiohttp import ClientSession, ClientTimeout
from pydantic import ValidationError from pydantic import ValidationError
from typing import Dict, Optional, List, AsyncIterator, Iterator, Union from typing import Dict, Optional, List, AsyncIterator, Iterator, Union
from text_generation import DEPRECATION_WARNING
from text_generation.types import ( from text_generation.types import (
StreamResponse, StreamResponse,
Response, Response,
Request, Request,
Parameters, Parameters,
Grammar, Grammar,
CompletionRequest,
Completion,
CompletionComplete,
ChatRequest, ChatRequest,
ChatCompletionChunk, ChatCompletionChunk,
ChatComplete, ChatComplete,
@ -19,6 +24,9 @@ from text_generation.types import (
) )
from text_generation.errors import parse_error from text_generation.errors import parse_error
# emit deprecation warnings
warnings.simplefilter("always", DeprecationWarning)
class Client: class Client:
"""Client to make calls to a text-generation-inference instance """Client to make calls to a text-generation-inference instance
@ -59,11 +67,100 @@ class Client:
timeout (`int`): timeout (`int`):
Timeout in seconds Timeout in seconds
""" """
warnings.warn(DEPRECATION_WARNING, DeprecationWarning)
self.base_url = base_url self.base_url = base_url
self.headers = headers self.headers = headers
self.cookies = cookies self.cookies = cookies
self.timeout = timeout self.timeout = timeout
def completion(
self,
prompt: str,
frequency_penalty: Optional[float] = None,
max_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
seed: Optional[int] = None,
stream: bool = False,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
stop: Optional[List[str]] = None,
):
"""
Given a prompt, generate a response synchronously
Args:
prompt (`str`):
Prompt
frequency_penalty (`float`):
The parameter for frequency penalty. 0.0 means no penalty
Penalize new tokens based on their existing frequency in the text so far,
decreasing the model's likelihood to repeat the same line verbatim.
max_tokens (`int`):
Maximum number of generated tokens
repetition_penalty (`float`):
The parameter for frequency penalty. 0.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
seed (`int`):
Random sampling seed
stream (`bool`):
Stream the response
temperature (`float`):
The value used to module the logits distribution.
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation
stop (`List[str]`):
Stop generating tokens if a member of `stop` is generated
"""
request = CompletionRequest(
model="tgi",
prompt=prompt,
frequency_penalty=frequency_penalty,
max_tokens=max_tokens,
repetition_penalty=repetition_penalty,
seed=seed,
stream=stream,
temperature=temperature,
top_p=top_p,
stop=stop,
)
if not stream:
resp = requests.post(
f"{self.base_url}/v1/completions",
json=request.dict(),
headers=self.headers,
cookies=self.cookies,
timeout=self.timeout,
)
payload = resp.json()
if resp.status_code != 200:
raise parse_error(resp.status_code, payload)
return Completion(**payload)
else:
return self._completion_stream_response(request)
def _completion_stream_response(self, request):
resp = requests.post(
f"{self.base_url}/v1/completions",
json=request.dict(),
headers=self.headers,
cookies=self.cookies,
timeout=self.timeout,
stream=True,
)
# iterate and print stream
for byte_payload in resp.iter_lines():
if byte_payload == b"\n":
continue
payload = byte_payload.decode("utf-8")
if payload.startswith("data:"):
json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
try:
response = CompletionComplete(**json_payload)
yield response
except ValidationError:
raise parse_error(resp.status, json_payload)
def chat( def chat(
self, self,
messages: List[Message], messages: List[Message],
@ -82,6 +179,7 @@ class Client:
tools: Optional[List[Tool]] = None, tools: Optional[List[Tool]] = None,
tool_prompt: Optional[str] = None, tool_prompt: Optional[str] = None,
tool_choice: Optional[str] = None, tool_choice: Optional[str] = None,
stop: Optional[List[str]] = None,
): ):
""" """
Given a list of messages, generate a response asynchronously Given a list of messages, generate a response asynchronously
@ -124,6 +222,8 @@ class Client:
A prompt to be appended before the tools A prompt to be appended before the tools
tool_choice (`str`): tool_choice (`str`):
The tool to use The tool to use
stop (`List[str]`):
Stop generating tokens if a member of `stop` is generated
""" """
request = ChatRequest( request = ChatRequest(
@ -144,6 +244,7 @@ class Client:
tools=tools, tools=tools,
tool_prompt=tool_prompt, tool_prompt=tool_prompt,
tool_choice=tool_choice, tool_choice=tool_choice,
stop=stop,
) )
if not stream: if not stream:
resp = requests.post( resp = requests.post(
@ -449,11 +550,99 @@ class AsyncClient:
timeout (`int`): timeout (`int`):
Timeout in seconds Timeout in seconds
""" """
warnings.warn(DEPRECATION_WARNING, DeprecationWarning)
self.base_url = base_url self.base_url = base_url
self.headers = headers self.headers = headers
self.cookies = cookies self.cookies = cookies
self.timeout = ClientTimeout(timeout) self.timeout = ClientTimeout(timeout)
async def completion(
self,
prompt: str,
frequency_penalty: Optional[float] = None,
max_tokens: Optional[int] = None,
repetition_penalty: Optional[float] = None,
seed: Optional[int] = None,
stream: bool = False,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
stop: Optional[List[str]] = None,
) -> Union[Completion, AsyncIterator[CompletionComplete]]:
"""
Given a prompt, generate a response asynchronously
Args:
prompt (`str`):
Prompt
frequency_penalty (`float`):
The parameter for frequency penalty. 0.0 means no penalty
Penalize new tokens based on their existing frequency in the text so far,
decreasing the model's likelihood to repeat the same line verbatim.
max_tokens (`int`):
Maximum number of generated tokens
repetition_penalty (`float`):
The parameter for frequency penalty. 0.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
seed (`int`):
Random sampling seed
stream (`bool`):
Stream the response
temperature (`float`):
The value used to module the logits distribution.
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation
stop (`List[str]`):
Stop generating tokens if a member of `stop` is generated
"""
request = CompletionRequest(
model="tgi",
prompt=prompt,
frequency_penalty=frequency_penalty,
max_tokens=max_tokens,
repetition_penalty=repetition_penalty,
seed=seed,
stream=stream,
temperature=temperature,
top_p=top_p,
stop=stop,
)
if not stream:
return await self._completion_single_response(request)
else:
return self._completion_stream_response(request)
async def _completion_single_response(self, request):
async with ClientSession(
headers=self.headers, cookies=self.cookies, timeout=self.timeout
) as session:
async with session.post(
f"{self.base_url}/v1/completions", json=request.dict()
) as resp:
payload = await resp.json()
if resp.status != 200:
raise parse_error(resp.status, payload)
return Completion(**payload)
async def _completion_stream_response(self, request):
async with ClientSession(
headers=self.headers, cookies=self.cookies, timeout=self.timeout
) as session:
async with session.post(
f"{self.base_url}/v1/completions", json=request.dict()
) as resp:
async for byte_payload in resp.content:
if byte_payload == b"\n":
continue
payload = byte_payload.decode("utf-8")
if payload.startswith("data:"):
json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
try:
response = CompletionComplete(**json_payload)
yield response
except ValidationError:
raise parse_error(resp.status, json_payload)
async def chat( async def chat(
self, self,
messages: List[Message], messages: List[Message],
@ -472,6 +661,7 @@ class AsyncClient:
tools: Optional[List[Tool]] = None, tools: Optional[List[Tool]] = None,
tool_prompt: Optional[str] = None, tool_prompt: Optional[str] = None,
tool_choice: Optional[str] = None, tool_choice: Optional[str] = None,
stop: Optional[List[str]] = None,
) -> Union[ChatComplete, AsyncIterator[ChatCompletionChunk]]: ) -> Union[ChatComplete, AsyncIterator[ChatCompletionChunk]]:
""" """
Given a list of messages, generate a response asynchronously Given a list of messages, generate a response asynchronously
@ -514,6 +704,8 @@ class AsyncClient:
A prompt to be appended before the tools A prompt to be appended before the tools
tool_choice (`str`): tool_choice (`str`):
The tool to use The tool to use
stop (`List[str]`):
Stop generating tokens if a member of `stop` is generated
""" """
request = ChatRequest( request = ChatRequest(
@ -534,6 +726,7 @@ class AsyncClient:
tools=tools, tools=tools,
tool_prompt=tool_prompt, tool_prompt=tool_prompt,
tool_choice=tool_choice, tool_choice=tool_choice,
stop=stop,
) )
if not stream: if not stream:
return await self._chat_single_response(request) return await self._chat_single_response(request)

View File

@ -46,30 +46,6 @@ class Tool(BaseModel):
function: dict function: dict
class ChatCompletionComplete(BaseModel):
# Index of the chat completion
index: int
# Message associated with the chat completion
message: Message
# Log probabilities for the chat completion
logprobs: Optional[Any]
# Reason for completion
finish_reason: str
# Usage details of the chat completion
usage: Optional[Any] = None
class CompletionComplete(BaseModel):
# Index of the chat completion
index: int
# Message associated with the chat completion
text: str
# Log probabilities for the chat completion
logprobs: Optional[Any]
# Reason for completion
finish_reason: str
class Function(BaseModel): class Function(BaseModel):
name: Optional[str] name: Optional[str]
arguments: str arguments: str
@ -95,24 +71,41 @@ class Choice(BaseModel):
finish_reason: Optional[str] = None finish_reason: Optional[str] = None
class ChatCompletionChunk(BaseModel): class CompletionRequest(BaseModel):
id: str # Model identifier
object: str
created: int
model: str model: str
system_fingerprint: str # Prompt
choices: List[Choice] prompt: str
# The parameter for repetition penalty. 1.0 means no penalty.
# See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
repetition_penalty: Optional[float] = None
# The parameter for frequency penalty. 1.0 means no penalty
# Penalize new tokens based on their existing frequency in the text so far,
# decreasing the model's likelihood to repeat the same line verbatim.
frequency_penalty: Optional[float] = None
# Maximum number of tokens to generate
max_tokens: Optional[int] = None
# Flag to indicate streaming response
stream: bool = False
# Random sampling seed
seed: Optional[int] = None
# Sampling temperature
temperature: Optional[float] = None
# Top-p value for nucleus sampling
top_p: Optional[float] = None
# Stop generating tokens if a member of `stop` is generated
stop: Optional[List[str]] = None
class ChatComplete(BaseModel): class CompletionComplete(BaseModel):
# Chat completion details # Index of the chat completion
id: str index: int
object: str # Message associated with the chat completion
created: int text: str
model: str # Log probabilities for the chat completion
system_fingerprint: str logprobs: Optional[Any]
choices: List[ChatCompletionComplete] # Reason for completion
usage: Any finish_reason: str
class Completion(BaseModel): class Completion(BaseModel):
@ -163,6 +156,41 @@ class ChatRequest(BaseModel):
tool_prompt: Optional[str] = None tool_prompt: Optional[str] = None
# Choice of tool to be used # Choice of tool to be used
tool_choice: Optional[str] = None tool_choice: Optional[str] = None
# Stop generating tokens if a member of `stop` is generated
stop: Optional[List[str]] = None
class ChatCompletionComplete(BaseModel):
# Index of the chat completion
index: int
# Message associated with the chat completion
message: Message
# Log probabilities for the chat completion
logprobs: Optional[Any]
# Reason for completion
finish_reason: str
# Usage details of the chat completion
usage: Optional[Any] = None
class ChatComplete(BaseModel):
# Chat completion details
id: str
object: str
created: int
model: str
system_fingerprint: str
choices: List[ChatCompletionComplete]
usage: Any
class ChatCompletionChunk(BaseModel):
id: str
object: str
created: int
model: str
system_fingerprint: str
choices: List[Choice]
class Parameters(BaseModel): class Parameters(BaseModel):

View File

@ -1121,6 +1121,15 @@
"description": "An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the\ntokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.", "description": "An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the\ntokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.",
"example": 0.95, "example": 0.95,
"nullable": true "nullable": true
},
"stop": {
"type": "array",
"items": {
"type": "string"
},
"description": "Up to 4 sequences where the API will stop generating further tokens.",
"example": "null",
"nullable": true
} }
} }
}, },

View File

@ -3,8 +3,16 @@
title: Text Generation Inference title: Text Generation Inference
- local: quicktour - local: quicktour
title: Quick Tour title: Quick Tour
- local: installation_nvidia
title: Using TGI with Nvidia GPUs
- local: installation_amd
title: Using TGI with AMD GPUs
- local: installation_gaudi
title: Using TGI with Intel Gaudi
- local: installation_inferentia
title: Using TGI with AWS Inferentia
- local: installation - local: installation
title: Installation title: Installation from source
- local: supported_models - local: supported_models
title: Supported Models and Hardware title: Supported Models and Hardware
- local: messages_api - local: messages_api
@ -20,7 +28,7 @@
- local: basic_tutorials/using_cli - local: basic_tutorials/using_cli
title: Using TGI CLI title: Using TGI CLI
- local: basic_tutorials/launcher - local: basic_tutorials/launcher
title: All TGI CLI options title: All TGI CLI options
- local: basic_tutorials/non_core_models - local: basic_tutorials/non_core_models
title: Non-core Model Serving title: Non-core Model Serving
- local: basic_tutorials/safety - local: basic_tutorials/safety
@ -29,6 +37,10 @@
title: Using Guidance, JSON, tools title: Using Guidance, JSON, tools
- local: basic_tutorials/visual_language_models - local: basic_tutorials/visual_language_models
title: Visual Language Models title: Visual Language Models
- local: basic_tutorials/monitoring
title: Monitoring TGI with Prometheus and Grafana
- local: basic_tutorials/train_medusa
title: Train Medusa
title: Tutorials title: Tutorials
- sections: - sections:
- local: conceptual/streaming - local: conceptual/streaming

View File

@ -19,6 +19,6 @@ docker run --gpus all \
--shm-size 1g \ --shm-size 1g \
-e HUGGING_FACE_HUB_TOKEN=$token \ -e HUGGING_FACE_HUB_TOKEN=$token \
-p 8080:80 \ -p 8080:80 \
-v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 \ -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0.3 \
--model-id $model --model-id $model
``` ```

View File

@ -0,0 +1,75 @@
# Monitoring TGI server with Prometheus and Grafana dashboard
TGI server deployment can easily be monitored through a Grafana dashboard, consuming a Prometheus data collection. Example of inspectable metrics are statistics on the effective batch sizes used by TGI, prefill/decode latencies, number of generated tokens, etc.
In this tutorial, we look at how to set up a local Grafana dashboard to monitor TGI usage.
![Grafana dashboard for TGI](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/tgi/grafana.png)
## Setup on the server machine
First, on your server machine, TGI needs to be launched as usual. TGI exposes [multiple](https://github.com/huggingface/text-generation-inference/discussions/1127#discussioncomment-7240527) metrics that can be collected by Prometheus monitoring server.
In the rest of this tutorial, we assume that TGI was launched through Docker with `--network host`.
On the server where TGI is hosted, a Prometheus server needs to be installed and launched. To do so, please follow [Prometheus installation instructions](https://prometheus.io/download/#prometheus). For example, at the time of writing on a Linux machine:
```
wget https://github.com/prometheus/prometheus/releases/download/v2.52.0/prometheus-2.52.0.linux-amd64.tar.gz
tar -xvzf prometheus-2.52.0.linux-amd64.tar.gz
cd prometheus
```
Prometheus needs to be configured to listen on TGI's port. To do so, in Prometheus configuration file `prometheus.yml`, one needs to edit the lines:
```
static_configs:
- targets: ["0.0.0.0:80"]
```
to use the correct IP address and port.
We suggest to try `curl 0.0.0.0:80/generate -X POST -d '{"inputs":"hey chatbot, how are","parameters":{"max_new_tokens":15}}' -H 'Content-Type: application/json'` on the server side to make sure to configure the correct IP and port.
Once Prometheus is configured, Prometheus server can be launched on the same machine where TGI is launched:
```
./prometheus --config.file="prometheus.yml"
```
In this guide, Prometheus monitoring data will be consumed on a local computer. Hence, we need to forward Prometheus port (by default 9090) to the local computer. To do so, we can for example:
* Use ssh [local port forwarding](https://www.ssh.com/academy/ssh/tunneling-example)
* Use ngrok port tunneling
For simplicity, we will use [Ngrok](https://ngrok.com/docs/) in this guide to tunnel Prometheus port from the TGI server to the outside word.
For that, you should follow the steps at https://dashboard.ngrok.com/get-started/setup/linux, and once Ngrok is installed, use:
```bash
ngrok http http://0.0.0.0:9090
```
As a sanity check, one can make sure that Prometheus server can be accessed at the URL given by Ngrok (in the style of https://d661-4-223-164-145.ngrok-free.app) from a local machine.
## Setup on the monitoring machine
Monitoring is typically done on an other machine than the server one. We use a Grafana dashboard to monitor TGI's server usage.
Two options are available:
* Use Grafana Cloud for an hosted dashboard solution (https://grafana.com/products/cloud/).
* Self-host a grafana dashboard.
In this tutorial, for simplicity, we will self host the dashbard. We recommend installing Grafana Open-source edition following [the official install instructions](https://grafana.com/grafana/download?platform=linux&edition=oss), using the available Linux binaries. For example:
```bash
wget https://dl.grafana.com/oss/release/grafana-11.0.0.linux-amd64.tar.gz
tar -zxvf grafana-11.0.0.linux-amd64.tar.gz
cd grafana-11.0.0
./bin/grafana-server
```
Once the Grafana server is launched, the Grafana interface is available at http://localhost:3000. One needs to log in with the `admin` username and `admin` password.
Once logged in, the Prometheus data source for Grafana needs to be configured, in the option `Add your first data source`. There, a Prometheus data source needs to be added with the Ngrok address we got earlier, that exposes Prometheus port (example: https://d661-4-223-164-145.ngrok-free.app).
Once Prometheus data source is configured, we can finally create our dashboard! From home, go to `Create your first dashboard` and then `Import dashboard`. There, we will use the recommended dashboard template [tgi_grafana.json](https://github.com/huggingface/text-generation-inference/blob/main/assets/tgi_grafana.json) for a dashboard ready to be used, but you may configure your own dashboard as you like.
Community contributed dashboard templates are also available, for example [here](https://grafana.com/grafana/dashboards/19831-text-generation-inference-dashboard/) or [here](https://grafana.com/grafana/dashboards/20246-text-generation-inference/).
Load your dashboard configuration, and your TGI dashboard should be ready to go!

View File

@ -0,0 +1,208 @@
# Train Medusa
This tutorial will show you how to train a Medusa model on a dataset of your choice. Please check out the [speculation documentation](../conceptual/speculation.md) for more information on how Medusa works and speculation in general.
## What are the benefits of training a Medusa model?
Training Medusa heads can greatly improve the speed of generation. Medusa adds extra "heads" to LLMs to predict multiple future tokens simultaneously. When augmenting a model with Medusa, the original model stays untouched, and only the new heads are fine-tuned during training.
One of the most important things is to have a good dataset (with similar data to what will be used in production) because Medusa has a much higher hit-rate when the generation is in-domain.
If you train Medusa on a dataset that is very different from the one you will use in production then the model will not be able to predict the future tokens accurately and consequently the speedup will be minimal or non-existent.
## Self-distillation (Generating data for training)
There are many methods for preparing data for training, but one of the easiest and most effective ways is to "self-distill" the data. This means that you can use the same model to generate the data that you will use to train the model.
Essentially, you prompt the model with a similar input to what you will use in production and the model will generate the output.
We'll use this output to help train the medusa heads to predict the `n+1`, `n+2`, `n+3`, etc tokens in the sequence.
## Training
The original implementation of Medusa is available at [https://github.com/FasterDecoding/Medusa](https://github.com/FasterDecoding/Medusa) and we'll follow a very similar process to train the model as described on the original repository.
### Getting Started
There are two methods for training the model:
- `torchrun` that is a wrapper around `torch.distributed.launch`
- a forked version of `axlotl` that supports Medusa
In this tutorial we'll use `torchrun` to train the model as it is the most straightforward way to train the model but similar steps can be followed to train the model using `axlotl` if you prefer.
### Training with `torchrun`
```bash
mkdir medusa-training
cd medusa-training
pyenv install 3.10
pyenv local 3.10
uv venv -p 3.10
source .venv/bin/activate
```
Now lets clone the original `Medusa` repository and install the library.
```bash
git clone https://github.com/FasterDecoding/Medusa.git
cd Medusa
pip install -e .
```
Next we'll need some data to train on, we can use the `ShareGPT_Vicuna_unfiltered` dataset that is available on the Hugging Face Hub.
```bash
apt install git-lfs
git lfs install
git clone https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
```
Currently our directory structure looks like this:
```bash
.
├── assets
├── CITATION.cff
├── create_data.py
├── data_generation
├── deepspeed.json
├── last_run_prepared
├── LICENSE
├── llm_judge
├── medusa
├── medusa_llm.egg-info
├── mistral.json
├── notebooks
├── pyproject.toml
├── README.md
├── ROADMAP.md
├── scripts
├── ShareGPT_Vicuna_unfiltered
│   ├── README.md
│   ├── ShareGPT_2023.05.04v0_Wasteland_Edition.json
│   └── ShareGPT_V4.3_unfiltered_cleaned_split.json
├── simple_gradio_interface.py
├── tiny-llama.json
└── vicuna_7b_qlora_stage1
```
## Start Training
Now the lets generate the data and start training the model. This process will take a while since we are generating data from the model.
First make sure you have an instance of TGI running with the model you want to use for self-distillation.
```bash
model=HuggingFaceH4/zephyr-7b-beta
volume=/home/ubuntu/.cache/huggingface/hub/
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model
```
Now we can generate the data using the `create_data.py` script.
```bash
python create_data.py \
--input-filename ShareGPT_Vicuna_unfiltered/ShareGPT_V4.3_unfiltered_cleaned_split.json \
--output-filename zephyr_self_distill.json
```
At this point our terminal should look like this:
<div class="flex justify-center">
<img
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/tgi/medusa-train-large.gif"
width="550"
/>
</div>
> Note: In the screen shot above we are only using a the first 500 examples from the dataset to speed up the process, you should have a much larger dataset for training.
Now we can finally get to the fun part and start training the model!
Using `torchrun` we can easily launch the `medusa` training script with the `zephyr_self_distill.json` configuration file.
> NOTE: If you just self-distilled you may still have the model running, make sure to stop it before starting the training in order to allow all of the resources to be used for training.
```bash
WANDB_MODE=offline torchrun --nproc_per_node=4 medusa/train/train_legacy.py \
--model_name_or_path HuggingFaceH4/zephyr-7b-beta \
--data_path zephyr_self_distill.json \
--bf16 True \
--output_dir zephyr_out \
--num_train_epochs 5 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 4 \
--evaluation_strategy "no" \
--save_strategy "no" \
--learning_rate 1e-3 \
--weight_decay 0.0 \
--warmup_ratio 0.1 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--lazy_preprocess True \
--medusa_num_heads 3 \
--medusa_num_layers 1 \
--deepspeed deepspeed.json
```
<div class="flex justify-center">
<img
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/tgi/medusa-train-heads-large.gif"
width="550"
/>
</div>
If successful, you should see the similar output to the one below:
```bash
wandb: Run history:
wandb: train/epoch ▁▁▁▁▁▂▂▂▂▂▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇███
wandb: train/global_step ▁▁▁▁▁▂▂▂▂▂▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇███
wandb: train/learning_rate ▅███▇▇▆▅▅▄▃▂▂▁▁▁
wandb: train/loss ██▆▄▄▃▃▂▂▃▁▁▂▁▁▁
wandb: train/medusa0_loss ▆▆▇▆▆▅▄▅▃▃▃▃▂▂▂▂▂▃▂▂▂▁▁▁▂▁▁▁▁▁█▁▁▁▂▁▁▁▁▁
wandb: train/medusa0_top1 ▁▁▁▁▁▁▁▁▃▂▃▃▄▄▄▃▄▃▄▄▅▅▆▅▆▆▇▅▇▇▄▇█▇▅▇█▆▇▇
wandb: train/medusa1_loss ▇▇█▇▇▆▅▅▃▄▃▃▃▃▃▃▃▃▃▃▂▁▂▂▂▁▁▂▁▁▇▁▁▁▂▁▁▁▁▁
wandb: train/medusa1_top1 ▁▁▁▁▁▁▁▁▃▂▃▃▃▄▄▃▃▂▃▃▅▅▆▄█▆▇▅▇▇▅█▇▇▅▇█▆▆▇
wandb: train/medusa2_loss ▃▃▄▄▄▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁█▁▁▁▂▁▁▁▁▁
wandb: train/medusa2_top1 ▁▁▁▂▁▁▁▁▂▂▃▃▃▄▄▃▃▂▃▃▅▆▅▄█▆▆▅▆▆▄█▇▇▄▇█▆▆▇
wandb: train/total_flos ▁
wandb: train/train_loss ▁
wandb: train/train_runtime ▁
wandb: train/train_samples_per_second ▁
wandb: train/train_steps_per_second ▁
wandb:
wandb: Run summary:
wandb: train/epoch 2.0
wandb: train/global_step 16
wandb: train/learning_rate 0.0
wandb: train/loss 14.8906
wandb: train/medusa0_loss 4.25
wandb: train/medusa0_top1 0.28809
wandb: train/medusa1_loss 4.8125
wandb: train/medusa1_top1 0.22727
wandb: train/medusa2_loss 5.5
wandb: train/medusa2_top1 0.17293
wandb: train/total_flos 0.0
wandb: train/train_loss 23.98242
wandb: train/train_runtime 396.9266
wandb: train/train_samples_per_second 2.519
wandb: train/train_steps_per_second 0.04
```
Last but most importantly, don't forget to push this model to the Hugging Face Hub so you can use it in your projects.
```bash
python -m medusa.hf_utils \
--folder zephyr_out_medusa_mlp_zephyr-7b-beta_medusa_3_lr_0.001_layers_1 \
--repo drbh/zephyr_medusa_demo
```
Woo, we've successfully trained a Medusa model and pushed it to the Hugging Face Hub! 🎉

View File

@ -2,7 +2,7 @@
Text Generation Inference (TGI) now supports [JSON and regex grammars](#grammar-and-constraints) and [tools and functions](#tools-and-functions) to help developers guide LLM responses to fit their needs. Text Generation Inference (TGI) now supports [JSON and regex grammars](#grammar-and-constraints) and [tools and functions](#tools-and-functions) to help developers guide LLM responses to fit their needs.
These feature are available starting from version `1.4.3`. They are accessible via the [text_generation](https://pypi.org/project/text-generation/) library. The tool support is compatible with OpenAI's client libraries. The following guide will walk you through the new features and how to use them! These feature are available starting from version `1.4.3`. They are accessible via the [`huggingface_hub`](https://pypi.org/project/huggingface-hub/) library. The tool support is compatible with OpenAI's client libraries. The following guide will walk you through the new features and how to use them!
_note: guidance is supported as grammar in the `/generate` endpoint and as tools in the `/chat/completions` endpoint._ _note: guidance is supported as grammar in the `/generate` endpoint and as tools in the `/chat/completions` endpoint._
@ -74,6 +74,45 @@ curl localhost:3000/generate \
``` ```
### Hugging Face Hub Python Library
The Hugging Face Hub Python library provides a client that makes it easy to interact with the Messages API. Here's an example of how to use the client to send a request with a grammar parameter.
```python
from huggingface_hub import InferenceClient
client = InferenceClient("http://localhost:3000")
schema = {
"properties": {
"location": {"title": "Location", "type": "string"},
"activity": {"title": "Activity", "type": "string"},
"animals_seen": {
"maximum": 5,
"minimum": 1,
"title": "Animals Seen",
"type": "integer",
},
"animals": {"items": {"type": "string"}, "title": "Animals", "type": "array"},
},
"required": ["location", "activity", "animals_seen", "animals"],
"title": "Animals",
"type": "object",
}
user_input = "I saw a puppy a cat and a raccoon during my bike ride in the park"
resp = client.text_generation(
f"convert to JSON: 'f{user_input}'. please use the following schema: {schema}",
max_new_tokens=100,
seed=42,
grammar={"type": "json", "value": schema},
)
print(resp)
# { "activity": "bike ride", "animals": ["puppy", "cat", "raccoon"], "animals_seen": 3, "location": "park" }
```
A grammar can be defined using Pydantic models, JSON schemas, or regular expressions. The LLM will then generate a response that conforms to the specified grammar. A grammar can be defined using Pydantic models, JSON schemas, or regular expressions. The LLM will then generate a response that conforms to the specified grammar.
> Note: A grammar must compile to an intermediate representation to constrain the output. Grammar compilation is a computationally expensive and may take a few seconds to complete on the first request. Subsequent requests will use the cached grammar and will be much faster. > Note: A grammar must compile to an intermediate representation to constrain the output. Grammar compilation is a computationally expensive and may take a few seconds to complete on the first request. Subsequent requests will use the cached grammar and will be much faster.
@ -83,134 +122,55 @@ A grammar can be defined using Pydantic models, JSON schemas, or regular express
Using Pydantic models we can define a similar grammar as the previous example in a shorter and more readable way. Using Pydantic models we can define a similar grammar as the previous example in a shorter and more readable way.
```python ```python
import requests from huggingface_hub import InferenceClient
from pydantic import BaseModel, conint from pydantic import BaseModel, conint
from typing import List from typing import List
class Animals(BaseModel): class Animals(BaseModel):
location: str location: str
activity: str activity: str
animals_seen: conint(ge=1, le=5) # Constrained integer type animals_seen: conint(ge=1, le=5) # Constrained integer type
animals: List[str] animals: List[str]
prompt = "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park"
data = { client = InferenceClient("http://localhost:3000")
"inputs": prompt,
"parameters": {
"repetition_penalty": 1.3,
"grammar": {
"type": "json",
"value": Animals.schema()
}
}
}
headers = { user_input = "I saw a puppy a cat and a raccoon during my bike ride in the park"
"Content-Type": "application/json", resp = client.text_generation(
} f"convert to JSON: 'f{user_input}'. please use the following schema: {Animals.schema()}",
max_new_tokens=100,
response = requests.post( seed=42,
'http://127.0.0.1:3000/generate', grammar={"type": "json", "value": Animals.schema()},
headers=headers,
json=data
) )
print(response.json())
# {'generated_text': '{ "activity": "bike riding", "animals": ["puppy","cat","raccoon"],"animals_seen": 3, "location":"park" }'} print(resp)
# { "activity": "bike ride", "animals": ["puppy", "cat", "raccoon"], "animals_seen": 3, "location": "park" }
``` ```
### JSON Schema Integration defining a grammar as regular expressions
If Pydantic's not your style, go raw with direct JSON Schema integration. This is similar to the first example but with programmatic control.
```python ```python
import requests from huggingface_hub import InferenceClient
json_schema = { client = InferenceClient("http://localhost:3000")
"properties": {
"location": { regexp = "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)"
"type": "string"
}, resp = client.text_generation(
"activity": { f"Whats Googles DNS? Please use the following regex: {regexp}",
"type": "string" seed=42,
}, grammar={
"animals_seen": { "type": "regex",
"type": "integer", "value": regexp,
"minimum": 1,
"maximum": 5
},
"animals": {
"type": "array",
"items": {
"type": "string"
}
}
}, },
"required": ["location", "activity", "animals_seen", "animals"]
}
data = {
"inputs": "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park",
"parameters": {
"max_new_tokens": 200,
"repetition_penalty": 1.3,
"grammar": {
"type": "json",
"value": json_schema
}
}
}
headers = {
"Content-Type": "application/json",
}
response = requests.post(
'http://127.0.0.1:3000/generate',
headers=headers,
json=data
) )
print(response.json())
# {'generated_text': '{\n"activity": "biking",\n"animals": ["puppy","cat","raccoon"]\n , "animals_seen": 3,\n "location":"park"}'}
```
### Using the client print(resp)
# 7.1.1.1
TGI provides a client library to that make it easy to send requests with all of the parameters we've discussed above. Here's an example of how to use the client to send a request with a grammar parameter.
```python
from text_generation import AsyncClient
from text_generation.types import GrammarType
# NOTE: tools defined above and removed for brevity
# Define an async function to encapsulate the async operation
async def main():
client = AsyncClient(base_url="http://localhost:3000")
# Use 'await' to wait for the async method 'chat' to complete
response = await client.generate(
"Whats Googles DNS",
max_new_tokens=10,
decoder_input_details=True,
seed=1,
grammar={
"type": GrammarType.Regex,
"value": "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)",
},
)
# Once the response is received, you can process it
print(response.generated_text)
# Ensure the main async function is run in the event loop
if __name__ == "__main__":
import asyncio
asyncio.run(main())
# 118.8.0.84
``` ```
@ -265,107 +225,87 @@ curl localhost:3000/v1/chat/completions \
// {"id":"","object":"text_completion","created":1709051640,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":19,"total_tokens":176}} // {"id":"","object":"text_completion","created":1709051640,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":19,"total_tokens":176}}
``` ```
### Text Generation Inference Client ### Chat Completion with Tools
TGI provides a client library to interact with the Messages API and Tool functions. The client library is available in both synchronous and asynchronous versions. Grammars are supported in the `/generate` endpoint, while tools are supported in the `/chat/completions` endpoint. Here's an example of how to use the client to send a request with a tool parameter.
```python ```python
from text_generation import AsyncClient from huggingface_hub import InferenceClient
# NOTE: tools defined above and removed for brevity client = InferenceClient("http://localhost:3000")
# Define an async function to encapsulate the async operation tools = [
async def main(): {
client = AsyncClient(base_url="http://localhost:3000") "type": "function",
"function": {
# Use 'await' to wait for the async method 'chat' to complete "name": "get_current_weather",
response = await client.chat( "description": "Get the current weather",
max_tokens=100, "parameters": {
seed=1, "type": "object",
tools=tools, "properties": {
presence_penalty=-1.1, "location": {
messages=[ "type": "string",
{ "description": "The city and state, e.g. San Francisco, CA",
"role": "system", },
"content": "You're a helpful assistant! Answer the users question best you can.", "format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
}, },
{ },
"role": "user", },
"content": "What is the weather like in Brooklyn, New York?", {
"type": "function",
"function": {
"name": "get_n_day_weather_forecast",
"description": "Get an N-day weather forecast",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
"num_days": {
"type": "integer",
"description": "The number of days to forecast",
},
},
"required": ["location", "format", "num_days"],
}, },
], },
) },
]
# Once the response is received, you can process it chat = client.chat_completion(
print(response.choices[0].message.tool_calls) messages=[
{
"role": "system",
"content": "You're a helpful assistant! Answer the users question best you can.",
},
{
"role": "user",
"content": "What is the weather like in Brooklyn, New York?",
},
],
tools=tools,
seed=42,
max_tokens=100,
)
# Ensure the main async function is run in the event loop print(chat.choices[0].message.tool_calls)
if __name__ == "__main__": # [ChatCompletionOutputToolCall(function=ChatCompletionOutputFunctionDefinition(arguments={'format': 'fahrenheit', 'location': 'Brooklyn, New York', 'num_days': 7}, name='get_n_day_weather_forecast', description=None), id=0, type='function')]
import asyncio
asyncio.run(main())
# {"id":"","object":"text_completion","created":1709051942,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":20,"total_tokens":177}}
``` ```
<details>
<summary>Tools used in example above</summary>
```python
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
},
},
{
"type": "function",
"function": {
"name": "get_n_day_weather_forecast",
"description": "Get an N-day weather forecast",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
"num_days": {
"type": "integer",
"description": "The number of days to forecast",
},
},
"required": ["location", "format", "num_days"],
},
},
}
]
```
</details>
### OpenAI integration ### OpenAI integration
TGI exposes an OpenAI-compatible API, which means you can use OpenAI's client libraries to interact with TGI's Messages API and Tool functions. TGI exposes an OpenAI-compatible API, which means you can use OpenAI's client libraries to interact with TGI's Messages API and Tool functions.

View File

@ -53,7 +53,67 @@ for token in client.text_generation(prompt, max_new_tokens=10, stream=True):
# This is a picture of an anthropomorphic rabbit in a space suit. # This is a picture of an anthropomorphic rabbit in a space suit.
``` ```
If you want additional details, you can add `details=True`. In this case, you get a `TextGenerationStreamResponse` which contains additional information such as the probabilities and the tokens. For the final response in the stream, it also returns the full generated text. or via the `chat_completion` endpoint:
```python
from huggingface_hub import InferenceClient
client = InferenceClient("http://127.0.0.1:3000")
chat = client.chat_completion(
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
},
},
],
},
],
seed=42,
max_tokens=100,
)
print(chat)
# ChatCompletionOutput(choices=[ChatCompletionOutputComplete(finish_reason='length', index=0, message=ChatCompletionOutputMessage(role='assistant', content=" The image you've provided features an anthropomorphic rabbit in spacesuit attire. This rabbit is depicted with human-like posture and movement, standing on a rocky terrain with a vast, reddish-brown landscape in the background. The spacesuit is detailed with mission patches, circuitry, and a helmet that covers the rabbit's face and ear, with an illuminated red light on the chest area.\n\nThe artwork style is that of a", name=None, tool_calls=None), logprobs=None)], created=1714589614, id='', model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=ChatCompletionOutputUsage(completion_tokens=100, prompt_tokens=2943, total_tokens=3043))
```
or with OpenAi's library:
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(base_url="http://localhost:3000/v1", api_key="-")
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
},
},
],
},
],
stream=False,
)
print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason='eos_token', index=0, logprobs=None, message=ChatCompletionMessage(content=' The image depicts an anthropomorphic rabbit dressed in a space suit with gear that resembles NASA attire. The setting appears to be a solar eclipse with dramatic mountain peaks and a partial celestial body in the sky. The artwork is detailed and vivid, with a warm color palette and a sense of an adventurous bunny exploring or preparing for a journey beyond Earth. ', role='assistant', function_call=None, tool_calls=None))], created=1714589732, model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=CompletionUsage(completion_tokens=84, prompt_tokens=2943, total_tokens=3027))
```
### Inference Through Sending `cURL` Requests ### Inference Through Sending `cURL` Requests

View File

@ -76,7 +76,7 @@ There are two main ways to use guidance; you can either use the `/generate` endp
Under the hood tools are a special case of grammars that allows the model to choose one or none of the provided tools. Under the hood tools are a special case of grammars that allows the model to choose one or none of the provided tools.
Please refer to [using guidance](../basic_tutorial/using_guidance) for more examples and details on how to use guidance in Python, JavaScript, and cURL. Please refer to [using guidance](../basic_tutorials/using_guidance) for more examples and details on how to use guidance in Python, JavaScript, and cURL.
### Getting the most out of guidance ### Getting the most out of guidance

View File

@ -27,7 +27,7 @@ You can check a few existing fine-tunes for popular models:
- [text-generation-inference/Mistral-7B-Instruct-v0.2-medusa](https://huggingface.co/text-generation-inference/Mistral-7B-Instruct-v0.2-medusa) - [text-generation-inference/Mistral-7B-Instruct-v0.2-medusa](https://huggingface.co/text-generation-inference/Mistral-7B-Instruct-v0.2-medusa)
In order to create your own medusa heads for your own finetune, you should check own the original medusa repo. [https://github.com/FasterDecoding/Medusa](https://github.com/FasterDecoding/Medusa) In order to create your own medusa heads for your own finetune, you should check own the original medusa repo. [../basic_tutorials/train_medusa.md](../basic_tutorials/train_medusa.md)
In order to use medusa models in TGI, simply point to a medusa enabled model, and everything will load automatically. In order to use medusa models in TGI, simply point to a medusa enabled model, and everything will load automatically.

View File

@ -1,6 +1,10 @@
# Installation # Installation from source
This section explains how to install the CLI tool as well as installing TGI from source. **The strongly recommended approach is to use Docker, as it does not require much setup. Check [the Quick Tour](./quicktour) to learn how to run TGI with Docker.** <Tip warning={true}>
Installing TGI from source is not the recommended usage. We strongly recommend to use TGI through Docker, check the [Quick Tour](./quicktour), [Installation for Nvidia GPUs](./installation_nvidia) and [Installation for AMD GPUs](./installation_amd) to learn how to use TGI with Docker.
</Tip>
## Install CLI ## Install CLI

View File

@ -0,0 +1,38 @@
# Using TGI with AMD GPUs
TGI is supported and tested on [AMD Instinct MI210](https://www.amd.com/en/products/accelerators/instinct/mi200/mi210.html), [MI250](https://www.amd.com/en/products/accelerators/instinct/mi200/mi250.html) and [MI300](https://www.amd.com/en/products/accelerators/instinct/mi300.html) GPUs. The support may be extended in the future. The recommended usage is through Docker. Make sure to check the [AMD documentation](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html) on how to use Docker with AMD GPUs.
On a server powered by AMD GPUs, TGI can be launched with the following command:
```bash
model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
--device=/dev/kfd --device=/dev/dri --group-add video \
--ipc=host --shm-size 256g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:2.0.3-rocm \
--model-id $model
```
The launched TGI server can then be queried from clients, make sure to check out the [Consuming TGI](./basic_tutorials/consuming_tgi) guide.
## TunableOp
TGI's docker image for AMD GPUs integrates [PyTorch's TunableOp](https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable), which allows to do an additional warmup to select the best performing matrix multiplication (GEMM) kernel from rocBLAS or hipBLASLt.
Experimentally, on MI300X, we noticed a 6-8% latency improvement when using TunableOp on top of ROCm 6.1 and PyTorch 2.3.
TunableOp is enabled by default, the warmup may take 1-2 minutes. In case you would like to disable TunableOp, please pass `--env PYTORCH_TUNABLEOP_ENABLED="0"` when launcher TGI's docker container.
## Flash attention implementation
Two implementations of Flash Attention are available for ROCm, the first is [ROCm/flash-attention](https://github.com/ROCm/flash-attention) based on a [Composable Kernel](https://github.com/ROCm/composable_kernel) (CK) implementation, and the second is a [Triton implementation](https://github.com/huggingface/text-generation-inference/blob/main/server/text_generation_server/utils/flash_attn_triton.py).
By default, the Composable Kernel implementation is used. However, the Triton implementation has slightly lower latency on MI250 and MI300, but requires a warmup which can be prohibitive as it needs to be done again for each new prompt length. If needed, FA Triton impelmentation can be enabled with `--env ROCM_USE_FLASH_ATTN_V2_TRITON="0"` when launching TGI's docker container.
## Unsupported features
The following features are currently not supported in the ROCm version of TGI, and the supported may be extended in the future:
* Loading [AWQ](https://huggingface.co/docs/transformers/quantization#awq) checkpoints.
* Kernel for sliding window attention (Mistral)

View File

@ -0,0 +1,3 @@
# Using TGI with Intel Gaudi
Check out this [repository](https://github.com/huggingface/tgi-gaudi) to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index).

View File

@ -0,0 +1,3 @@
# Using TGI with Inferentia
Check out this [guide](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference) on how to serve models with TGI on Inferentia2.

View File

@ -0,0 +1,18 @@
# Using TGI with Nvidia GPUs
TGI optimized models are supported on NVIDIA [H100](https://www.nvidia.com/en-us/data-center/h100/), [A100](https://www.nvidia.com/en-us/data-center/a100/), [A10G](https://www.nvidia.com/en-us/data-center/products/a10-gpu/) and [T4](https://www.nvidia.com/en-us/data-center/tesla-t4/) GPUs with CUDA 12.2+. Note that you have to install [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) to use it.
For other NVIDIA GPUs, continuous batching will still apply, but some operations like flash attention and paged attention will not be executed.
TGI can be used on NVIDIA GPUs through its official docker image:
```bash
model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:2.0.3 \
--model-id $model
```
The launched TGI server can then be queried from clients, make sure to check out the [Consuming TGI](./basic_tutorials/consuming_tgi) guide.

View File

@ -2,30 +2,27 @@
The easiest way of getting started is using the official Docker container. Install Docker following [their installation instructions](https://docs.docker.com/get-docker/). The easiest way of getting started is using the official Docker container. Install Docker following [their installation instructions](https://docs.docker.com/get-docker/).
Let's say you want to deploy [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model with TGI. Here is an example on how to do that: ## Launching TGI
Let's say you want to deploy [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model with TGI on an Nvidia GPU. Here is an example on how to do that:
```bash ```bash
model=teknium/OpenHermes-2.5-Mistral-7B model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 --model-id $model docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:2.0.3 \
--model-id $model
``` ```
<Tip warning={true}> ### Supported hardware
To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPUs](./installation_nvidia), [Using TGI with AMD GPUs](./installation_amd), [Using TGI with Gaudi](./installation_gaudi), [Using TGI with Inferentia](./installation_inferentia) guides depending on which hardware you would like to deploy TGI on.
</Tip> ## Consuming TGI
TGI also supports ROCm-enabled AMD GPUs (only MI210 and MI250 are tested), details are available in the [Supported Hardware section](./supported_models#supported-hardware) and [AMD documentation](https://rocm.docs.amd.com/en/latest/deploy/docker.html). To launch TGI on ROCm GPUs, please use instead:
```bash
docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4-rocm --model-id $model
```
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint. Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
<inferencesnippet> <inferencesnippet>
<python> <python>
@ -91,7 +88,7 @@ curl 127.0.0.1:8080/generate \
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more. To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
```bash ```bash
docker run ghcr.io/huggingface/text-generation-inference:1.4 --help docker run ghcr.io/huggingface/text-generation-inference:2.0.3 --help
``` ```
</Tip> </Tip>

View File

@ -1,29 +1,36 @@
# Supported Models and Hardware # Supported Models and Hardware
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported. Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
## Supported Models ## Supported Models
The following models are optimized and can be served with TGI, which uses custom CUDA kernels for better inference. You can add the flag `--disable-custom-kernels` at the end of the `docker run` command if you wish to disable them. - [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
- [BLOOM](https://huggingface.co/bigscience/bloom) - [Llama](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl) - [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- [Galactica](https://huggingface.co/facebook/galactica-120b) - [Gemma](https://huggingface.co/google/gemma-7b)
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b) - [Cohere](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
- [Llama](https://github.com/facebookresearch/llama) - [Dbrx](https://huggingface.co/databricks/dbrx-instruct)
- [OPT](https://huggingface.co/facebook/opt-66b) - [Mamba](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
- [Starcoder](https://huggingface.co/bigcode/starcoder)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
- [MPT](https://huggingface.co/mosaicml/mpt-30b)
- [Llama V2](https://huggingface.co/meta-llama)
- [Code Llama](https://huggingface.co/codellama)
- [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Mixtral](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
- [Phi](https://huggingface.co/microsoft/phi-2) - [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder)
- [Idefics](HuggingFaceM4/idefics-9b-instruct) (Multimodal) - [Phi](https://huggingface.co/microsoft/phi-1_5)
- [Llava-next](llava-hf/llava-v1.6-mistral-7b-hf) (Multimodal) - [Baichuan](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
- [Falcon](https://huggingface.co/tiiuae/falcon-7b-instruct)
- [StarCoder 2](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1)
- [Qwen 2](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1)
- [Opt](https://huggingface.co/facebook/opt-6.7b)
- [T5](https://huggingface.co/google/flan-t5-xxl)
- [Galactica](https://huggingface.co/facebook/galactica-120b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
- [Bloom](https://huggingface.co/bigscience/bloom-560m)
- [Mpt](https://huggingface.co/mosaicml/mpt-7b-instruct)
- [Gpt2](https://huggingface.co/openai-community/gpt2)
- [Gpt Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Idefics](https://huggingface.co/HuggingFaceM4/idefics-9b) (Multimodal)
If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models: If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models:
@ -38,18 +45,4 @@ If you wish to serve a supported model that already exists on a local folder, ju
```bash ```bash
text-generation-launcher --model-id <PATH-TO-LOCAL-BLOOM> text-generation-launcher --model-id <PATH-TO-LOCAL-BLOOM>
`````` ```
## Supported Hardware
TGI optimized models are supported on NVIDIA [A100](https://www.nvidia.com/en-us/data-center/a100/), [A10G](https://www.nvidia.com/en-us/data-center/products/a10-gpu/) and [T4](https://www.nvidia.com/en-us/data-center/tesla-t4/) GPUs with CUDA 12.2+. Note that you have to install [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) to use it. For other NVIDIA GPUs, continuous batching will still apply, but some operations like flash attention and paged attention will not be executed.
TGI also has support of ROCm-enabled AMD Instinct MI210 and MI250 GPUs, with paged attention, GPTQ quantization, flash attention v2 support. The following features are currently not supported in the ROCm version of TGI, and the supported may be extended in the future:
* Loading [AWQ](https://huggingface.co/docs/transformers/quantization#awq) checkpoints.
* Flash [layer norm kernel](https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm)
* Kernel for sliding window attention (Mistral)
TGI is also supported on the following AI hardware accelerators:
- *Habana first-gen Gaudi and Gaudi2:* check out this [repository](https://github.com/huggingface/tgi-gaudi) to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index)
* *AWS Inferentia2:* check out this [guide](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference) on how to serve models with TGI on Inferentia2.

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

View File

@ -0,0 +1,99 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2061,
"logprob": null,
"text": "What"
},
{
"id": 318,
"logprob": -3.1835938,
"text": " is"
},
{
"id": 2769,
"logprob": -9.171875,
"text": " deep"
},
{
"id": 4673,
"logprob": -1.6425781,
"text": " learning"
},
{
"id": 30,
"logprob": -0.7314453,
"text": "?"
}
],
"seed": null,
"tokens": [
{
"id": 198,
"logprob": -0.68603516,
"special": false,
"text": "\n"
},
{
"id": 198,
"logprob": -0.005393982,
"special": false,
"text": "\n"
},
{
"id": 29744,
"logprob": -0.31079102,
"special": false,
"text": "Deep"
},
{
"id": 4673,
"logprob": -0.08300781,
"special": false,
"text": " learning"
},
{
"id": 318,
"logprob": -0.58984375,
"special": false,
"text": " is"
},
{
"id": 257,
"logprob": -0.953125,
"special": false,
"text": " a"
},
{
"id": 649,
"logprob": -2.0957031,
"special": false,
"text": " new"
},
{
"id": 2214,
"logprob": -1.8095703,
"special": false,
"text": " field"
},
{
"id": 286,
"logprob": -1.0673828,
"special": false,
"text": " of"
},
{
"id": 2267,
"logprob": -0.9375,
"special": false,
"text": " research"
}
],
"top_tokens": null
},
"generated_text": "\n\nDeep learning is a new field of research"
}

View File

@ -0,0 +1,398 @@
[
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2061,
"logprob": null,
"text": "What"
},
{
"id": 318,
"logprob": -3.1835938,
"text": " is"
},
{
"id": 2769,
"logprob": -9.171875,
"text": " deep"
},
{
"id": 4673,
"logprob": -1.6425781,
"text": " learning"
},
{
"id": 30,
"logprob": -0.7314453,
"text": "?"
}
],
"seed": null,
"tokens": [
{
"id": 198,
"logprob": -0.68603516,
"special": false,
"text": "\n"
},
{
"id": 198,
"logprob": -0.005672455,
"special": false,
"text": "\n"
},
{
"id": 29744,
"logprob": -0.3251953,
"special": false,
"text": "Deep"
},
{
"id": 4673,
"logprob": -0.08294678,
"special": false,
"text": " learning"
},
{
"id": 318,
"logprob": -0.5854492,
"special": false,
"text": " is"
},
{
"id": 257,
"logprob": -0.9423828,
"special": false,
"text": " a"
},
{
"id": 649,
"logprob": -2.0800781,
"special": false,
"text": " new"
},
{
"id": 2214,
"logprob": -1.8369141,
"special": false,
"text": " field"
},
{
"id": 286,
"logprob": -1.0683594,
"special": false,
"text": " of"
},
{
"id": 2267,
"logprob": -0.9711914,
"special": false,
"text": " research"
}
],
"top_tokens": null
},
"generated_text": "\n\nDeep learning is a new field of research"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2061,
"logprob": null,
"text": "What"
},
{
"id": 318,
"logprob": -3.1660156,
"text": " is"
},
{
"id": 2769,
"logprob": -9.1796875,
"text": " deep"
},
{
"id": 4673,
"logprob": -1.6376953,
"text": " learning"
},
{
"id": 30,
"logprob": -0.72216797,
"text": "?"
}
],
"seed": null,
"tokens": [
{
"id": 198,
"logprob": -0.7089844,
"special": false,
"text": "\n"
},
{
"id": 198,
"logprob": -0.0054779053,
"special": false,
"text": "\n"
},
{
"id": 29744,
"logprob": -0.3190918,
"special": false,
"text": "Deep"
},
{
"id": 4673,
"logprob": -0.08319092,
"special": false,
"text": " learning"
},
{
"id": 318,
"logprob": -0.5839844,
"special": false,
"text": " is"
},
{
"id": 257,
"logprob": -0.9506836,
"special": false,
"text": " a"
},
{
"id": 649,
"logprob": -2.0878906,
"special": false,
"text": " new"
},
{
"id": 2214,
"logprob": -1.8496094,
"special": false,
"text": " field"
},
{
"id": 286,
"logprob": -1.0673828,
"special": false,
"text": " of"
},
{
"id": 2267,
"logprob": -0.9370117,
"special": false,
"text": " research"
}
],
"top_tokens": null
},
"generated_text": "\n\nDeep learning is a new field of research"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2061,
"logprob": null,
"text": "What"
},
{
"id": 318,
"logprob": -3.1660156,
"text": " is"
},
{
"id": 2769,
"logprob": -9.1796875,
"text": " deep"
},
{
"id": 4673,
"logprob": -1.6376953,
"text": " learning"
},
{
"id": 30,
"logprob": -0.72216797,
"text": "?"
}
],
"seed": null,
"tokens": [
{
"id": 198,
"logprob": -0.7089844,
"special": false,
"text": "\n"
},
{
"id": 198,
"logprob": -0.0054779053,
"special": false,
"text": "\n"
},
{
"id": 29744,
"logprob": -0.3190918,
"special": false,
"text": "Deep"
},
{
"id": 4673,
"logprob": -0.08319092,
"special": false,
"text": " learning"
},
{
"id": 318,
"logprob": -0.5839844,
"special": false,
"text": " is"
},
{
"id": 257,
"logprob": -0.9506836,
"special": false,
"text": " a"
},
{
"id": 649,
"logprob": -2.0878906,
"special": false,
"text": " new"
},
{
"id": 2214,
"logprob": -1.8496094,
"special": false,
"text": " field"
},
{
"id": 286,
"logprob": -1.0673828,
"special": false,
"text": " of"
},
{
"id": 2267,
"logprob": -0.9370117,
"special": false,
"text": " research"
}
],
"top_tokens": null
},
"generated_text": "\n\nDeep learning is a new field of research"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2061,
"logprob": null,
"text": "What"
},
{
"id": 318,
"logprob": -3.1660156,
"text": " is"
},
{
"id": 2769,
"logprob": -9.1796875,
"text": " deep"
},
{
"id": 4673,
"logprob": -1.6376953,
"text": " learning"
},
{
"id": 30,
"logprob": -0.72216797,
"text": "?"
}
],
"seed": null,
"tokens": [
{
"id": 198,
"logprob": -0.7089844,
"special": false,
"text": "\n"
},
{
"id": 198,
"logprob": -0.0054779053,
"special": false,
"text": "\n"
},
{
"id": 29744,
"logprob": -0.3190918,
"special": false,
"text": "Deep"
},
{
"id": 4673,
"logprob": -0.08319092,
"special": false,
"text": " learning"
},
{
"id": 318,
"logprob": -0.5839844,
"special": false,
"text": " is"
},
{
"id": 257,
"logprob": -0.9506836,
"special": false,
"text": " a"
},
{
"id": 649,
"logprob": -2.0878906,
"special": false,
"text": " new"
},
{
"id": 2214,
"logprob": -1.8496094,
"special": false,
"text": " field"
},
{
"id": 286,
"logprob": -1.0673828,
"special": false,
"text": " of"
},
{
"id": 2267,
"logprob": -0.9370117,
"special": false,
"text": " research"
}
],
"top_tokens": null
},
"generated_text": "\n\nDeep learning is a new field of research"
}
]

View File

@ -0,0 +1,25 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "eos_token",
"generated_tokens": 2,
"prefill": [],
"seed": null,
"tokens": [
{
"id": 54901,
"logprob": -0.72753906,
"special": false,
"text": "beach"
},
{
"id": 1,
"logprob": -0.011009216,
"special": true,
"text": "<eos>"
}
],
"top_tokens": null
},
"generated_text": "beach"
}

View File

@ -0,0 +1,44 @@
import pytest
@pytest.fixture(scope="module")
def flash_gpt2_handle(launcher):
with launcher("openai-community/gpt2", num_shard=2) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_gpt2(flash_gpt2_handle):
await flash_gpt2_handle.health(300)
return flash_gpt2_handle.client
@pytest.mark.asyncio
async def test_flash_gpt2(flash_gpt2, response_snapshot):
response = await flash_gpt2.generate(
"What is deep learning?",
max_new_tokens=10,
decoder_input_details=True,
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.asyncio
async def test_flash_gpt2_load(flash_gpt2, generate_load, response_snapshot):
responses = await generate_load(
flash_gpt2,
"What is deep learning?",
max_new_tokens=10,
n=4,
)
generated_texts = [r.generated_text for r in responses]
assert len(generated_texts) == 4
assert all(
[text == generated_texts[0] for text in generated_texts]
), generated_texts
assert responses == response_snapshot

View File

@ -0,0 +1,39 @@
import pytest
import requests
import io
import base64
@pytest.fixture(scope="module")
def flash_pali_gemma_handle(launcher):
with launcher(
"google/paligemma-3b-pt-224",
num_shard=1,
revision="float16",
max_input_length=4000,
max_total_tokens=4096,
) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_pali_gemma(flash_pali_gemma_handle):
await flash_pali_gemma_handle.health(300)
return flash_pali_gemma_handle.client
def get_cow_beach():
with open("integration-tests/images/cow_beach.png", "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
return f"data:image/png;base64,{encoded_string.decode('utf-8')}"
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_pali_gemma(flash_pali_gemma, response_snapshot):
cow = get_cow_beach()
inputs = f"![]({cow})Where is the cow standing?\n"
response = await flash_pali_gemma.generate(inputs, max_new_tokens=20)
assert response.generated_text == "beach"
assert response == response_snapshot

View File

@ -14,6 +14,7 @@ nix = { version = "0.28.0", features = ["signal"] }
once_cell = "1.19.0" once_cell = "1.19.0"
serde = { version = "1.0.188", features = ["derive"] } serde = { version = "1.0.188", features = ["derive"] }
serde_json = "1.0.107" serde_json = "1.0.107"
thiserror = "1.0.59"
tracing = "0.1.37" tracing = "0.1.37"
tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] }

View File

@ -18,14 +18,33 @@ use std::thread;
use std::thread::sleep; use std::thread::sleep;
use std::time::{Duration, Instant}; use std::time::{Duration, Instant};
use std::{fs, io}; use std::{fs, io};
use tracing_subscriber::EnvFilter; use thiserror::Error;
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
mod env_runtime; mod env_runtime;
#[derive(Deserialize)]
struct RawConfig {
max_position_embeddings: Option<usize>,
n_positions: Option<usize>,
max_seq_len: Option<usize>,
}
#[derive(Deserialize)] #[derive(Deserialize)]
struct Config { struct Config {
max_position_embeddings: Option<usize>, max_position_embeddings: Option<usize>,
max_seq_len: Option<usize>, }
impl From<RawConfig> for Config {
fn from(other: RawConfig) -> Self {
let max_position_embeddings = other
.max_position_embeddings
.or(other.max_seq_len)
.or(other.n_positions);
Config {
max_position_embeddings,
}
}
} }
#[derive(Clone, Copy, Debug, ValueEnum)] #[derive(Clone, Copy, Debug, ValueEnum)]
@ -453,6 +472,7 @@ fn shard_manager(
max_total_tokens: usize, max_total_tokens: usize,
max_batch_size: Option<usize>, max_batch_size: Option<usize>,
otlp_endpoint: Option<String>, otlp_endpoint: Option<String>,
log_level: LevelFilter,
status_sender: mpsc::Sender<ShardStatus>, status_sender: mpsc::Sender<ShardStatus>,
shutdown: Arc<AtomicBool>, shutdown: Arc<AtomicBool>,
_shutdown_sender: mpsc::Sender<()>, _shutdown_sender: mpsc::Sender<()>,
@ -475,7 +495,7 @@ fn shard_manager(
"--uds-path".to_string(), "--uds-path".to_string(),
uds_path, uds_path,
"--logger-level".to_string(), "--logger-level".to_string(),
"INFO".to_string(), log_level.to_string().to_uppercase(),
"--json-output".to_string(), "--json-output".to_string(),
]; ];
@ -755,13 +775,13 @@ struct PythonLogMessage {
impl PythonLogMessage { impl PythonLogMessage {
fn trace(&self) { fn trace(&self) {
match self.record.level.name { match self.record.level.name {
PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text), PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text), PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
PythonLogLevelEnum::Info => tracing::info!("{}", self.text), PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
PythonLogLevelEnum::Success => tracing::info!("{}", self.text), PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text), PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
PythonLogLevelEnum::Error => tracing::error!("{}", self.text), PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
PythonLogLevelEnum::Critical => tracing::error!("{}", self.text), PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
} }
} }
} }
@ -823,26 +843,26 @@ fn find_num_shards(
Ok(num_shard) Ok(num_shard)
} }
#[derive(Debug)] #[derive(Debug, Error)]
enum LauncherError { enum LauncherError {
#[error("Invalid argument: {0}")]
ArgumentValidation(String), ArgumentValidation(String),
#[error("not enough cuda devices: {0}")]
NotEnoughCUDADevices(String), NotEnoughCUDADevices(String),
#[error("Download error")]
DownloadError, DownloadError,
#[error("Shard cannot start")]
ShardCannotStart, ShardCannotStart,
#[error("Shard disconnected")]
ShardDisconnected, ShardDisconnected,
#[error("Shard failed")]
ShardFailed, ShardFailed,
#[error("Webserver failed")]
WebserverFailed, WebserverFailed,
#[error("Webserver cannot start")]
WebserverCannotStart, WebserverCannotStart,
} }
impl core::fmt::Display for LauncherError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{self:?}")
}
}
impl std::error::Error for LauncherError {}
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> { fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
// Enter download tracing span // Enter download tracing span
let _span = tracing::span!(tracing::Level::INFO, "download").entered(); let _span = tracing::span!(tracing::Level::INFO, "download").entered();
@ -981,6 +1001,7 @@ fn spawn_shards(
args: &Args, args: &Args,
cuda_graphs: Vec<usize>, cuda_graphs: Vec<usize>,
max_total_tokens: usize, max_total_tokens: usize,
max_log_level: LevelFilter,
shutdown: Arc<AtomicBool>, shutdown: Arc<AtomicBool>,
shutdown_receiver: &mpsc::Receiver<()>, shutdown_receiver: &mpsc::Receiver<()>,
shutdown_sender: mpsc::Sender<()>, shutdown_sender: mpsc::Sender<()>,
@ -1038,6 +1059,7 @@ fn spawn_shards(
max_total_tokens, max_total_tokens,
max_batch_size, max_batch_size,
otlp_endpoint, otlp_endpoint,
max_log_level,
status_sender, status_sender,
shutdown, shutdown,
shutdown_sender, shutdown_sender,
@ -1278,8 +1300,22 @@ fn main() -> Result<(), LauncherError> {
let args: Args = Args::parse(); let args: Args = Args::parse();
// Filter events with LOG_LEVEL // Filter events with LOG_LEVEL
let env_filter = let varname = "LOG_LEVEL";
EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info")); let env_filter = if let Ok(log_level) = std::env::var(varname) {
// Override to avoid simple logs to be spammed with tokio level informations
let log_level = match &log_level[..] {
"warn" => "text_generation_launcher=warn,text_generation_router=warn",
"info" => "text_generation_launcher=info,text_generation_router=info",
"debug" => "text_generation_launcher=debug,text_generation_router=debug",
log_level => log_level,
};
EnvFilter::builder()
.with_default_directive(LevelFilter::INFO.into())
.parse_lossy(log_level)
} else {
EnvFilter::new("info")
};
let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
if args.json_output { if args.json_output {
tracing_subscriber::fmt() tracing_subscriber::fmt()
@ -1322,33 +1358,30 @@ fn main() -> Result<(), LauncherError> {
}; };
let content = std::fs::read_to_string(filename)?; let content = std::fs::read_to_string(filename)?;
let config: Config = serde_json::from_str(&content)?; let config: RawConfig = serde_json::from_str(&content)?;
let config: Config = config.into();
// Quantization usually means you're even more RAM constrained. // Quantization usually means you're even more RAM constrained.
let max_default = 4096; let max_default = 4096;
let max_position_embeddings = match (config.max_position_embeddings, config.max_seq_len) { if let Some(max_position_embeddings) = config.max_position_embeddings {
(Some(max_position_embeddings), _) | (None, Some(max_position_embeddings)) => { if max_position_embeddings > max_default {
if max_position_embeddings > max_default { let max = max_position_embeddings;
let max = max_position_embeddings; if args.max_input_tokens.is_none()
if args.max_input_tokens.is_none() && args.max_total_tokens.is_none()
&& args.max_total_tokens.is_none() && args.max_batch_prefill_tokens.is_none()
&& args.max_batch_prefill_tokens.is_none() {
{ tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
}
max_default
} else {
max_position_embeddings
} }
Ok(max_default)
} else {
Ok(max_position_embeddings)
} }
_ => { } else {
return Err(Box::new(LauncherError::ArgumentValidation( Err(Box::new(LauncherError::ArgumentValidation(
"no max defined".to_string(), "no max defined".to_string(),
))); )))
} }
};
Ok(max_position_embeddings)
}; };
let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096); let max_position_embeddings: usize = get_max_position_embeddings().unwrap_or(4096);
@ -1504,6 +1537,7 @@ fn main() -> Result<(), LauncherError> {
&args, &args,
cuda_graphs, cuda_graphs,
max_total_tokens, max_total_tokens,
max_log_level,
shutdown.clone(), shutdown.clone(),
&shutdown_receiver, &shutdown_receiver,
shutdown_sender, shutdown_sender,

9
load_tests/Makefile Normal file
View File

@ -0,0 +1,9 @@
ShareGPT_V3_unfiltered_cleaned_split.json:
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
prepare_share: ShareGPT_V3_unfiltered_cleaned_split.json
python filter.py
prepare_orca:
python orca.py

26
load_tests/filter.py Normal file
View File

@ -0,0 +1,26 @@
import json
def main():
with open("./ShareGPT_V3_unfiltered_cleaned_split.json", "r") as f:
data = json.load(f)
# Select only the first 2k conversations that start with a human.
max = 2000
conversations = []
for conversation in data:
conv = conversation.get("conversations")
if conv and conv[0]["from"] == "human":
# Trim the rest of the output
conversation["conversations"] = conversation["conversations"][:1]
conversations.append(conversation)
if len(conversation) >= max:
break
with open("./small.json", "w") as f:
data = json.dump(conversations, f, indent=4)
if __name__ == "__main__":
main()

27
load_tests/orca.py Normal file
View File

@ -0,0 +1,27 @@
import json
import datasets
import tqdm
def main():
dataset = datasets.load_dataset("Open-Orca/OpenOrca", split="train")
# Select only the first 2k conversations that start with a human.
max = min(2000, len(dataset))
conversations = []
for item in tqdm.tqdm(dataset, total=max):
conversation = {
"conversations": [
{"from": "human", "value": item["question"]},
],
"id": item["id"],
}
conversations.append(conversation)
if len(conversations) >= max:
break
with open("./small.json", "w") as f:
data = json.dump(conversations, f, indent=4)
if __name__ == "__main__":
main()

View File

@ -1,63 +0,0 @@
import {check} from 'k6';
import http from 'k6/http';
import {Trend} from 'k6/metrics';
const host = __ENV.HOST || '127.0.0.1:3000';
const totalTime = new Trend('total_time', true);
const validationTime = new Trend('validation_time', true);
const queueTime = new Trend('queue_time', true);
const inferenceTime = new Trend('inference_time', true);
const timePerToken = new Trend('time_per_token', true);
const example = {
payload: JSON.stringify({
inputs: '# This is a fibonacci function written in the Python programming language.' +
'def fibonacci',
parameters: {
details: true,
max_new_tokens: 60,
temperature: 0.2,
top_p: 0.95,
seed: 0,
},
}),
generated_tokens: 60
};
export const options = {
thresholds: {
http_req_failed: ['rate==0'],
time_per_token: ['p(95)<90'],
queue_time: ['p(95)<1500'],
},
scenarios: {
load_test: {
executor: 'constant-arrival-rate',
duration: '60s',
preAllocatedVUs: 100,
rate: 10,
timeUnit: '1s',
},
},
};
export default function () {
const headers = {'Content-Type': 'application/json'};
const res = http.post(`http://${host}/generate`, example.payload, {
headers,
});
check(res, {
'Post status is 200': (r) => res.status === 200,
'Post response generated tokens': (r) => res.status === 200 && res.json().details.generated_tokens === example.generated_tokens,
});
if (res.status === 200) {
totalTime.add(res.headers["X-Total-Time"]);
validationTime.add(res.headers["X-Validation-Time"]);
queueTime.add(res.headers["X-Queue-Time"]);
inferenceTime.add(res.headers["X-Inference-Time"]);
timePerToken.add(res.headers["X-Time-Per-Token"]);
}
}

View File

@ -110,6 +110,7 @@ impl Client {
max_prefill_tokens: u32, max_prefill_tokens: u32,
max_total_tokens: u32, max_total_tokens: u32,
max_batch_size: Option<usize>, max_batch_size: Option<usize>,
model_id: &str
) -> Result<Option<u32>> { ) -> Result<Option<u32>> {
let warmup_enabled: bool = env::var("WARMUP_ENABLED").ok().map_or(true, |value| value.to_lowercase() == "true"); let warmup_enabled: bool = env::var("WARMUP_ENABLED").ok().map_or(true, |value| value.to_lowercase() == "true");
if !warmup_enabled { if !warmup_enabled {
@ -152,25 +153,76 @@ impl Client {
let mut batch_counter: u64 = 0; let mut batch_counter: u64 = 0;
let mut request_counter: u64 = 0; let mut request_counter: u64 = 0;
for shape in shapes.iter() { if model_id.contains("llava") {
let (batch_size, seq_length) = shape; let mut n_tokens = 0;
let mut batches: Vec<Batch> = vec![ let mut requests = Vec::new();
self.create_warmup_batch( // Create requests
*shape, while n_tokens < max_prefill_tokens {
&mut batch_counter, let truncate = cmp::min(max_input_length, max_prefill_tokens - n_tokens);
&mut request_counter,
max_input_length, let mut inputs = String::new();
max_total_tokens, inputs.push_str("![]()");
seq_bucket_size, inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize));
false,
None, requests.push(Request {
) id: 0,
]; // We truncate the input on the server side to be sure that it has the correct size
// if possible, create second batch in order to trigger concatenate operation inputs,
if *batch_size < max_decode_batch_size { truncate,
batches.push( // Set sampling parameters to also take these ops into account in the max memory
parameters: Some(NextTokenChooserParameters {
temperature: 0.9,
top_k: 10,
top_p: 0.9,
typical_p: 0.9,
do_sample: false,
seed: 0,
repetition_penalty: 1.2,
frequency_penalty: 0.1,
watermark: true,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: max_total_tokens - truncate,
stop_sequences: vec![],
ignore_eos_token: true,
}),
prefill_logprobs: true,
top_n_tokens: 20,
});
n_tokens += max_input_length;
// Check max_batch_size
if Some(requests.len()) == max_batch_size {
break;
}
}
let mut batches = Vec::new();
batches.push(Batch {
id: 0,
size: requests.len() as u32,
requests,
max_tokens: 0,
});
let request = tonic::Request::new(WarmupRequest {
batches,
max_input_length,
max_prefill_tokens,
max_total_tokens,
})
.inject_context();
let response = self.stub.warmup(request).await?.into_inner();
Ok(response.max_supported_total_tokens)
}
else {
for shape in shapes.iter() {
let (batch_size, seq_length) = shape;
let mut batches: Vec<Batch> = vec![
self.create_warmup_batch( self.create_warmup_batch(
(1, *seq_length), *shape,
&mut batch_counter, &mut batch_counter,
&mut request_counter, &mut request_counter,
max_input_length, max_input_length,
@ -179,56 +231,45 @@ impl Client {
false, false,
None, None,
) )
); ];
// if possible, create second batch in order to trigger concatenate operation
if *batch_size < max_decode_batch_size {
batches.push(
self.create_warmup_batch(
(1, *seq_length),
&mut batch_counter,
&mut request_counter,
max_input_length,
max_total_tokens,
seq_bucket_size,
false,
None,
)
);
}
let request = tonic::Request::new(WarmupRequest {
batches,
max_input_length,
max_prefill_tokens,
max_total_tokens,
}).inject_context();
let _response = self.stub.warmup(request).await?.into_inner();
} }
let request = tonic::Request::new(WarmupRequest { // send batches to warmup all possible decode shapes
batches, if decode_batch_sizes.len() > 1 {
max_input_length, let steps_per_bucket: u32 = if decode_bucket_size <= max_prefill_batch_size {
max_prefill_tokens, decode_bucket_size
max_total_tokens, } else {
}).inject_context(); decode_bucket_size.div_ceil(max_prefill_batch_size)
let _response = self.stub.warmup(request).await?.into_inner(); };
} let max_new_tokens: u32 = 2 * decode_batch_sizes.len() as u32 * steps_per_bucket;
// send batches to warmup all possible decode shapes let mut requests_send: u32 = cmp::min(max_prefill_batch_size, decode_bucket_size);
if decode_batch_sizes.len() > 1 { let mut batches: Vec<Batch> = vec![
let steps_per_bucket: u32 = if decode_bucket_size <= max_prefill_batch_size {
decode_bucket_size
} else {
decode_bucket_size.div_ceil(max_prefill_batch_size)
};
let max_new_tokens: u32 = 2 * decode_batch_sizes.len() as u32 * steps_per_bucket;
let mut requests_send: u32 = cmp::min(max_prefill_batch_size, decode_bucket_size);
let mut batches: Vec<Batch> = vec![
self.create_warmup_batch(
(requests_send, seq_bucket_size),
&mut batch_counter,
&mut request_counter,
max_input_length,
max_total_tokens,
seq_bucket_size,
false,
Some(max_new_tokens),
)
];
let get_current_decode_batch_size = |num: u32| -> u32 {
decode_batch_sizes.iter()
.filter(|&&x| x >= num)
.min()
.copied()
.unwrap()
};
let mut current_decode_batch_size: u32 = get_current_decode_batch_size(requests_send);
while current_decode_batch_size < max_decode_batch_size {
let distance_to_next_bucket = current_decode_batch_size + decode_bucket_size - requests_send;
let num_requests: u32 = cmp::min(distance_to_next_bucket, max_prefill_batch_size);
batches.push(
self.create_warmup_batch( self.create_warmup_batch(
(num_requests, seq_bucket_size), (requests_send, seq_bucket_size),
&mut batch_counter, &mut batch_counter,
&mut request_counter, &mut request_counter,
max_input_length, max_input_length,
@ -237,48 +278,74 @@ impl Client {
false, false,
Some(max_new_tokens), Some(max_new_tokens),
) )
); ];
requests_send += num_requests; let get_current_decode_batch_size = |num: u32| -> u32 {
current_decode_batch_size = get_current_decode_batch_size(requests_send); decode_batch_sizes.iter()
.filter(|&&x| x >= num)
.min()
.copied()
.unwrap()
};
let mut current_decode_batch_size: u32 = get_current_decode_batch_size(requests_send);
while current_decode_batch_size < max_decode_batch_size {
let distance_to_next_bucket = current_decode_batch_size + decode_bucket_size - requests_send;
let num_requests: u32 = cmp::min(distance_to_next_bucket, max_prefill_batch_size);
batches.push(
self.create_warmup_batch(
(num_requests, seq_bucket_size),
&mut batch_counter,
&mut request_counter,
max_input_length,
max_total_tokens,
seq_bucket_size,
false,
Some(max_new_tokens),
)
);
requests_send += num_requests;
current_decode_batch_size = get_current_decode_batch_size(requests_send);
}
let request = tonic::Request::new(WarmupRequest {
batches,
max_input_length,
max_prefill_tokens,
max_total_tokens,
}).inject_context();
let _response = self.stub.warmup(request).await?.into_inner();
} }
let request = tonic::Request::new(WarmupRequest { // send batches with default params to warm up Greedy search
batches, let mut greedy_shapes: Vec<(u32, u32)> = Vec::with_capacity(prefill_batch_sizes.len());
max_input_length, for batch_size in &prefill_batch_sizes {
max_prefill_tokens, greedy_shapes.push((*batch_size, seq_bucket_size.clone()));
max_total_tokens, }
}).inject_context(); for greedy_shape in greedy_shapes.iter() {
let _response = self.stub.warmup(request).await?.into_inner(); let batches: Vec<Batch> = vec![
} self.create_warmup_batch(
*greedy_shape,
// send batches with default params to warm up Greedy search &mut batch_counter,
let mut greedy_shapes: Vec<(u32, u32)> = Vec::with_capacity(prefill_batch_sizes.len()); &mut request_counter,
for batch_size in &prefill_batch_sizes { max_input_length,
greedy_shapes.push((*batch_size, seq_bucket_size.clone())); max_total_tokens,
} seq_bucket_size,
for greedy_shape in greedy_shapes.iter() { true,
let batches: Vec<Batch> = vec![ None,
self.create_warmup_batch( )
*greedy_shape, ];
&mut batch_counter, let request = tonic::Request::new(WarmupRequest {
&mut request_counter, batches,
max_input_length, max_input_length,
max_prefill_tokens,
max_total_tokens, max_total_tokens,
seq_bucket_size, }).inject_context();
true, let _response = self.stub.warmup(request).await?.into_inner();
None, }
) Ok(None) // No support for maximum total tokens
];
let request = tonic::Request::new(WarmupRequest {
batches,
max_input_length,
max_prefill_tokens,
max_total_tokens,
}).inject_context();
let _response = self.stub.warmup(request).await?.into_inner();
} }
Ok(None) // No support for maximum total tokens
} }
#[instrument(skip_all)] #[instrument(skip_all)]

View File

@ -100,6 +100,7 @@ impl ShardedClient {
max_prefill_tokens: u32, max_prefill_tokens: u32,
max_total_tokens: u32, max_total_tokens: u32,
max_batch_size: Option<usize>, max_batch_size: Option<usize>,
model_id: &str,
) -> Result<Option<u32>> { ) -> Result<Option<u32>> {
let futures: Vec<_> = self let futures: Vec<_> = self
.clients .clients
@ -110,6 +111,7 @@ impl ShardedClient {
max_prefill_tokens, max_prefill_tokens,
max_total_tokens, max_total_tokens,
max_batch_size, max_batch_size,
model_id
)) ))
}) })
.collect(); .collect();

View File

@ -2,30 +2,9 @@
//! Inspired by: https://github.com/open-telemetry/opentelemetry-rust gRPC examples //! Inspired by: https://github.com/open-telemetry/opentelemetry-rust gRPC examples
use opentelemetry::global; use opentelemetry::global;
use opentelemetry::propagation::{Extractor, Injector}; use opentelemetry::propagation::Injector;
use tracing_opentelemetry::OpenTelemetrySpanExt; use tracing_opentelemetry::OpenTelemetrySpanExt;
/// Extract context metadata from a gRPC request's metadata
struct MetadataExtractor<'a>(pub &'a tonic::metadata::MetadataMap);
impl<'a> Extractor for MetadataExtractor<'a> {
/// Get a value for a key from the MetadataMap. If the value can't be converted to &str, returns None
fn get(&self, key: &str) -> Option<&str> {
self.0.get(key).and_then(|metadata| metadata.to_str().ok())
}
/// Collect all the keys from the MetadataMap.
fn keys(&self) -> Vec<&str> {
self.0
.keys()
.map(|key| match key {
tonic::metadata::KeyRef::Ascii(v) => v.as_str(),
tonic::metadata::KeyRef::Binary(v) => v.as_str(),
})
.collect::<Vec<_>>()
}
}
/// Inject context in the metadata of a gRPC request. /// Inject context in the metadata of a gRPC request.
struct MetadataInjector<'a>(pub &'a mut tonic::metadata::MetadataMap); struct MetadataInjector<'a>(pub &'a mut tonic::metadata::MetadataMap);

View File

@ -100,7 +100,6 @@ impl LlavaNext {
} }
#[derive(Clone, Debug, Serialize, Deserialize)] #[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "model_type")]
#[serde(rename_all = "snake_case")] #[serde(rename_all = "snake_case")]
pub struct ClipVisionModel { pub struct ClipVisionModel {
image_size: usize, image_size: usize,
@ -108,7 +107,6 @@ pub struct ClipVisionModel {
} }
#[derive(Clone, Debug, Serialize, Deserialize)] #[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "model_type")]
#[serde(rename_all = "snake_case")] #[serde(rename_all = "snake_case")]
pub struct Idefics2 {} pub struct Idefics2 {}
@ -118,6 +116,24 @@ impl Idefics2 {
} }
} }
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub struct PaliTextConfig {
num_image_tokens: usize,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub struct Paligemma {
text_config: PaliTextConfig,
}
impl Paligemma {
pub fn get_number_of_features(&self, _height: usize, _width: usize) -> usize {
self.text_config.num_image_tokens
}
}
#[derive(Clone, Debug, Serialize, Deserialize)] #[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "model_type")] #[serde(tag = "model_type")]
#[serde(rename_all = "snake_case")] #[serde(rename_all = "snake_case")]
@ -132,12 +148,15 @@ pub enum Config {
Santacoder, Santacoder,
Bloom, Bloom,
Mpt, Mpt,
Gpt2,
GptNeox, GptNeox,
Phi, Phi,
#[serde(rename = "phi-msft")] #[serde(rename = "phi-msft")]
PhiMsft, PhiMsft,
Phi3,
Llama, Llama,
Baichuan, Baichuan,
Paligemma(Paligemma),
Gemma, Gemma,
Cohere, Cohere,
Drbx, Drbx,

View File

@ -4,7 +4,7 @@
use crate::validation::{Validation, ValidationError}; use crate::validation::{Validation, ValidationError};
use crate::{ use crate::{
ChatTemplateInputs, ChatTemplateVersions, Entry, GenerateRequest, GenerateStreamResponse, ChatTemplateInputs, ChatTemplateVersions, Entry, GenerateRequest, GenerateStreamResponse,
HubTokenizerConfig, Message, PrefillToken, Queue, Token, HubTokenizerConfig, Message, MessageChunk, PrefillToken, Queue, Text, TextMessage, Token,
}; };
use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools}; use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools};
use futures::future::try_join_all; use futures::future::try_join_all;
@ -373,16 +373,15 @@ impl ChatTemplate {
if self.use_default_tool_template { if self.use_default_tool_template {
if let Some(last_message) = messages.last_mut() { if let Some(last_message) = messages.last_mut() {
if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt { if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt {
last_message.content = Some(format!( last_message.content.push(MessageChunk::Text(Text {
"{}\n---\n{}\n{}", text: format!("\n---\n{}\n{}", tool_prompt, tools),
last_message.content.as_deref().unwrap_or_default(), }));
tool_prompt,
tools
));
} }
} }
} }
let messages: Vec<TextMessage> = messages.into_iter().map(|c| c.into()).collect();
self.template self.template
.render(ChatTemplateInputs { .render(ChatTemplateInputs {
messages, messages,
@ -950,8 +949,7 @@ impl InferError {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use crate::infer::raise_exception; use crate::infer::raise_exception;
use crate::ChatTemplateInputs; use crate::{ChatTemplateInputs, TextMessage};
use crate::Message;
use minijinja::Environment; use minijinja::Environment;
#[test] #[test]
@ -985,29 +983,21 @@ mod tests {
let chat_template_inputs = ChatTemplateInputs { let chat_template_inputs = ChatTemplateInputs {
messages: vec![ messages: vec![
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("Hi!".to_string()), content: "Hi!".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("Hello how can I help?".to_string()), content: "Hello how can I help?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("What is Deep Learning?".to_string()), content: "What is Deep Learning?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("magic!".to_string()), content: "magic!".to_string(),
name: None,
tool_calls: None,
}, },
], ],
bos_token: Some("[BOS]"), bos_token: Some("[BOS]"),
@ -1055,35 +1045,25 @@ mod tests {
let chat_template_inputs = ChatTemplateInputs { let chat_template_inputs = ChatTemplateInputs {
messages: vec![ messages: vec![
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("Hi!".to_string()), content: "Hi!".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("Hi again!".to_string()), content: "Hi again!".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("Hello how can I help?".to_string()), content: "Hello how can I help?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("What is Deep Learning?".to_string()), content: "What is Deep Learning?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("magic!".to_string()), content: "magic!".to_string(),
name: None,
tool_calls: None,
}, },
], ],
bos_token: Some("[BOS]"), bos_token: Some("[BOS]"),
@ -1136,29 +1116,21 @@ mod tests {
let chat_template_inputs = ChatTemplateInputs { let chat_template_inputs = ChatTemplateInputs {
messages: vec![ messages: vec![
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("Hi!".to_string()), content: "Hi!".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("Hello how can I help?".to_string()), content: "Hello how can I help?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("What is Deep Learning?".to_string()), content: "What is Deep Learning?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("magic!".to_string()), content: "magic!".to_string(),
name: None,
tool_calls: None,
}, },
], ],
bos_token: Some("[BOS]"), bos_token: Some("[BOS]"),
@ -1195,29 +1167,21 @@ mod tests {
let chat_template_inputs = ChatTemplateInputs { let chat_template_inputs = ChatTemplateInputs {
messages: vec![ messages: vec![
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("Hi!".to_string()), content: "Hi!".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("Hello how can I help?".to_string()), content: "Hello how can I help?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("What is Deep Learning?".to_string()), content: "What is Deep Learning?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("magic!".to_string()), content: "magic!".to_string(),
name: None,
tool_calls: None,
}, },
], ],
bos_token: Some("[BOS]"), bos_token: Some("[BOS]"),
@ -1240,34 +1204,24 @@ mod tests {
#[test] #[test]
fn test_many_chat_templates() { fn test_many_chat_templates() {
let example_chat = vec![ let example_chat = vec![
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("Hello, how are you?".to_string()), content: "Hello, how are you?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "assistant".to_string(), role: "assistant".to_string(),
content: Some("I'm doing great. How can I help you today?".to_string()), content: "I'm doing great. How can I help you today?".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage {
role: "user".to_string(), role: "user".to_string(),
content: Some("I'd like to show off how chat templating works!".to_string()), content: "I'd like to show off how chat templating works!".to_string(),
name: None,
tool_calls: None,
}, },
]; ];
let example_chat_with_system = vec![Message { let example_chat_with_system = [TextMessage {
role: "system".to_string(), role: "system".to_string(),
content: Some( content: "You are a friendly chatbot who always responds in the style of a pirate"
"You are a friendly chatbot who always responds in the style of a pirate" .to_string(),
.to_string(),
),
name: None,
tool_calls: None,
}] }]
.iter() .iter()
.chain(&example_chat) .chain(&example_chat)
@ -1384,7 +1338,7 @@ mod tests {
{ {
let mut env = Environment::new(); let mut env = Environment::new();
env.add_function("raise_exception", raise_exception); env.add_function("raise_exception", raise_exception);
let tmpl = env.template_from_str(&chat_template); let tmpl = env.template_from_str(chat_template);
let result = tmpl.unwrap().render(input).unwrap(); let result = tmpl.unwrap().render(input).unwrap();
assert_eq!(result, target); assert_eq!(result, target);
} }
@ -1407,17 +1361,13 @@ mod tests {
chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}", chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
input: ChatTemplateInputs { input: ChatTemplateInputs {
messages: vec![ messages: vec![
Message { TextMessage{
role: "system".to_string(), role: "system".to_string(),
content: Some("You are a friendly chatbot who always responds in the style of a pirate".to_string()), content: "You are a friendly chatbot who always responds in the style of a pirate".to_string(),
name: None,
tool_calls: None,
}, },
Message { TextMessage{
role: "user".to_string(), role: "user".to_string(),
content: Some("How many helicopters can a human eat in one sitting?".to_string()), content: "How many helicopters can a human eat in one sitting?".to_string(),
name: None,
tool_calls: None,
}, },
], ],
add_generation_prompt: true, add_generation_prompt: true,

View File

@ -11,6 +11,7 @@ use queue::{Entry, Queue};
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use tokio::sync::OwnedSemaphorePermit; use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream; use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::warn;
use utoipa::ToSchema; use utoipa::ToSchema;
use validation::Validation; use validation::Validation;
@ -159,6 +160,8 @@ pub struct Info {
#[schema(example = "32")] #[schema(example = "32")]
pub max_client_batch_size: usize, pub max_client_batch_size: usize,
/// Router Info /// Router Info
#[schema(example = "text-generation-router")]
pub router: &'static str,
#[schema(example = "0.5.0")] #[schema(example = "0.5.0")]
pub version: &'static str, pub version: &'static str,
#[schema(nullable = true, example = "null")] #[schema(nullable = true, example = "null")]
@ -399,6 +402,11 @@ pub struct CompletionRequest {
#[serde(default)] #[serde(default)]
#[schema(example = "1.0")] #[schema(example = "1.0")]
pub frequency_penalty: Option<f32>, pub frequency_penalty: Option<f32>,
/// Up to 4 sequences where the API will stop generating further tokens.
#[serde(default)]
#[schema(nullable = true, example = "null")]
pub stop: Option<Vec<String>>,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)] #[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
@ -438,7 +446,7 @@ pub(crate) struct ChatCompletion {
#[derive(Clone, Deserialize, Serialize, ToSchema)] #[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionComplete { pub(crate) struct ChatCompletionComplete {
pub index: u32, pub index: u32,
pub message: Message, pub message: OutputMessage,
pub logprobs: Option<ChatCompletionLogprobs>, pub logprobs: Option<ChatCompletionLogprobs>,
pub finish_reason: String, pub finish_reason: String,
} }
@ -531,6 +539,30 @@ impl ChatCompletion {
return_logprobs: bool, return_logprobs: bool,
tool_calls: Option<Vec<ToolCall>>, tool_calls: Option<Vec<ToolCall>>,
) -> Self { ) -> Self {
let message = match (output, tool_calls) {
(Some(content), None) => OutputMessage::ChatMessage(TextMessage {
role: "assistant".into(),
content,
}),
(None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
role: "assistant".to_string(),
tool_calls,
}),
(Some(output), Some(_)) => {
warn!("Received both chat and tool call");
OutputMessage::ChatMessage(TextMessage {
role: "assistant".into(),
content: output,
})
}
(None, None) => {
warn!("Didn't receive an answer");
OutputMessage::ChatMessage(TextMessage {
role: "assistant".into(),
content: "".to_string(),
})
}
};
Self { Self {
id: String::new(), id: String::new(),
object: "text_completion".into(), object: "text_completion".into(),
@ -539,12 +571,7 @@ impl ChatCompletion {
system_fingerprint, system_fingerprint,
choices: vec![ChatCompletionComplete { choices: vec![ChatCompletionComplete {
index: 0, index: 0,
message: Message { message,
role: "assistant".into(),
content: output,
name: None,
tool_calls,
},
logprobs: return_logprobs logprobs: return_logprobs
.then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))), .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
finish_reason: details.finish_reason.to_string(), finish_reason: details.finish_reason.to_string(),
@ -566,7 +593,8 @@ pub(crate) struct CompletionCompleteChunk {
pub model: String, pub model: String,
pub system_fingerprint: String, pub system_fingerprint: String,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema)]
#[derive(Clone, Serialize, ToSchema)]
pub(crate) struct ChatCompletionChunk { pub(crate) struct ChatCompletionChunk {
pub id: String, pub id: String,
pub object: String, pub object: String,
@ -578,7 +606,7 @@ pub(crate) struct ChatCompletionChunk {
pub choices: Vec<ChatCompletionChoice>, pub choices: Vec<ChatCompletionChoice>,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema)] #[derive(Clone, Serialize, ToSchema)]
pub(crate) struct ChatCompletionChoice { pub(crate) struct ChatCompletionChoice {
pub index: u32, pub index: u32,
pub delta: ChatCompletionDelta, pub delta: ChatCompletionDelta,
@ -586,21 +614,21 @@ pub(crate) struct ChatCompletionChoice {
pub finish_reason: Option<String>, pub finish_reason: Option<String>,
} }
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)] #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub(crate) struct ChatCompletionDelta { pub struct ToolCallDelta {
#[schema(example = "user")] #[schema(example = "assistant")]
// TODO Modify this to a true enum. role: String,
#[serde(default, skip_serializing_if = "Option::is_none")] tool_calls: DeltaToolCall,
pub role: Option<String>,
#[serde(default, skip_serializing_if = "Option::is_none")]
#[schema(example = "What is Deep Learning?")]
pub content: Option<String>,
// default to None
#[serde(default, skip_serializing_if = "Option::is_none")]
pub tool_calls: Option<DeltaToolCall>,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)] #[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
enum ChatCompletionDelta {
Chat(TextMessage),
Tool(ToolCallDelta),
}
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
pub(crate) struct DeltaToolCall { pub(crate) struct DeltaToolCall {
pub index: u32, pub index: u32,
pub id: String, pub id: String,
@ -608,7 +636,7 @@ pub(crate) struct DeltaToolCall {
pub function: Function, pub function: Function,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)] #[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
pub(crate) struct Function { pub(crate) struct Function {
pub name: Option<String>, pub name: Option<String>,
pub arguments: String, pub arguments: String,
@ -626,15 +654,13 @@ impl ChatCompletionChunk {
finish_reason: Option<String>, finish_reason: Option<String>,
) -> Self { ) -> Self {
let delta = match (delta, tool_calls) { let delta = match (delta, tool_calls) {
(Some(delta), _) => ChatCompletionDelta { (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
role: Some("assistant".to_string()), role: "assistant".to_string(),
content: Some(delta), content: delta,
tool_calls: None, }),
}, (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
(None, Some(tool_calls)) => ChatCompletionDelta { role: "assistant".to_string(),
role: Some("assistant".to_string()), tool_calls: DeltaToolCall {
content: None,
tool_calls: Some(DeltaToolCall {
index: 0, index: 0,
id: String::new(), id: String::new(),
r#type: "function".to_string(), r#type: "function".to_string(),
@ -642,13 +668,12 @@ impl ChatCompletionChunk {
name: None, name: None,
arguments: tool_calls[0].to_string(), arguments: tool_calls[0].to_string(),
}, },
}), },
}, }),
(None, None) => ChatCompletionDelta { (None, None) => ChatCompletionDelta::Chat(TextMessage {
role: None, role: "assistant".to_string(),
content: None, content: "".to_string(),
tool_calls: None, }),
},
}; };
Self { Self {
id: String::new(), id: String::new(),
@ -849,7 +874,7 @@ where
state.end() state.end()
} }
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default)] #[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
pub(crate) struct FunctionDefinition { pub(crate) struct FunctionDefinition {
#[serde(default)] #[serde(default)]
pub description: Option<String>, pub description: Option<String>,
@ -869,7 +894,7 @@ pub(crate) struct Tool {
#[derive(Clone, Serialize, Deserialize, Default)] #[derive(Clone, Serialize, Deserialize, Default)]
pub(crate) struct ChatTemplateInputs<'a> { pub(crate) struct ChatTemplateInputs<'a> {
messages: Vec<Message>, messages: Vec<TextMessage>,
bos_token: Option<&'a str>, bos_token: Option<&'a str>,
eos_token: Option<&'a str>, eos_token: Option<&'a str>,
add_generation_prompt: bool, add_generation_prompt: bool,
@ -877,88 +902,113 @@ pub(crate) struct ChatTemplateInputs<'a> {
tools_prompt: Option<&'a str>, tools_prompt: Option<&'a str>,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)] #[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
pub(crate) struct ToolCall { pub(crate) struct ToolCall {
pub id: u32, pub id: String,
pub r#type: String, pub r#type: String,
pub function: FunctionDefinition, pub function: FunctionDefinition,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)] #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub(crate) struct Text { struct Url {
#[serde(default)] url: String,
pub text: String,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)] #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub(crate) struct ImageUrl { struct ImageUrl {
#[serde(default)] image_url: Url,
pub url: String,
} }
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug)] #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub(crate) struct Content { struct Text {
pub r#type: String, text: String,
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
enum MessageChunk {
Text(Text),
ImageUrl(ImageUrl),
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
#[schema(example = "user")]
role: String,
#[schema(example = "My name is David and I")]
#[serde(deserialize_with = "message_content_serde::deserialize")]
content: Vec<MessageChunk>,
#[serde(default, skip_serializing_if = "Option::is_none")] #[serde(default, skip_serializing_if = "Option::is_none")]
pub text: Option<String>, #[schema(example = "\"David\"")]
#[serde(default, skip_serializing_if = "Option::is_none")] name: Option<String>,
pub image_url: Option<ImageUrl>,
} }
mod message_content_serde { mod message_content_serde {
use super::*; use super::*;
use serde::de; use serde::{Deserialize, Deserializer};
use serde::Deserializer;
use serde_json::Value;
pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error> pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<MessageChunk>, D::Error>
where where
D: Deserializer<'de>, D: Deserializer<'de>,
{ {
let value = Value::deserialize(deserializer)?; #[derive(Deserialize)]
match value { #[serde(untagged)]
Value::String(s) => Ok(Some(s)), enum Message {
Value::Array(arr) => { Text(String),
let results: Result<Vec<String>, _> = arr Chunks(Vec<MessageChunk>),
.into_iter() }
.map(|v| { let message: Message = Deserialize::deserialize(deserializer)?;
let content: Content = let chunks = match message {
serde_json::from_value(v).map_err(de::Error::custom)?; Message::Text(text) => {
match content.r#type.as_str() { vec![MessageChunk::Text(Text { text })]
"text" => Ok(content.text.unwrap_or_default()),
"image_url" => {
if let Some(url) = content.image_url {
Ok(format!("![]({})", url.url))
} else {
Ok(String::new())
}
}
_ => Err(de::Error::custom("invalid content type")),
}
})
.collect();
results.map(|strings| Some(strings.join("")))
} }
Value::Null => Ok(None), Message::Chunks(s) => s,
_ => Err(de::Error::custom("invalid token format")), };
Ok(chunks)
}
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
#[schema(example = "user")]
pub role: String,
#[schema(example = "My name is David and I")]
pub content: String,
}
impl From<Message> for TextMessage {
fn from(value: Message) -> Self {
TextMessage {
role: value.role,
content: value
.content
.into_iter()
.map(|c| match c {
MessageChunk::Text(Text { text }) => text,
MessageChunk::ImageUrl(image) => {
let url = image.image_url.url;
format!("![]({url})")
}
})
.collect::<Vec<_>>()
.join(""),
} }
} }
} }
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug)] #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub(crate) struct Message { pub struct ToolCallMessage {
#[schema(example = "user")] #[schema(example = "assistant")]
pub role: String, role: String,
#[serde(skip_serializing_if = "Option::is_none")] tool_calls: Vec<ToolCall>,
#[schema(example = "My name is David and I")] }
#[serde(deserialize_with = "message_content_serde::deserialize")]
pub content: Option<String>, #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(default, skip_serializing_if = "Option::is_none")] #[serde(untagged)]
#[schema(example = "\"David\"")] pub(crate) enum OutputMessage {
pub name: Option<String>, ChatMessage(TextMessage),
#[serde(default, skip_serializing_if = "Option::is_none")] ToolCall(ToolCallMessage),
pub tool_calls: Option<Vec<ToolCall>>,
} }
#[derive(Clone, Debug, Deserialize, ToSchema)] #[derive(Clone, Debug, Deserialize, ToSchema)]
@ -1121,7 +1171,7 @@ pub(crate) struct ErrorResponse {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*; use super::*;
use serde_json::json;
use tokenizers::Tokenizer; use tokenizers::Tokenizer;
pub(crate) async fn get_tokenizer() -> Tokenizer { pub(crate) async fn get_tokenizer() -> Tokenizer {
@ -1189,4 +1239,100 @@ mod tests {
); );
assert_eq!(config.eos_token, Some("<end▁of▁sentence>".to_string())); assert_eq!(config.eos_token, Some("<end▁of▁sentence>".to_string()));
} }
#[test]
fn test_chat_simple_string() {
let json = json!({
"model": "",
"messages": [{
"role": "user",
"content": "What is Deep Learning?"
}]
});
let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();
assert_eq!(
request.messages[0],
Message {
role: "user".to_string(),
content: vec![MessageChunk::Text(Text {
text: "What is Deep Learning?".to_string()
}),],
name: None
}
);
}
#[test]
fn test_chat_request() {
let json = json!({
"model": "",
"messages": [{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
]
}]
});
let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();
assert_eq!(
request.messages[0],
Message{
role: "user".to_string(),
content: vec![
MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
],
name: None
}
);
}
#[test]
fn text_message_convert() {
let message = Message{
role: "user".to_string(),
content: vec![
MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
],
name: None
};
let textmsg: TextMessage = message.into();
assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
}
#[test]
fn openai_output() {
let message = OutputMessage::ChatMessage(TextMessage {
role: "assistant".to_string(),
content: "This is the answer".to_string(),
});
let serialized = serde_json::to_string(&message).unwrap();
assert_eq!(
serialized,
r#"{"role":"assistant","content":"This is the answer"}"#
);
let message = OutputMessage::ToolCall(ToolCallMessage {
role: "assistant".to_string(),
tool_calls: vec![ToolCall {
id: "0".to_string(),
r#type: "function".to_string(),
function: FunctionDefinition {
description: None,
name: "myfn".to_string(),
arguments: json!({
"format": "csv"
}),
},
}],
});
let serialized = serde_json::to_string(&message).unwrap();
assert_eq!(
serialized,
r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
);
}
} }

View File

@ -23,7 +23,7 @@ use tokenizers::Tokenizer;
use tower_http::cors::AllowOrigin; use tower_http::cors::AllowOrigin;
use tracing_subscriber::layer::SubscriberExt; use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt; use tracing_subscriber::util::SubscriberInitExt;
use tracing_subscriber::{EnvFilter, Layer}; use tracing_subscriber::{filter::LevelFilter, EnvFilter, Layer};
/// App Configuration /// App Configuration
#[derive(Parser, Debug)] #[derive(Parser, Debug)]
@ -349,6 +349,7 @@ async fn main() -> Result<(), RouterError> {
max_batch_prefill_tokens, max_batch_prefill_tokens,
max_total_tokens as u32, max_total_tokens as u32,
max_batch_size, max_batch_size,
&model_info.model_id
) )
.await .await
.map_err(RouterError::Warmup)? .map_err(RouterError::Warmup)?
@ -482,8 +483,21 @@ fn init_logging(otlp_endpoint: Option<String>, json_output: bool) {
} }
// Filter events with LOG_LEVEL // Filter events with LOG_LEVEL
let env_filter = let varname = "LOG_LEVEL";
EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info")); let env_filter = if let Ok(log_level) = std::env::var(varname) {
// Override to avoid simple logs to be spammed with tokio level informations
let log_level = match &log_level[..] {
"warn" => "text_generation_launcher=warn,text_generation_router=warn",
"info" => "text_generation_launcher=info,text_generation_router=info",
"debug" => "text_generation_launcher=debug,text_generation_router=debug",
log_level => log_level,
};
EnvFilter::builder()
.with_default_directive(LevelFilter::INFO.into())
.parse_lossy(log_level)
} else {
EnvFilter::new("info")
};
tracing_subscriber::registry() tracing_subscriber::registry()
.with(env_filter) .with(env_filter)

View File

@ -599,9 +599,22 @@ async fn completions(
let span = tracing::Span::current(); let span = tracing::Span::current();
metrics::increment_counter!("tgi_request_count"); metrics::increment_counter!("tgi_request_count");
let stream = req.stream; let CompletionRequest {
let max_new_tokens = req.max_tokens.or(Some(100)); max_tokens,
let seed = req.seed; seed,
stop,
stream,
temperature,
..
} = req;
let max_new_tokens = max_tokens.or(Some(100));
let stop = stop.unwrap_or_default();
// enable greedy only when temperature is 0
let (do_sample, temperature) = match temperature {
Some(temperature) if temperature == 0.0 => (false, None),
other => (true, other),
};
// if suffix is present throw an error // if suffix is present throw an error
if req.suffix.is_some() { if req.suffix.is_some() {
@ -637,16 +650,16 @@ async fn completions(
inputs: prompt.to_string(), inputs: prompt.to_string(),
parameters: GenerateParameters { parameters: GenerateParameters {
best_of: None, best_of: None,
temperature: req.temperature, temperature,
repetition_penalty: req.repetition_penalty, repetition_penalty: req.repetition_penalty,
frequency_penalty: req.frequency_penalty, frequency_penalty: req.frequency_penalty,
top_k: None, top_k: None,
top_p: req.top_p, top_p: req.top_p,
typical_p: None, typical_p: None,
do_sample: true, do_sample,
max_new_tokens, max_new_tokens,
return_full_text: None, return_full_text: None,
stop: Vec::new(), stop: stop.clone(),
truncate: None, truncate: None,
watermark: false, watermark: false,
details: true, details: true,
@ -698,7 +711,7 @@ async fn completions(
model: model_id.clone(), model: model_id.clone(),
system_fingerprint: system_fingerprint.clone(), system_fingerprint: system_fingerprint.clone(),
}) })
.map_or_else(|_e| Event::default(), |data| data) .unwrap_or_else(|_e| Event::default())
}; };
let (header_tx, header_rx) = oneshot::channel(); let (header_tx, header_rx) = oneshot::channel();
@ -990,7 +1003,6 @@ async fn chat_completions(
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> { ) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
let span = tracing::Span::current(); let span = tracing::Span::current();
metrics::increment_counter!("tgi_request_count"); metrics::increment_counter!("tgi_request_count");
let ChatRequest { let ChatRequest {
logprobs, logprobs,
max_tokens, max_tokens,
@ -1124,13 +1136,10 @@ async fn chat_completions(
logprobs, logprobs,
stream_token.details.map(|d| d.finish_reason.to_string()), stream_token.details.map(|d| d.finish_reason.to_string()),
)) ))
.map_or_else( .unwrap_or_else(|e| {
|e| { println!("Failed to serialize ChatCompletionChunk: {:?}", e);
println!("Failed to serialize ChatCompletionChunk: {:?}", e); Event::default()
Event::default() })
},
|data| data,
)
}; };
let (headers, response_stream) = generate_stream_internal( let (headers, response_stream) = generate_stream_internal(
@ -1165,7 +1174,7 @@ async fn chat_completions(
) )
})?; })?;
let tool_calls = vec![ToolCall { let tool_calls = vec![ToolCall {
id: 0, id: "0".to_string(),
r#type: "function".to_string(), r#type: "function".to_string(),
function: FunctionDefinition { function: FunctionDefinition {
description: None, description: None,
@ -1568,6 +1577,7 @@ pub async fn run(
max_batch_size, max_batch_size,
validation_workers, validation_workers,
max_client_batch_size, max_client_batch_size,
router: env!("CARGO_PKG_NAME"),
version: env!("CARGO_PKG_VERSION"), version: env!("CARGO_PKG_VERSION"),
sha: option_env!("VERGEN_GIT_SHA"), sha: option_env!("VERGEN_GIT_SHA"),
docker_label: option_env!("DOCKER_LABEL"), docker_label: option_env!("DOCKER_LABEL"),

View File

@ -565,6 +565,30 @@ fn prepare_input(
inputs = modified_inputs; inputs = modified_inputs;
tokenizer_query tokenizer_query
} }
Some(Config::Paligemma(config)) => {
let mut modified_inputs = String::with_capacity(inputs.len());
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
modified_inputs.push_str(&inputs[start..chunk_start]);
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (image_uri, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = config.get_number_of_features(height, width);
tokenizer_query.push_str(&"<image>".repeat(slots));
modified_inputs.push_str(&image_uri);
start = chunk_end;
}
if start != inputs.len() - 1 {
modified_inputs.push_str(&inputs[start..]);
tokenizer_query.push_str(&inputs[start..]);
}
inputs = modified_inputs;
tokenizer_query
}
Some(Config::Idefics2(config)) => { Some(Config::Idefics2(config)) => {
let mut modified_inputs = String::with_capacity(inputs.len()); let mut modified_inputs = String::with_capacity(inputs.len());
let mut tokenizer_query = String::with_capacity(inputs.len()); let mut tokenizer_query = String::with_capacity(inputs.len());

View File

@ -1,6 +1,5 @@
[toolchain] [toolchain]
# Released on: 28 December, 2023 # Released on: 02 May, 2024
# Branched from master on: 10 November, 2023 # https://releases.rs/docs/1.78.0/
# https://releases.rs/docs/1.75.0/ channel = "1.78.0"
channel = "1.75.0"
components = ["rustfmt", "clippy"] components = ["rustfmt", "clippy"]

View File

@ -1,5 +1,5 @@
flash_att_v2_commit_cuda := 23e8fa5a263d1c7122bc46a86ef32030ee7130f9 flash_att_v2_commit_cuda := 23e8fa5a263d1c7122bc46a86ef32030ee7130f9
flash_att_v2_commit_rocm := 8736558c287ff2ef28b24878e42828c595ac3e69 flash_att_v2_commit_rocm := 2554f490101742ccdc56620a938f847f61754be6
flash-attention-v2-cuda: flash-attention-v2-cuda:
@ -18,12 +18,12 @@ install-flash-attention-v2-cuda: build-flash-attention-v2-cuda
flash-attention-v2-rocm: flash-attention-v2-rocm:
# Clone flash attention # Clone flash attention
pip install -U packaging ninja --no-cache-dir pip install -U packaging ninja --no-cache-dir
git clone https://github.com/fxmarty/flash-attention-rocm flash-attention-v2 git clone https://github.com/ROCm/flash-attention.git flash-attention-v2
build-flash-attention-v2-rocm: flash-attention-v2-rocm build-flash-attention-v2-rocm: flash-attention-v2-rocm
cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit_rocm) cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit_rocm)
cd flash-attention-v2 && git submodule update --init --recursive cd flash-attention-v2 && git submodule update --init --recursive
cd flash-attention-v2 && PYTORCH_ROCM_ARCH=gfx90a python setup.py build cd flash-attention-v2 && GPU_ARCHS="gfx90a;gfx942" PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py build
install-flash-attention-v2-rocm: build-flash-attention-v2-rocm install-flash-attention-v2-rocm: build-flash-attention-v2-rocm
cd flash-attention-v2 && git submodule update --init --recursive && python setup.py install cd flash-attention-v2 && git submodule update --init --recursive && python setup.py install

View File

@ -14,11 +14,11 @@ install-vllm-cuda: build-vllm-cuda
vllm-rocm: vllm-rocm:
# Clone vllm # Clone vllm
pip install -U ninja packaging --no-cache-dir pip install -U ninja packaging --no-cache-dir
git clone https://github.com/fxmarty/vllm-public.git vllm git clone https://github.com/fxmarty/rocm-vllm.git vllm
build-vllm-rocm: vllm-rocm build-vllm-rocm: vllm-rocm
cd vllm && git fetch && git checkout ad9b7c4095ef54419a0533d254f2ad84bd2dfcae cd vllm && git fetch && git checkout ca6913b3c2ffacdcb7d15e914dc34adbc6c89479
cd vllm && python setup.py build cd vllm && PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py install
install-vllm-rocm: build-vllm-rocm install-vllm-rocm: build-vllm-rocm
pip uninstall vllm -y || true pip uninstall vllm -y || true

View File

@ -10,8 +10,9 @@ __device__ __forceinline__ __half __compat_hrcp(__half x) {
} }
__device__ __forceinline__ __half2 __compat_h2rcp(__half2 x) { __device__ __forceinline__ __half2 __compat_h2rcp(__half2 x) {
return _Float16_2{static_cast<_Float16>(__builtin_amdgcn_rcph(x.x)), return _Float16_2{
static_cast<_Float16>(__builtin_amdgcn_rcph(x.y))}; _Float16_2{static_cast<_Float16>(1.0f),
static_cast<_Float16>(1.0f)} / x.data};
} }
#define hrcp __compat_hrcp #define hrcp __compat_hrcp

681
server/poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand. # This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
[[package]] [[package]]
name = "accelerate" name = "accelerate"
@ -194,13 +194,13 @@ files = [
[[package]] [[package]]
name = "certifi" name = "certifi"
version = "2024.6.2" version = "2024.7.4"
description = "Python package for providing Mozilla's CA Bundle." description = "Python package for providing Mozilla's CA Bundle."
optional = false optional = false
python-versions = ">=3.6" python-versions = ">=3.6"
files = [ files = [
{file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"}, {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"},
{file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"}, {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"},
] ]
[[package]] [[package]]
@ -474,13 +474,13 @@ files = [
[[package]] [[package]]
name = "exceptiongroup" name = "exceptiongroup"
version = "1.2.1" version = "1.2.2"
description = "Backport of PEP 654 (exception groups)" description = "Backport of PEP 654 (exception groups)"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"},
{file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"},
] ]
[package.extras] [package.extras]
@ -628,17 +628,17 @@ tqdm = ["tqdm"]
[[package]] [[package]]
name = "googleapis-common-protos" name = "googleapis-common-protos"
version = "1.63.1" version = "1.63.2"
description = "Common protobufs used in Google APIs" description = "Common protobufs used in Google APIs"
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "googleapis-common-protos-1.63.1.tar.gz", hash = "sha256:c6442f7a0a6b2a80369457d79e6672bb7dcbaab88e0848302497e3ec80780a6a"}, {file = "googleapis-common-protos-1.63.2.tar.gz", hash = "sha256:27c5abdffc4911f28101e635de1533fb4cfd2c37fbaa9174587c799fac90aa87"},
{file = "googleapis_common_protos-1.63.1-py2.py3-none-any.whl", hash = "sha256:0e1c2cdfcbc354b76e4a211a35ea35d6926a835cba1377073c4861db904a1877"}, {file = "googleapis_common_protos-1.63.2-py2.py3-none-any.whl", hash = "sha256:27a2499c7e8aff199665b22741997e485eccc8645aa9176c7c988e6fae507945"},
] ]
[package.dependencies] [package.dependencies]
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0" protobuf = ">=3.20.2,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<6.0.0.dev0"
[package.extras] [package.extras]
grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"] grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"]
@ -942,13 +942,13 @@ files = [
[[package]] [[package]]
name = "importlib-metadata" name = "importlib-metadata"
version = "7.2.1" version = "8.0.0"
description = "Read metadata from Python packages" description = "Read metadata from Python packages"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "importlib_metadata-7.2.1-py3-none-any.whl", hash = "sha256:ffef94b0b66046dd8ea2d619b701fe978d9264d38f3998bc4c27ec3b146a87c8"}, {file = "importlib_metadata-8.0.0-py3-none-any.whl", hash = "sha256:15584cf2b1bf449d98ff8a6ff1abef57bf20f3ac6454f431736cd3e660921b2f"},
{file = "importlib_metadata-7.2.1.tar.gz", hash = "sha256:509ecb2ab77071db5137c655e24ceb3eee66e7bbc6574165d0d114d9fc4bbe68"}, {file = "importlib_metadata-8.0.0.tar.gz", hash = "sha256:188bd24e4c346d3f0a933f275c2fec67050326a856b9a359881d7c2a697e8812"},
] ]
[package.dependencies] [package.dependencies]
@ -1025,13 +1025,13 @@ files = [
[[package]] [[package]]
name = "jsonschema" name = "jsonschema"
version = "4.22.0" version = "4.23.0"
description = "An implementation of JSON Schema validation for Python" description = "An implementation of JSON Schema validation for Python"
optional = true optional = true
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"}, {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"},
{file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"}, {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"},
] ]
[package.dependencies] [package.dependencies]
@ -1042,7 +1042,7 @@ rpds-py = ">=0.7.1"
[package.extras] [package.extras]
format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"]
format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"]
[[package]] [[package]]
name = "jsonschema-specifications" name = "jsonschema-specifications"
@ -1580,13 +1580,13 @@ files = [
[[package]] [[package]]
name = "nvidia-nvjitlink-cu12" name = "nvidia-nvjitlink-cu12"
version = "12.5.40" version = "12.5.82"
description = "Nvidia JIT LTO Library" description = "Nvidia JIT LTO Library"
optional = false optional = false
python-versions = ">=3" python-versions = ">=3"
files = [ files = [
{file = "nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d9714f27c1d0f0895cd8915c07a87a1d0029a0aa36acaf9156952ec2a8a12189"}, {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f9b37bc5c8cf7509665cb6ada5aaa0ce65618f2332b7d3e78e9790511f111212"},
{file = "nvidia_nvjitlink_cu12-12.5.40-py3-none-win_amd64.whl", hash = "sha256:c3401dc8543b52d3a8158007a0c1ab4e9c768fcbd24153a48c86972102197ddd"}, {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-win_amd64.whl", hash = "sha256:e782564d705ff0bf61ac3e1bf730166da66dd2fe9012f111ede5fc49b64ae697"},
] ]
[[package]] [[package]]
@ -1756,24 +1756,24 @@ files = [
[[package]] [[package]]
name = "optimum" name = "optimum"
version = "1.20.0" version = "1.21.2"
description = "Optimum Library is an extension of the Hugging Face Transformers library, providing a framework to integrate third-party libraries from Hardware Partners and interface with their specific functionality." description = "Optimum Library is an extension of the Hugging Face Transformers library, providing a framework to integrate third-party libraries from Hardware Partners and interface with their specific functionality."
optional = false optional = false
python-versions = ">=3.7.0" python-versions = ">=3.7.0"
files = [ files = [
{file = "optimum-1.20.0-py3-none-any.whl", hash = "sha256:0c0d0746043c95e22cf3586946d7408d353f10c0486f1c7d2d11084a5cfc0ede"}, {file = "optimum-1.21.2-py3-none-any.whl", hash = "sha256:8b3633b9312413ceac5156294a2a0cd221268baf5a2c593f4d54ec20bff296d8"},
{file = "optimum-1.20.0.tar.gz", hash = "sha256:b64c7536fe738db9b56605105efe72006401ad2aa00cb499ae407f2e06f3043b"}, {file = "optimum-1.21.2.tar.gz", hash = "sha256:037e65d265237809fac69e9003215c60cf6de56e97c62ff7565abab4a94a64ce"},
] ]
[package.dependencies] [package.dependencies]
coloredlogs = "*" coloredlogs = "*"
datasets = "*" datasets = "*"
huggingface-hub = ">=0.8.0" huggingface-hub = ">=0.8.0"
numpy = "*" numpy = "<2.0"
packaging = "*" packaging = "*"
sympy = "*" sympy = "*"
torch = ">=1.11" torch = ">=1.11"
transformers = {version = ">=4.26.0,<4.42.0", extras = ["sentencepiece"]} transformers = {version = ">=4.26.0,<4.43.0", extras = ["sentencepiece"]}
[package.extras] [package.extras]
amd = ["optimum-amd"] amd = ["optimum-amd"]
@ -1786,15 +1786,16 @@ exporters-gpu = ["onnx", "onnxruntime-gpu", "timm"]
exporters-tf = ["h5py", "numpy (<1.24.0)", "onnx", "onnxruntime", "tensorflow (>=2.4,<=2.12.1)", "tf2onnx", "timm", "transformers[sentencepiece] (>=4.26.0,<4.38.0)"] exporters-tf = ["h5py", "numpy (<1.24.0)", "onnx", "onnxruntime", "tensorflow (>=2.4,<=2.12.1)", "tf2onnx", "timm", "transformers[sentencepiece] (>=4.26.0,<4.38.0)"]
furiosa = ["optimum-furiosa"] furiosa = ["optimum-furiosa"]
graphcore = ["optimum-graphcore"] graphcore = ["optimum-graphcore"]
habana = ["optimum-habana", "transformers (>=4.38.0,<4.39.0)"] habana = ["optimum-habana", "transformers (>=4.40.0,<4.41.0)"]
intel = ["optimum-intel (>=1.16.0)"] intel = ["optimum-intel (>=1.18.0)"]
neural-compressor = ["optimum-intel[neural-compressor] (>=1.16.0)"] ipex = ["optimum-intel[ipex] (>=1.18.0)"]
neural-compressor = ["optimum-intel[neural-compressor] (>=1.18.0)"]
neuron = ["optimum-neuron[neuron] (>=0.0.20)", "transformers (>=4.36.2,<4.42.0)"] neuron = ["optimum-neuron[neuron] (>=0.0.20)", "transformers (>=4.36.2,<4.42.0)"]
neuronx = ["optimum-neuron[neuronx] (>=0.0.20)", "transformers (>=4.36.2,<4.42.0)"] neuronx = ["optimum-neuron[neuronx] (>=0.0.20)", "transformers (>=4.36.2,<4.42.0)"]
nncf = ["optimum-intel[nncf] (>=1.16.0)"] nncf = ["optimum-intel[nncf] (>=1.18.0)"]
onnxruntime = ["datasets (>=1.2.1)", "evaluate", "onnx", "onnxruntime (>=1.11.0)", "protobuf (>=3.20.1)"] onnxruntime = ["datasets (>=1.2.1)", "evaluate", "onnx", "onnxruntime (>=1.11.0)", "protobuf (>=3.20.1)"]
onnxruntime-gpu = ["accelerate", "datasets (>=1.2.1)", "evaluate", "onnx", "onnxruntime-gpu (>=1.11.0)", "protobuf (>=3.20.1)"] onnxruntime-gpu = ["accelerate", "datasets (>=1.2.1)", "evaluate", "onnx", "onnxruntime-gpu (>=1.11.0)", "protobuf (>=3.20.1)"]
openvino = ["optimum-intel[openvino] (>=1.16.0)"] openvino = ["optimum-intel[openvino] (>=1.18.0)"]
quality = ["black (>=23.1,<24.0)", "ruff (==0.1.5)"] quality = ["black (>=23.1,<24.0)", "ruff (==0.1.5)"]
tests = ["Pillow", "accelerate", "diffusers (>=0.17.0)", "einops", "invisible-watermark", "parameterized", "pytest (<=8.0.0)", "pytest-xdist", "requests", "rjieba", "sacremoses", "scikit-learn", "timm", "torchaudio", "torchvision"] tests = ["Pillow", "accelerate", "diffusers (>=0.17.0)", "einops", "invisible-watermark", "parameterized", "pytest (<=8.0.0)", "pytest-xdist", "requests", "rjieba", "sacremoses", "scikit-learn", "timm", "torchaudio", "torchvision"]
@ -1970,84 +1971,95 @@ test = ["black", "datasets", "diffusers (<0.21.0)", "hf-doc-builder", "parameter
[[package]] [[package]]
name = "pillow" name = "pillow"
version = "10.3.0" version = "10.4.0"
description = "Python Imaging Library (Fork)" description = "Python Imaging Library (Fork)"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"}, {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"},
{file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"}, {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"},
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"}, {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"},
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"}, {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"},
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"}, {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"},
{file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"}, {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"},
{file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"}, {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"},
{file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"}, {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"},
{file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"}, {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"},
{file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"}, {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"},
{file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"}, {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"},
{file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"}, {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"},
{file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"}, {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"},
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"}, {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"},
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"}, {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"},
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"}, {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"},
{file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"}, {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"},
{file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"}, {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"},
{file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"}, {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"},
{file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"}, {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"},
{file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"}, {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"},
{file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"}, {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"},
{file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"}, {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"},
{file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"}, {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"},
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"}, {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"},
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"}, {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"},
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"}, {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"},
{file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"}, {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"},
{file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"}, {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"},
{file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"}, {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"},
{file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"}, {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"},
{file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"}, {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"},
{file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"}, {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"},
{file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"}, {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"},
{file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"}, {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"},
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"}, {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"},
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"}, {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"},
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"}, {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"},
{file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"}, {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"},
{file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"}, {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"},
{file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"}, {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"},
{file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"}, {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"},
{file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"}, {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"},
{file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"}, {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"},
{file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"}, {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"},
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"}, {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"},
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"}, {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"},
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"}, {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"},
{file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"}, {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"},
{file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"}, {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"},
{file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"}, {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"},
{file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"}, {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"},
{file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"}, {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"},
{file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"}, {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"},
{file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"}, {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"},
{file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"}, {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"},
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"}, {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"},
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"}, {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"},
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"}, {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"},
{file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"}, {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"},
{file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"}, {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"},
{file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"}, {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"},
{file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"}, {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"},
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"}, {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"},
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"}, {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"},
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"}, {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"},
{file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"}, {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"},
{file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"}, {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"},
{file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"}, {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"},
{file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"},
{file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"},
{file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"},
] ]
[package.extras] [package.extras]
docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"]
fpx = ["olefile"] fpx = ["olefile"]
mic = ["olefile"] mic = ["olefile"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
@ -2156,52 +2168,42 @@ files = [
[[package]] [[package]]
name = "pyarrow" name = "pyarrow"
version = "16.1.0" version = "17.0.0"
description = "Python library for Apache Arrow" description = "Python library for Apache Arrow"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pyarrow-16.1.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9"}, {file = "pyarrow-17.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:a5c8b238d47e48812ee577ee20c9a2779e6a5904f1708ae240f53ecbee7c9f07"},
{file = "pyarrow-16.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a"}, {file = "pyarrow-17.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:db023dc4c6cae1015de9e198d41250688383c3f9af8f565370ab2b4cb5f62655"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef"}, {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da1e060b3876faa11cee287839f9cc7cdc00649f475714b8680a05fd9071d545"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848"}, {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75c06d4624c0ad6674364bb46ef38c3132768139ddec1c56582dbac54f2663e2"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c"}, {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:fa3c246cc58cb5a4a5cb407a18f193354ea47dd0648194e6265bd24177982fe8"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd"}, {file = "pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:f7ae2de664e0b158d1607699a16a488de3d008ba99b3a7aa5de1cbc13574d047"},
{file = "pyarrow-16.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff"}, {file = "pyarrow-17.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5984f416552eea15fd9cee03da53542bf4cddaef5afecefb9aa8d1010c335087"},
{file = "pyarrow-16.1.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d0ebea336b535b37eee9eee31761813086d33ed06de9ab6fc6aaa0bace7b250c"}, {file = "pyarrow-17.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:1c8856e2ef09eb87ecf937104aacfa0708f22dfeb039c363ec99735190ffb977"},
{file = "pyarrow-16.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e73cfc4a99e796727919c5541c65bb88b973377501e39b9842ea71401ca6c1c"}, {file = "pyarrow-17.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e19f569567efcbbd42084e87f948778eb371d308e137a0f97afe19bb860ccb3"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf9251264247ecfe93e5f5a0cd43b8ae834f1e61d1abca22da55b20c788417f6"}, {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b244dc8e08a23b3e352899a006a26ae7b4d0da7bb636872fa8f5884e70acf15"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddf5aace92d520d3d2a20031d8b0ec27b4395cab9f74e07cc95edf42a5cc0147"}, {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b72e87fe3e1db343995562f7fff8aee354b55ee83d13afba65400c178ab2597"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:25233642583bf658f629eb230b9bb79d9af4d9f9229890b3c878699c82f7d11e"}, {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dc5c31c37409dfbc5d014047817cb4ccd8c1ea25d19576acf1a001fe07f5b420"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a33a64576fddfbec0a44112eaf844c20853647ca833e9a647bfae0582b2ff94b"}, {file = "pyarrow-17.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e3343cb1e88bc2ea605986d4b94948716edc7a8d14afd4e2c097232f729758b4"},
{file = "pyarrow-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:185d121b50836379fe012753cf15c4ba9638bda9645183ab36246923875f8d1b"}, {file = "pyarrow-17.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:a27532c38f3de9eb3e90ecab63dfda948a8ca859a66e3a47f5f42d1e403c4d03"},
{file = "pyarrow-16.1.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:2e51ca1d6ed7f2e9d5c3c83decf27b0d17bb207a7dea986e8dc3e24f80ff7d6f"}, {file = "pyarrow-17.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9b8a823cea605221e61f34859dcc03207e52e409ccf6354634143e23af7c8d22"},
{file = "pyarrow-16.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06ebccb6f8cb7357de85f60d5da50e83507954af617d7b05f48af1621d331c9a"}, {file = "pyarrow-17.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f1e70de6cb5790a50b01d2b686d54aaf73da01266850b05e3af2a1bc89e16053"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b04707f1979815f5e49824ce52d1dceb46e2f12909a48a6a753fe7cafbc44a0c"}, {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0071ce35788c6f9077ff9ecba4858108eebe2ea5a3f7cf2cf55ebc1dbc6ee24a"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d32000693deff8dc5df444b032b5985a48592c0697cb6e3071a5d59888714e2"}, {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:757074882f844411fcca735e39aae74248a1531367a7c80799b4266390ae51cc"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:8785bb10d5d6fd5e15d718ee1d1f914fe768bf8b4d1e5e9bf253de8a26cb1628"}, {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ba11c4f16976e89146781a83833df7f82077cdab7dc6232c897789343f7891a"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:e1369af39587b794873b8a307cc6623a3b1194e69399af0efd05bb202195a5a7"}, {file = "pyarrow-17.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b0c6ac301093b42d34410b187bba560b17c0330f64907bfa4f7f7f2444b0cf9b"},
{file = "pyarrow-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:febde33305f1498f6df85e8020bca496d0e9ebf2093bab9e0f65e2b4ae2b3444"}, {file = "pyarrow-17.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:392bc9feabc647338e6c89267635e111d71edad5fcffba204425a7c8d13610d7"},
{file = "pyarrow-16.1.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:b5f5705ab977947a43ac83b52ade3b881eb6e95fcc02d76f501d549a210ba77f"}, {file = "pyarrow-17.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:af5ff82a04b2171415f1410cff7ebb79861afc5dae50be73ce06d6e870615204"},
{file = "pyarrow-16.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0d27bf89dfc2576f6206e9cd6cf7a107c9c06dc13d53bbc25b0bd4556f19cf5f"}, {file = "pyarrow-17.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:edca18eaca89cd6382dfbcff3dd2d87633433043650c07375d095cd3517561d8"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d07de3ee730647a600037bc1d7b7994067ed64d0eba797ac74b2bc77384f4c2"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbef391b63f708e103df99fbaa3acf9f671d77a183a07546ba2f2c297b361e83"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19741c4dbbbc986d38856ee7ddfdd6a00fc3b0fc2d928795b95410d38bb97d15"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f2c5fb249caa17b94e2b9278b36a05ce03d3180e6da0c4c3b3ce5b2788f30eed"},
{file = "pyarrow-16.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:e6b6d3cd35fbb93b70ade1336022cc1147b95ec6af7d36906ca7fe432eb09710"},
{file = "pyarrow-16.1.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:18da9b76a36a954665ccca8aa6bd9f46c1145f79c0bb8f4f244f5f8e799bca55"},
{file = "pyarrow-16.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:99f7549779b6e434467d2aa43ab2b7224dd9e41bdde486020bae198978c9e05e"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f07fdffe4fd5b15f5ec15c8b64584868d063bc22b86b46c9695624ca3505b7b4"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddfe389a08ea374972bd4065d5f25d14e36b43ebc22fc75f7b951f24378bf0b5"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3b20bd67c94b3a2ea0a749d2a5712fc845a69cb5d52e78e6449bbd295611f3aa"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:ba8ac20693c0bb0bf4b238751d4409e62852004a8cf031c73b0e0962b03e45e3"},
{file = "pyarrow-16.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:31a1851751433d89a986616015841977e0a188662fcffd1a5677453f1df2de0a"},
{file = "pyarrow-16.1.0.tar.gz", hash = "sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315"},
] ]
[package.dependencies] [package.dependencies]
numpy = ">=1.16.6" numpy = ">=1.16.6"
[package.extras]
test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"]
[[package]] [[package]]
name = "pyarrow-hotfix" name = "pyarrow-hotfix"
version = "0.6" version = "0.6"
@ -2215,109 +2217,119 @@ files = [
[[package]] [[package]]
name = "pydantic" name = "pydantic"
version = "2.7.4" version = "2.8.2"
description = "Data validation using Python type hints" description = "Data validation using Python type hints"
optional = true optional = true
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"}, {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"},
{file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"}, {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"},
] ]
[package.dependencies] [package.dependencies]
annotated-types = ">=0.4.0" annotated-types = ">=0.4.0"
pydantic-core = "2.18.4" pydantic-core = "2.20.1"
typing-extensions = ">=4.6.1" typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""}
[package.extras] [package.extras]
email = ["email-validator (>=2.0.0)"] email = ["email-validator (>=2.0.0)"]
[[package]] [[package]]
name = "pydantic-core" name = "pydantic-core"
version = "2.18.4" version = "2.20.1"
description = "Core functionality for Pydantic validation and serialization" description = "Core functionality for Pydantic validation and serialization"
optional = true optional = true
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"}, {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"},
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"}, {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"}, {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"}, {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"}, {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"}, {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"}, {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"},
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"}, {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"},
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"}, {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"},
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"}, {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"},
{file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"}, {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"},
{file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"}, {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"},
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"}, {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"},
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"}, {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"}, {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"}, {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"}, {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"}, {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"}, {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"},
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"}, {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"},
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"}, {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"},
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"}, {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"},
{file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"}, {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"},
{file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"}, {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"},
{file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"}, {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"},
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"}, {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"},
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"}, {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"}, {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"}, {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"}, {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"}, {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"}, {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"},
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"}, {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"},
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"}, {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"},
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"}, {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"},
{file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"}, {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"},
{file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"}, {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"},
{file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"}, {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"},
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"}, {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"},
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"}, {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"}, {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"}, {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"}, {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"}, {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"}, {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"},
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"}, {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"},
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"}, {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"},
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"}, {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"},
{file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"}, {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"},
{file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"}, {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"},
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"}, {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"},
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"}, {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"}, {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"}, {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"}, {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"}, {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"}, {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"},
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"}, {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"},
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"}, {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"},
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"}, {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"},
{file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"}, {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"},
{file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"}, {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"}, {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"}, {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"}, {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"}, {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"}, {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"}, {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"}, {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"},
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"}, {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"}, {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"}, {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"}, {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"}, {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"}, {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"}, {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"}, {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"},
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"}, {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"},
{file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"}, {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"},
{file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"},
{file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"},
{file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"},
] ]
[package.dependencies] [package.dependencies]
@ -2567,110 +2579,110 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]] [[package]]
name = "rpds-py" name = "rpds-py"
version = "0.18.1" version = "0.19.0"
description = "Python bindings to Rust's persistent data structures (rpds)" description = "Python bindings to Rust's persistent data structures (rpds)"
optional = true optional = true
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "rpds_py-0.18.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53"}, {file = "rpds_py-0.19.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:fb37bd599f031f1a6fb9e58ec62864ccf3ad549cf14bac527dbfa97123edcca4"},
{file = "rpds_py-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80"}, {file = "rpds_py-0.19.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3384d278df99ec2c6acf701d067147320b864ef6727405d6470838476e44d9e8"},
{file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9"}, {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54548e0be3ac117595408fd4ca0ac9278fde89829b0b518be92863b17ff67a2"},
{file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d"}, {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8eb488ef928cdbc05a27245e52de73c0d7c72a34240ef4d9893fdf65a8c1a955"},
{file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09"}, {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5da93debdfe27b2bfc69eefb592e1831d957b9535e0943a0ee8b97996de21b5"},
{file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944"}, {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79e205c70afddd41f6ee79a8656aec738492a550247a7af697d5bd1aee14f766"},
{file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0"}, {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:959179efb3e4a27610e8d54d667c02a9feaa86bbabaf63efa7faa4dfa780d4f1"},
{file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d"}, {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a6e605bb9edcf010f54f8b6a590dd23a4b40a8cb141255eec2a03db249bc915b"},
{file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60"}, {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9133d75dc119a61d1a0ded38fb9ba40a00ef41697cc07adb6ae098c875195a3f"},
{file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da"}, {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dd36b712d35e757e28bf2f40a71e8f8a2d43c8b026d881aa0c617b450d6865c9"},
{file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1"}, {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:354f3a91718489912f2e0fc331c24eaaf6a4565c080e00fbedb6015857c00582"},
{file = "rpds_py-0.18.1-cp310-none-win32.whl", hash = "sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333"}, {file = "rpds_py-0.19.0-cp310-none-win32.whl", hash = "sha256:ebcbf356bf5c51afc3290e491d3722b26aaf5b6af3c1c7f6a1b757828a46e336"},
{file = "rpds_py-0.18.1-cp310-none-win_amd64.whl", hash = "sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a"}, {file = "rpds_py-0.19.0-cp310-none-win_amd64.whl", hash = "sha256:75a6076289b2df6c8ecb9d13ff79ae0cad1d5fb40af377a5021016d58cd691ec"},
{file = "rpds_py-0.18.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6b5ff7e1d63a8281654b5e2896d7f08799378e594f09cf3674e832ecaf396ce8"}, {file = "rpds_py-0.19.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6d45080095e585f8c5097897313def60caa2046da202cdb17a01f147fb263b81"},
{file = "rpds_py-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8927638a4d4137a289e41d0fd631551e89fa346d6dbcfc31ad627557d03ceb6d"}, {file = "rpds_py-0.19.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5c9581019c96f865483d031691a5ff1cc455feb4d84fc6920a5ffc48a794d8a"},
{file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:154bf5c93d79558b44e5b50cc354aa0459e518e83677791e6adb0b039b7aa6a7"}, {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1540d807364c84516417115c38f0119dfec5ea5c0dd9a25332dea60b1d26fc4d"},
{file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07f2139741e5deb2c5154a7b9629bc5aa48c766b643c1a6750d16f865a82c5fc"}, {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9e65489222b410f79711dc3d2d5003d2757e30874096b2008d50329ea4d0f88c"},
{file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c7672e9fba7425f79019db9945b16e308ed8bc89348c23d955c8c0540da0a07"}, {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9da6f400eeb8c36f72ef6646ea530d6d175a4f77ff2ed8dfd6352842274c1d8b"},
{file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:489bdfe1abd0406eba6b3bb4fdc87c7fa40f1031de073d0cfb744634cc8fa261"}, {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37f46bb11858717e0efa7893c0f7055c43b44c103e40e69442db5061cb26ed34"},
{file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c20f05e8e3d4fc76875fc9cb8cf24b90a63f5a1b4c5b9273f0e8225e169b100"}, {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:071d4adc734de562bd11d43bd134330fb6249769b2f66b9310dab7460f4bf714"},
{file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:967342e045564cef76dfcf1edb700b1e20838d83b1aa02ab313e6a497cf923b8"}, {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9625367c8955e4319049113ea4f8fee0c6c1145192d57946c6ffcd8fe8bf48dd"},
{file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2cc7c1a47f3a63282ab0f422d90ddac4aa3034e39fc66a559ab93041e6505da7"}, {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e19509145275d46bc4d1e16af0b57a12d227c8253655a46bbd5ec317e941279d"},
{file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f7afbfee1157e0f9376c00bb232e80a60e59ed716e3211a80cb8506550671e6e"}, {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d438e4c020d8c39961deaf58f6913b1bf8832d9b6f62ec35bd93e97807e9cbc"},
{file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9e6934d70dc50f9f8ea47081ceafdec09245fd9f6032669c3b45705dea096b88"}, {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:90bf55d9d139e5d127193170f38c584ed3c79e16638890d2e36f23aa1630b952"},
{file = "rpds_py-0.18.1-cp311-none-win32.whl", hash = "sha256:c69882964516dc143083d3795cb508e806b09fc3800fd0d4cddc1df6c36e76bb"}, {file = "rpds_py-0.19.0-cp311-none-win32.whl", hash = "sha256:8d6ad132b1bc13d05ffe5b85e7a01a3998bf3a6302ba594b28d61b8c2cf13aaf"},
{file = "rpds_py-0.18.1-cp311-none-win_amd64.whl", hash = "sha256:70a838f7754483bcdc830444952fd89645569e7452e3226de4a613a4c1793fb2"}, {file = "rpds_py-0.19.0-cp311-none-win_amd64.whl", hash = "sha256:7ec72df7354e6b7f6eb2a17fa6901350018c3a9ad78e48d7b2b54d0412539a67"},
{file = "rpds_py-0.18.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3dd3cd86e1db5aadd334e011eba4e29d37a104b403e8ca24dcd6703c68ca55b3"}, {file = "rpds_py-0.19.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:5095a7c838a8647c32aa37c3a460d2c48debff7fc26e1136aee60100a8cd8f68"},
{file = "rpds_py-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:05f3d615099bd9b13ecf2fc9cf2d839ad3f20239c678f461c753e93755d629ee"}, {file = "rpds_py-0.19.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f2f78ef14077e08856e788fa482107aa602636c16c25bdf59c22ea525a785e9"},
{file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b2b771b13eee8729a5049c976197ff58a27a3829c018a04341bcf1ae409b2b"}, {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7cc6cb44f8636fbf4a934ca72f3e786ba3c9f9ba4f4d74611e7da80684e48d2"},
{file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ee17cd26b97d537af8f33635ef38be873073d516fd425e80559f4585a7b90c43"}, {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cf902878b4af334a09de7a45badbff0389e7cf8dc2e4dcf5f07125d0b7c2656d"},
{file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b646bf655b135ccf4522ed43d6902af37d3f5dbcf0da66c769a2b3938b9d8184"}, {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:688aa6b8aa724db1596514751ffb767766e02e5c4a87486ab36b8e1ebc1aedac"},
{file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19ba472b9606c36716062c023afa2484d1e4220548751bda14f725a7de17b4f6"}, {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57dbc9167d48e355e2569346b5aa4077f29bf86389c924df25c0a8b9124461fb"},
{file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e30ac5e329098903262dc5bdd7e2086e0256aa762cc8b744f9e7bf2a427d3f8"}, {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b4cf5a9497874822341c2ebe0d5850fed392034caadc0bad134ab6822c0925b"},
{file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d58ad6317d188c43750cb76e9deacf6051d0f884d87dc6518e0280438648a9ac"}, {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8a790d235b9d39c70a466200d506bb33a98e2ee374a9b4eec7a8ac64c2c261fa"},
{file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e1735502458621921cee039c47318cb90b51d532c2766593be6207eec53e5c4c"}, {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1d16089dfa58719c98a1c06f2daceba6d8e3fb9b5d7931af4a990a3c486241cb"},
{file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f5bab211605d91db0e2995a17b5c6ee5edec1270e46223e513eaa20da20076ac"}, {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:bc9128e74fe94650367fe23f37074f121b9f796cabbd2f928f13e9661837296d"},
{file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2fc24a329a717f9e2448f8cd1f960f9dac4e45b6224d60734edeb67499bab03a"}, {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c8f77e661ffd96ff104bebf7d0f3255b02aa5d5b28326f5408d6284c4a8b3248"},
{file = "rpds_py-0.18.1-cp312-none-win32.whl", hash = "sha256:1805d5901779662d599d0e2e4159d8a82c0b05faa86ef9222bf974572286b2b6"}, {file = "rpds_py-0.19.0-cp312-none-win32.whl", hash = "sha256:5f83689a38e76969327e9b682be5521d87a0c9e5a2e187d2bc6be4765f0d4600"},
{file = "rpds_py-0.18.1-cp312-none-win_amd64.whl", hash = "sha256:720edcb916df872d80f80a1cc5ea9058300b97721efda8651efcd938a9c70a72"}, {file = "rpds_py-0.19.0-cp312-none-win_amd64.whl", hash = "sha256:06925c50f86da0596b9c3c64c3837b2481337b83ef3519e5db2701df695453a4"},
{file = "rpds_py-0.18.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c827576e2fa017a081346dce87d532a5310241648eb3700af9a571a6e9fc7e74"}, {file = "rpds_py-0.19.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:52e466bea6f8f3a44b1234570244b1cff45150f59a4acae3fcc5fd700c2993ca"},
{file = "rpds_py-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aa3679e751408d75a0b4d8d26d6647b6d9326f5e35c00a7ccd82b78ef64f65f8"}, {file = "rpds_py-0.19.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e21cc693045fda7f745c790cb687958161ce172ffe3c5719ca1764e752237d16"},
{file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0abeee75434e2ee2d142d650d1e54ac1f8b01e6e6abdde8ffd6eeac6e9c38e20"}, {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b31f059878eb1f5da8b2fd82480cc18bed8dcd7fb8fe68370e2e6285fa86da6"},
{file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed402d6153c5d519a0faf1bb69898e97fb31613b49da27a84a13935ea9164dfc"}, {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1dd46f309e953927dd018567d6a9e2fb84783963650171f6c5fe7e5c41fd5666"},
{file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:338dee44b0cef8b70fd2ef54b4e09bb1b97fc6c3a58fea5db6cc083fd9fc2724"}, {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:34a01a4490e170376cd79258b7f755fa13b1a6c3667e872c8e35051ae857a92b"},
{file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7750569d9526199c5b97e5a9f8d96a13300950d910cf04a861d96f4273d5b104"}, {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bcf426a8c38eb57f7bf28932e68425ba86def6e756a5b8cb4731d8e62e4e0223"},
{file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:607345bd5912aacc0c5a63d45a1f73fef29e697884f7e861094e443187c02be5"}, {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68eea5df6347d3f1378ce992d86b2af16ad7ff4dcb4a19ccdc23dea901b87fb"},
{file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:207c82978115baa1fd8d706d720b4a4d2b0913df1c78c85ba73fe6c5804505f0"}, {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dab8d921b55a28287733263c0e4c7db11b3ee22aee158a4de09f13c93283c62d"},
{file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6d1e42d2735d437e7e80bab4d78eb2e459af48c0a46e686ea35f690b93db792d"}, {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6fe87efd7f47266dfc42fe76dae89060038f1d9cb911f89ae7e5084148d1cc08"},
{file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5463c47c08630007dc0fe99fb480ea4f34a89712410592380425a9b4e1611d8e"}, {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:535d4b52524a961d220875688159277f0e9eeeda0ac45e766092bfb54437543f"},
{file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:06d218939e1bf2ca50e6b0ec700ffe755e5216a8230ab3e87c059ebb4ea06afc"}, {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:8b1a94b8afc154fbe36978a511a1f155f9bd97664e4f1f7a374d72e180ceb0ae"},
{file = "rpds_py-0.18.1-cp38-none-win32.whl", hash = "sha256:312fe69b4fe1ffbe76520a7676b1e5ac06ddf7826d764cc10265c3b53f96dbe9"}, {file = "rpds_py-0.19.0-cp38-none-win32.whl", hash = "sha256:7c98298a15d6b90c8f6e3caa6457f4f022423caa5fa1a1ca7a5e9e512bdb77a4"},
{file = "rpds_py-0.18.1-cp38-none-win_amd64.whl", hash = "sha256:9437ca26784120a279f3137ee080b0e717012c42921eb07861b412340f85bae2"}, {file = "rpds_py-0.19.0-cp38-none-win_amd64.whl", hash = "sha256:b0da31853ab6e58a11db3205729133ce0df26e6804e93079dee095be3d681dc1"},
{file = "rpds_py-0.18.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:19e515b78c3fc1039dd7da0a33c28c3154458f947f4dc198d3c72db2b6b5dc93"}, {file = "rpds_py-0.19.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5039e3cef7b3e7a060de468a4a60a60a1f31786da94c6cb054e7a3c75906111c"},
{file = "rpds_py-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7b28c5b066bca9a4eb4e2f2663012debe680f097979d880657f00e1c30875a0"}, {file = "rpds_py-0.19.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab1932ca6cb8c7499a4d87cb21ccc0d3326f172cfb6a64021a889b591bb3045c"},
{file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:673fdbbf668dd958eff750e500495ef3f611e2ecc209464f661bc82e9838991e"}, {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2afd2164a1e85226fcb6a1da77a5c8896c18bfe08e82e8ceced5181c42d2179"},
{file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d960de62227635d2e61068f42a6cb6aae91a7fe00fca0e3aeed17667c8a34611"}, {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b1c30841f5040de47a0046c243fc1b44ddc87d1b12435a43b8edff7e7cb1e0d0"},
{file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:352a88dc7892f1da66b6027af06a2e7e5d53fe05924cc2cfc56495b586a10b72"}, {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f757f359f30ec7dcebca662a6bd46d1098f8b9fb1fcd661a9e13f2e8ce343ba1"},
{file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4e0ee01ad8260184db21468a6e1c37afa0529acc12c3a697ee498d3c2c4dcaf3"}, {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15e65395a59d2e0e96caf8ee5389ffb4604e980479c32742936ddd7ade914b22"},
{file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab"}, {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb0f6eb3a320f24b94d177e62f4074ff438f2ad9d27e75a46221904ef21a7b05"},
{file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aaa71ee43a703c321906813bb252f69524f02aa05bf4eec85f0c41d5d62d0f4c"}, {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b228e693a2559888790936e20f5f88b6e9f8162c681830eda303bad7517b4d5a"},
{file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6cd8098517c64a85e790657e7b1e509b9fe07487fd358e19431cb120f7d96338"}, {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2575efaa5d949c9f4e2cdbe7d805d02122c16065bfb8d95c129372d65a291a0b"},
{file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4adec039b8e2928983f885c53b7cc4cda8965b62b6596501a0308d2703f8af1b"}, {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:5c872814b77a4e84afa293a1bee08c14daed1068b2bb1cc312edbf020bbbca2b"},
{file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:32b7daaa3e9389db3695964ce8e566e3413b0c43e3394c05e4b243a4cd7bef26"}, {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:850720e1b383df199b8433a20e02b25b72f0fded28bc03c5bd79e2ce7ef050be"},
{file = "rpds_py-0.18.1-cp39-none-win32.whl", hash = "sha256:2625f03b105328729f9450c8badda34d5243231eef6535f80064d57035738360"}, {file = "rpds_py-0.19.0-cp39-none-win32.whl", hash = "sha256:ce84a7efa5af9f54c0aa7692c45861c1667080814286cacb9958c07fc50294fb"},
{file = "rpds_py-0.18.1-cp39-none-win_amd64.whl", hash = "sha256:bf18932d0003c8c4d51a39f244231986ab23ee057d235a12b2684ea26a353590"}, {file = "rpds_py-0.19.0-cp39-none-win_amd64.whl", hash = "sha256:1c26da90b8d06227d7769f34915913911222d24ce08c0ab2d60b354e2d9c7aff"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:75969cf900d7be665ccb1622a9aba225cf386bbc9c3bcfeeab9f62b5048f4a07"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8445f23f13339da640d1be8e44e5baf4af97e396882ebbf1692aecd67f67c479"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5a7c1062ef8aea3eda149f08120f10795835fc1c8bc6ad948fb9652a113ca55"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:462b0c18fbb48fdbf980914a02ee38c423a25fcc4cf40f66bacc95a2d2d73bc8"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3208f9aea18991ac7f2b39721e947bbd752a1abbe79ad90d9b6a84a74d44409b"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3444fe52b82f122d8a99bf66777aed6b858d392b12f4c317da19f8234db4533"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88cb4bac7185a9f0168d38c01d7a00addece9822a52870eee26b8d5b61409213"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6b130bd4163c93798a6b9bb96be64a7c43e1cec81126ffa7ffaa106e1fc5cef5"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:a707b158b4410aefb6b054715545bbb21aaa5d5d0080217290131c49c2124a6e"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dc9ac4659456bde7c567107556ab065801622396b435a3ff213daef27b495388"},
{file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"}, {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:81ea573aa46d3b6b3d890cd3c0ad82105985e6058a4baed03cf92518081eec8c"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3f148c3f47f7f29a79c38cc5d020edcb5ca780020fab94dbc21f9af95c463581"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b0906357f90784a66e89ae3eadc2654f36c580a7d65cf63e6a616e4aec3a81be"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f629ecc2db6a4736b5ba95a8347b0089240d69ad14ac364f557d52ad68cf94b0"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6feacd1d178c30e5bc37184526e56740342fd2aa6371a28367bad7908d454fc"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae8b6068ee374fdfab63689be0963333aa83b0815ead5d8648389a8ded593378"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78d57546bad81e0da13263e4c9ce30e96dcbe720dbff5ada08d2600a3502e526"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b6683a37338818646af718c9ca2a07f89787551057fae57c4ec0446dc6224b"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e8481b946792415adc07410420d6fc65a352b45d347b78fec45d8f8f0d7496f0"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bec35eb20792ea64c3c57891bc3ca0bedb2884fbac2c8249d9b731447ecde4fa"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:aa5476c3e3a402c37779e95f7b4048db2cb5b0ed0b9d006983965e93f40fe05a"},
{file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"}, {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:19d02c45f2507b489fd4df7b827940f1420480b3e2e471e952af4d44a1ea8e34"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a3e2fd14c5d49ee1da322672375963f19f32b3d5953f0615b175ff7b9d38daed"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:93a91c2640645303e874eada51f4f33351b84b351a689d470f8108d0e0694210"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5b9fc03bf76a94065299d4a2ecd8dfbae4ae8e2e8098bbfa6ab6413ca267709"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5a4b07cdf3f84310c08c1de2c12ddadbb7a77568bcb16e95489f9c81074322ed"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba0ed0dc6763d8bd6e5de5cf0d746d28e706a10b615ea382ac0ab17bb7388633"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:474bc83233abdcf2124ed3f66230a1c8435896046caa4b0b5ab6013c640803cc"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329c719d31362355a96b435f4653e3b4b061fcc9eba9f91dd40804ca637d914e"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ef9101f3f7b59043a34f1dccbb385ca760467590951952d6701df0da9893ca0c"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:0121803b0f424ee2109d6e1f27db45b166ebaa4b32ff47d6aa225642636cd834"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8344127403dea42f5970adccf6c5957a71a47f522171fafaf4c6ddb41b61703a"},
{file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"}, {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:443cec402ddd650bb2b885113e1dcedb22b1175c6be223b14246a714b61cd521"},
{file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"}, {file = "rpds_py-0.19.0.tar.gz", hash = "sha256:4fdc9afadbeb393b4bbbad75481e0ea78e4469f2e1d713a90811700830b553a9"},
] ]
[[package]] [[package]]
@ -2893,18 +2905,18 @@ files = [
[[package]] [[package]]
name = "setuptools" name = "setuptools"
version = "70.1.0" version = "70.3.0"
description = "Easily download, build, install, upgrade, and uninstall Python packages" description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "setuptools-70.1.0-py3-none-any.whl", hash = "sha256:d9b8b771455a97c8a9f3ab3448ebe0b29b5e105f1228bba41028be116985a267"}, {file = "setuptools-70.3.0-py3-none-any.whl", hash = "sha256:fe384da74336c398e0d956d1cae0669bc02eed936cdb1d49b57de1990dc11ffc"},
{file = "setuptools-70.1.0.tar.gz", hash = "sha256:01a1e793faa5bd89abc851fa15d0a0db26f160890c7102cd8dce643e886b47f5"}, {file = "setuptools-70.3.0.tar.gz", hash = "sha256:f171bab1dfbc86b132997f26a119f6056a57950d058587841a0082e8830f9dc5"},
] ]
[package.extras] [package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.10.0)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.10.0)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
[[package]] [[package]]
name = "six" name = "six"
@ -2919,17 +2931,20 @@ files = [
[[package]] [[package]]
name = "sympy" name = "sympy"
version = "1.12.1" version = "1.13.0"
description = "Computer algebra system (CAS) in Python" description = "Computer algebra system (CAS) in Python"
optional = false optional = false
python-versions = ">=3.8" python-versions = ">=3.8"
files = [ files = [
{file = "sympy-1.12.1-py3-none-any.whl", hash = "sha256:9b2cbc7f1a640289430e13d2a56f02f867a1da0190f2f99d8968c2f74da0e515"}, {file = "sympy-1.13.0-py3-none-any.whl", hash = "sha256:6b0b32a4673fb91bd3cac3b55406c8e01d53ae22780be467301cc452f6680c92"},
{file = "sympy-1.12.1.tar.gz", hash = "sha256:2877b03f998cd8c08f07cd0de5b767119cd3ef40d09f41c30d722f6686b0fb88"}, {file = "sympy-1.13.0.tar.gz", hash = "sha256:3b6af8f4d008b9a1a6a4268b335b984b23835f26d1d60b0526ebc71d48a25f57"},
] ]
[package.dependencies] [package.dependencies]
mpmath = ">=1.1.0,<1.4.0" mpmath = ">=1.1.0,<1.4"
[package.extras]
dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"]
[[package]] [[package]]
name = "tbb" name = "tbb"

View File

@ -1,6 +1,6 @@
[tool.poetry] [tool.poetry]
name = "text-generation-server" name = "text-generation-server"
version = "2.0.2" version = "2.0.4"
description = "Text Generation Inference Python gRPC Server" description = "Text Generation Inference Python gRPC Server"
authors = ["Olivier Dehaene <olivier@huggingface.co>"] authors = ["Olivier Dehaene <olivier@huggingface.co>"]

View File

@ -6,14 +6,14 @@ colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_p
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.14.0 ; python_version >= "3.9" and python_version < "3.13" filelock==3.14.0 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2024.3.1 ; python_version >= "3.9" and python_version < "3.13" fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.63.0 ; python_version >= "3.9" and python_version < "3.13" googleapis-common-protos==1.63.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.62.2 ; python_version >= "3.9" and python_version < "3.13" grpcio==1.64.0 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.6 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.6 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.19.4 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.1 ; python_version >= "3.9" and python_version < "3.13"
idna==3.7 ; python_version >= "3.9" and python_version < "3.13" idna==3.7 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13" numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13"
@ -32,17 +32,17 @@ prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13"
protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13"
py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13"
regex==2024.4.28 ; python_version >= "3.9" and python_version < "3.13" regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13"
requests==2.31.0 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.2 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.13.0 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13"
setuptools==69.5.1 ; python_version >= "3.9" and python_version < "3.13" setuptools==70.0.0 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.66.2 ; python_version >= "3.9" and python_version < "3.13" tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.40.1 ; python_version >= "3.9" and python_version < "3.13" transformers==4.41.1 ; python_version >= "3.9" and python_version < "3.13"
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.11.0 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.0 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.2.1 ; python_version >= "3.9" and python_version < "3.13" urllib3==2.2.1 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"

View File

@ -6,14 +6,14 @@ colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_p
deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13"
einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
filelock==3.14.0 ; python_version >= "3.9" and python_version < "3.13" filelock==3.14.0 ; python_version >= "3.9" and python_version < "3.13"
fsspec==2024.3.1 ; python_version >= "3.9" and python_version < "3.13" fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13"
googleapis-common-protos==1.63.0 ; python_version >= "3.9" and python_version < "3.13" googleapis-common-protos==1.63.0 ; python_version >= "3.9" and python_version < "3.13"
grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13"
grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13"
grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13"
grpcio==1.62.2 ; python_version >= "3.9" and python_version < "3.13" grpcio==1.64.0 ; python_version >= "3.9" and python_version < "3.13"
hf-transfer==0.1.6 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.6 ; python_version >= "3.9" and python_version < "3.13"
huggingface-hub==0.19.4 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.1 ; python_version >= "3.9" and python_version < "3.13"
idna==3.7 ; python_version >= "3.9" and python_version < "3.13" idna==3.7 ; python_version >= "3.9" and python_version < "3.13"
loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13"
numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13" numpy==1.26.4 ; python_version >= "3.9" and python_version < "3.13"
@ -32,17 +32,17 @@ prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13"
protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13"
py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13"
pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13"
regex==2024.4.28 ; python_version >= "3.9" and python_version < "3.13" regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13"
requests==2.31.0 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.2 ; python_version >= "3.9" and python_version < "3.13"
safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13"
scipy==1.13.0 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13"
sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13"
setuptools==69.5.1 ; python_version >= "3.9" and python_version < "3.13" setuptools==70.0.0 ; python_version >= "3.9" and python_version < "3.13"
tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13"
tqdm==4.66.2 ; python_version >= "3.9" and python_version < "3.13" tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13"
transformers==4.40.1 ; python_version >= "3.9" and python_version < "3.13" transformers==4.41.1 ; python_version >= "3.9" and python_version < "3.13"
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
typing-extensions==4.11.0 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.0 ; python_version >= "3.9" and python_version < "3.13"
urllib3==2.2.1 ; python_version >= "3.9" and python_version < "3.13" urllib3==2.2.1 ; python_version >= "3.9" and python_version < "3.13"
win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32"
wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13"

View File

@ -1,5 +1,5 @@
import torch import torch
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelEmbedding, TensorParallelEmbedding,
) )

View File

@ -200,31 +200,27 @@ def download_weights(
try: try:
import json import json
medusa_head = hf_hub_download( config = hf_hub_download(
model_id, revision=revision, filename="medusa_lm_head.safetensors"
)
medusa_config = hf_hub_download(
model_id, revision=revision, filename="config.json" model_id, revision=revision, filename="config.json"
) )
with open(medusa_config, "r") as f: with open(config, "r") as f:
config = json.load(f) config = json.load(f)
model_id = config["base_model_name_or_path"] base_model_id = config.get("base_model_name_or_path", None)
revision = "main" if base_model_id and base_model_id != model_id:
try: try:
utils.weight_files(model_id, revision, extension) logger.info(f"Downloading parent model {base_model_id}")
logger.info( download_weights(
f"Files for parent {model_id} are already present on the host. " model_id=base_model_id,
"Skipping download." revision="main",
) extension=extension,
return auto_convert=auto_convert,
# Local files not found logger_level=logger_level,
except ( json_output=json_output,
utils.LocalEntryNotFoundError, trust_remote_code=trust_remote_code,
FileNotFoundError, )
utils.EntryNotFoundError, except Exception:
): pass
pass
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass pass
@ -241,31 +237,6 @@ def download_weights(
if not extension == ".safetensors" or not auto_convert: if not extension == ".safetensors" or not auto_convert:
raise e raise e
elif (Path(model_id) / "medusa_lm_head.safetensors").exists():
# Try to load as a local Medusa model
try:
import json
medusa_head = Path(model_id) / "medusa_lm_head.safetensors"
medusa_config = Path(model_id) / "config.json"
with open(medusa_config, "r") as f:
config = json.load(f)
model_id = config["base_model_name_or_path"]
revision = "main"
try:
utils.weight_files(model_id, revision, extension)
logger.info(
f"Files for parent {model_id} are already present on the host. "
"Skipping download."
)
return
# Local files not found
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
elif (Path(model_id) / "adapter_config.json").exists(): elif (Path(model_id) / "adapter_config.json").exists():
# Try to load as a local PEFT model # Try to load as a local PEFT model
try: try:
@ -276,14 +247,43 @@ def download_weights(
return return
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError): except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass pass
elif (Path(model_id) / "config.json").exists():
# Try to load as a local Medusa model
try:
import json
config = Path(model_id) / "config.json"
with open(config, "r") as f:
config = json.load(f)
base_model_id = config.get("base_model_name_or_path", None)
if base_model_id:
try:
logger.info(f"Downloading parent model {base_model_id}")
download_weights(
model_id=base_model_id,
revision="main",
extension=extension,
auto_convert=auto_convert,
logger_level=logger_level,
json_output=json_output,
trust_remote_code=trust_remote_code,
)
except Exception:
pass
except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
pass
# Try to see if there are local pytorch weights # Try to see if there are local pytorch weights
try: try:
# Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE
local_pt_files = utils.weight_files(model_id, revision, ".bin") try:
local_pt_files = utils.weight_files(model_id, revision, ".bin")
except Exception:
local_pt_files = utils.weight_files(model_id, revision, ".pt")
# No local pytorch weights # No local pytorch weights
except utils.LocalEntryNotFoundError: except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
if extension == ".safetensors": if extension == ".safetensors":
logger.warning( logger.warning(
f"No safetensors weights found for model {model_id} at revision {revision}. " f"No safetensors weights found for model {model_id} at revision {revision}. "

View File

@ -0,0 +1,14 @@
from text_generation_server.layers.tensor_parallel import (
TensorParallelColumnLinear,
TensorParallelRowLinear,
TensorParallelEmbedding,
)
from text_generation_server.layers.linear import (
get_linear,
FastLinear,
)
from text_generation_server.layers.speculative import SpeculativeHead
# Just to add the `load` methods.
from text_generation_server.layers.layernorm import load_layer_norm
from text_generation_server.layers.conv import load_conv2d

View File

@ -0,0 +1,106 @@
import torch
from loguru import logger
from functools import lru_cache
import bitsandbytes as bnb
from bitsandbytes.nn import Int8Params, Params4bit
@lru_cache(1)
def warn_deprecate_bnb():
logger.warning(
"Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
)
class Linear8bitLt(torch.nn.Module):
def __init__(
self,
weight,
bias,
has_fp16_weights=True,
memory_efficient_backward=False,
threshold=0.0,
index=None,
):
super().__init__()
assert (
not memory_efficient_backward
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
self.state = bnb.MatmulLtState()
self.index = index
# Necessary for stacked layers
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(
weight.data,
has_fp16_weights=has_fp16_weights,
requires_grad=has_fp16_weights,
)
self.weight.cuda(weight.device)
self.bias = bias
def init_8bit_state(self):
self.state.CB = self.weight.CB
self.state.SCB = self.weight.SCB
self.weight.CB = None
self.weight.SCB = None
def forward(self, x: torch.Tensor):
self.state.is_training = self.training
if self.weight.CB is not None:
self.init_8bit_state()
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
if not self.state.has_fp16_weights:
if self.state.CB is not None and self.state.CxB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
return out
class Linear4bit(torch.nn.Module):
def __init__(self, weight, bias, quant_type):
super().__init__()
self.weight = Params4bit(
weight.data,
requires_grad=False,
compress_statistics=True,
quant_type=quant_type,
)
self.compute_dtype = None
self.weight.cuda(weight.device)
self.bias = bias
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
if self.bias is not None and self.bias.dtype != x.dtype:
self.bias.data = self.bias.data.to(x.dtype)
if getattr(self.weight, "quant_state", None) is None:
print(
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
)
inp_dtype = x.dtype
if self.compute_dtype is not None:
x = x.to(self.compute_dtype)
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
out = bnb.matmul_4bit(
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
)
out = out.to(inp_dtype)
return out

View File

@ -0,0 +1,41 @@
from accelerate import init_empty_weights
import torch
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
conv2d = cls(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
)
conv2d.weight = torch.nn.Parameter(weight)
conv2d.bias = torch.nn.Parameter(bias)
return conv2d
@classmethod
def load_conv2d_no_bias(
cls, prefix, weights, in_channels, out_channels, kernel_size, stride
):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
conv2d = cls(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
)
conv2d.weight = torch.nn.Parameter(weight)
conv2d.bias = None
return conv2d
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias

View File

@ -0,0 +1,25 @@
import torch
from EETQ import quant_weights, w8_a16_gemm
class EETQLinear(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
device = weight.device
if weight.dtype != torch.float16:
weight = weight.to(dtype=torch.float16)
weight = torch.t(weight).contiguous().cpu()
weight, scale = quant_weights(weight, torch.int8, False)
self.weight = weight.cuda(device)
self.scale = scale.cuda(device)
self.bias = bias.cuda(device) if bias is not None else None
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = w8_a16_gemm(input, self.weight, self.scale)
output = output + self.bias if self.bias is not None else output
return output

View File

@ -0,0 +1,43 @@
import torch
def fp8_quantize(weight, qdtype=torch.float8_e4m3fn):
device = weight.device
# weight, scale = quant_weights(weight, torch.int8, False)
finfo = torch.finfo(qdtype)
# Calculate the scale as dtype max divided by absmax
scale = finfo.max / weight.abs().max().clamp(min=1e-12)
# scale and clamp the tensor to bring it to
# the representative range of float8 data type
# (as default cast is unsaturated)
qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
# Return both float8 data and the inverse scale (as float),
# as both required as inputs to torch._scaled_mm
qweight = qweight.to(qdtype)
scale = scale.float().reciprocal()
return qweight, scale
class Fp8Linear(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.dtype = weight.dtype
self.qweight, self.scale = fp8_quantize(weight)
self.bias = bias if bias is not None else None
def forward(self, input: torch.Tensor) -> torch.Tensor:
qinput, scale = fp8_quantize(input)
output, _ = torch._scaled_mm(
qinput,
self.qweight.t(),
out_dtype=self.dtype,
scale_a=scale,
scale_b=self.scale,
bias=self.bias,
)
return output

View File

@ -0,0 +1,39 @@
import os
import torch
from text_generation_server.utils.import_utils import (
SYSTEM,
)
try:
major, _minor = torch.cuda.get_device_capability()
except Exception:
major = 1
HAS_EXLLAMA = False
CAN_EXLLAMA = major >= 8 or SYSTEM == "rocm"
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"
if os.getenv("DISABLE_EXLLAMA") == "True":
HAS_EXLLAMA = False
elif CAN_EXLLAMA:
try:
if V2:
from text_generation_server.layers.gptq.exllamav2 import (
QuantLinear as ExllamaQuantLinear,
create_exllama_buffers,
set_device,
)
HAS_EXLLAMA = "2"
else:
from text_generation_server.layers.gptq.exllama import (
Ex4bitLinear as ExllamaQuantLinear,
create_exllama_buffers,
set_device,
)
HAS_EXLLAMA = "1"
except ImportError:
pass
from text_generation_server.layers.gptq.quant_linear import QuantLinear

View File

@ -0,0 +1,10 @@
diff a/server/text_generation_server/layers/gptq/exllamav2.py b/server/text_generation_server/layers/gptq/exllamav2.py (rejected hunks)
@@ -119,6 +119,8 @@ def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
none_tensor,
temp_dq,
)
+ else:
+ RuntimeError("Cannot create handle")
DEVICE = None

View File

@ -0,0 +1,356 @@
import math
import numpy as np
import torch
import torch.nn as nn
from torch.cuda.amp import custom_fwd
import triton
import triton.language as tl
from . import custom_autotune
# code based https://github.com/fpgaminer/GPTQ-triton
@custom_autotune.autotune(
configs=[
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=4,
num_warps=4,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
},
num_stages=2,
num_warps=8,
),
triton.Config(
{
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
},
num_stages=3,
num_warps=8,
),
triton.Config(
{
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 8,
},
num_stages=2,
num_warps=4,
),
],
key=["M", "N", "K"],
nearest_power_of_two=True,
prune_configs_by={
"early_config_prune": custom_autotune.matmul248_kernel_config_pruner,
"perf_model": None,
"top_k": None,
},
)
@triton.jit
def matmul_248_kernel(
a_ptr,
b_ptr,
c_ptr,
scales_ptr,
zeros_ptr,
g_ptr,
M,
N,
K,
bits,
maxq,
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_scales,
stride_zeros,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
"""
Compute the matrix multiplication C = A x B.
A is of shape (M, K) float16
B is of shape (K//8, N) int32
C is of shape (M, N) float16
scales is of shape (G, N) float16
zeros is of shape (G, N) float16
g_ptr is of shape (K) int32
"""
infearure_per_bits = 32 // bits
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_k = tl.cdiv(K, BLOCK_SIZE_K)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (
offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak
) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
a_mask = offs_am[:, None] < M
# b_ptrs is set up such that it repeats elements along the K axis 8 times
b_ptrs = b_ptr + (
(offs_k[:, None] // infearure_per_bits) * stride_bk
+ offs_bn[None, :] * stride_bn
) # (BLOCK_SIZE_K, BLOCK_SIZE_N)
g_ptrs = g_ptr + offs_k
# shifter is used to extract the N bits of each element in the 32-bit word from B
scales_ptrs = scales_ptr + offs_bn[None, :]
zeros_ptrs = zeros_ptr + (offs_bn[None, :] // infearure_per_bits)
shifter = (offs_k % infearure_per_bits) * bits
zeros_shifter = (offs_bn % infearure_per_bits) * bits
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, num_pid_k):
g_idx = tl.load(g_ptrs)
# Fetch scales and zeros; these are per-outfeature and thus reused in the inner loop
scales = tl.load(
scales_ptrs + g_idx[:, None] * stride_scales
) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = tl.load(
zeros_ptrs + g_idx[:, None] * stride_zeros
) # (BLOCK_SIZE_K, BLOCK_SIZE_N,)
zeros = (zeros >> zeros_shifter[None, :]) & maxq
zeros = (zeros + 1) & maxq # eventually avoid overflow
a = tl.load(a_ptrs, mask=a_mask, other=0.0) # (BLOCK_SIZE_M, BLOCK_SIZE_K)
b = tl.load(b_ptrs) # (BLOCK_SIZE_K, BLOCK_SIZE_N), but repeated
# Now we need to unpack b (which is N-bit values) into 32-bit values
b = (b >> shifter[:, None]) & maxq # Extract the N-bit values
b = (b - zeros) * scales # Scale and shift
accumulator += tl.dot(a, b)
a_ptrs += BLOCK_SIZE_K
b_ptrs += (BLOCK_SIZE_K // infearure_per_bits) * stride_bk
g_ptrs += BLOCK_SIZE_K
c_ptrs = c_ptr + stride_cm * offs_am[:, None] + stride_cn * offs_bn[None, :]
c_mask = (offs_am[:, None] < M) & (offs_bn[None, :] < N)
tl.store(c_ptrs, accumulator, mask=c_mask)
def matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq):
with torch.cuda.device(input.device):
output = torch.empty(
(input.shape[0], qweight.shape[1]), device=input.device, dtype=torch.float16
)
grid = lambda META: (
triton.cdiv(input.shape[0], META["BLOCK_SIZE_M"])
* triton.cdiv(qweight.shape[1], META["BLOCK_SIZE_N"]),
)
matmul_248_kernel[grid](
input,
qweight,
output,
scales,
qzeros,
g_idx,
input.shape[0],
qweight.shape[1],
input.shape[1],
bits,
maxq,
input.stride(0),
input.stride(1),
qweight.stride(0),
qweight.stride(1),
output.stride(0),
output.stride(1),
scales.stride(0),
qzeros.stride(0),
)
return output
class QuantLinearFunction(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(ctx, input, qweight, scales, qzeros, g_idx, bits, maxq):
output = matmul248(input, qweight, scales, qzeros, g_idx, bits, maxq)
return output
class QuantLinear(nn.Module):
def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
super().__init__()
self.register_buffer("qweight", qweight)
self.register_buffer("qzeros", qzeros)
self.register_buffer("scales", scales)
self.register_buffer("g_idx", g_idx)
if bias is not None:
self.register_buffer("bias", bias)
else:
self.bias = None
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
self.bits = bits
self.maxq = 2**self.bits - 1
self.groupsize = groupsize
self.outfeatures = qweight.shape[1]
self.infeatures = qweight.shape[0] * 32 // bits
@classmethod
def new(cls, bits, groupsize, infeatures, outfeatures, bias):
if bits not in [2, 4, 8]:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = torch.zeros((infeatures // 32 * bits, outfeatures), dtype=torch.int32)
qzeros = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures // 32 * bits),
dtype=torch.int32,
)
scales = torch.zeros(
(math.ceil(infeatures / groupsize), outfeatures), dtype=torch.float16
)
g_idx = torch.tensor(
[i // groupsize for i in range(infeatures)], dtype=torch.int32
)
if bias:
bias = torch.zeros((outfeatures), dtype=torch.float16)
else:
bias = None
return cls(qweight, qzeros, scales, g_idx, bias, bits, groupsize)
def pack(self, linear, scales, zeros, g_idx=None):
self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx
scales = scales.t().contiguous()
zeros = zeros.t().contiguous()
scale_zeros = zeros * scales
self.scales = scales.clone().half()
if linear.bias is not None:
self.bias = linear.bias.clone().half()
intweight = []
for idx in range(self.infeatures):
intweight.append(
torch.round(
(linear.weight.data[:, idx] + scale_zeros[self.g_idx[idx]])
/ self.scales[self.g_idx[idx]]
).to(torch.int)[:, None]
)
intweight = torch.cat(intweight, dim=1)
intweight = intweight.t().contiguous()
intweight = intweight.numpy().astype(np.uint32)
qweight = np.zeros(
(intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32
)
i = 0
row = 0
while row < qweight.shape[0]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qweight[row] |= intweight[j] << (self.bits * (j - i))
i += 32 // self.bits
row += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qweight = qweight.astype(np.int32)
self.qweight = torch.from_numpy(qweight)
zeros -= 1
zeros = zeros.numpy().astype(np.uint32)
qzeros = np.zeros(
(zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32
)
i = 0
col = 0
while col < qzeros.shape[1]:
if self.bits in [2, 4, 8]:
for j in range(i, i + (32 // self.bits)):
qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
i += 32 // self.bits
col += 1
else:
raise NotImplementedError("Only 2,4,8 bits are supported.")
qzeros = qzeros.astype(np.int32)
self.qzeros = torch.from_numpy(qzeros)
def forward(self, x):
out_shape = x.shape[:-1] + (self.outfeatures,)
out = QuantLinearFunction.apply(
x.reshape(-1, x.shape[-1]),
self.qweight,
self.scales,
self.qzeros,
self.g_idx,
self.bits,
self.maxq,
)
out = out + self.bias if self.bias is not None else out
return out.reshape(out_shape)

View File

@ -0,0 +1,185 @@
import torch
from torch import nn
from accelerate import init_empty_weights
from text_generation_server.utils.import_utils import (
SYSTEM,
)
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
bias = weights.get_tensor(f"{prefix}.bias")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = torch.nn.Parameter(weight)
ln.bias = torch.nn.Parameter(bias)
return ln
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
weight = weights.get_tensor(f"{prefix}.weight")
with init_empty_weights():
ln = cls(weight.shape, eps=eps)
ln.weight = torch.nn.Parameter(weight)
ln.bias = None
return ln
torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
if SYSTEM == "cuda":
import dropout_layer_norm
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
if hidden_states.shape[-1] > 8192:
if residual is not None:
hidden_states += residual
residual = hidden_states
return super(FastLayerNorm, self).forward(hidden_states), residual
else:
(
normed_hidden_states,
residual,
*rest,
) = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states,
residual,
self.weight,
self.bias,
None,
None,
None,
None,
0.0,
self.eps,
1.0,
0,
None,
False,
False,
)
if residual is None:
residual = hidden_states
return normed_hidden_states, residual
elif SYSTEM == "rocm":
from vllm._C import ops
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
if residual is not None:
hidden_states += residual
residual = hidden_states
return super().forward(hidden_states), residual
elif SYSTEM == "xpu":
import intel_extension_for_pytorch as ipex
class FastLayerNorm(nn.LayerNorm):
def forward(self, hidden_states, residual=None):
res_out = hidden_states
out = ipex.llm.functional.add_layer_norm(
residual, hidden_states, self.weight, self.bias, self.eps, True
)
if residual is not None:
res_out = residual
return out, res_out
class FastRMSNorm(nn.Module):
def __init__(self, weight: torch.Tensor, eps: float):
super().__init__()
self.weight = nn.Parameter(weight)
self.variance_epsilon = eps
@classmethod
def load(cls, prefix, weights, eps=1e-6):
weight = weights.get_tensor(f"{prefix}.weight")
return cls(weight, eps)
def forward(self, hidden_states, residual=None):
if SYSTEM == "xpu":
residual_out = hidden_states
out = ipex.llm.functional.add_rms_norm(
residual,
hidden_states,
self.weight,
None,
self.variance_epsilon,
True,
)
if residual is not None:
residual_out = residual
return out, residual_out
elif hidden_states.shape[-1] > 8192:
if residual is not None:
hidden_states += residual
residual = hidden_states
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(
variance + self.variance_epsilon
)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states, residual
elif SYSTEM == "cuda":
# faster post attention rms norm
(
normed_hidden_states,
res,
*rest,
) = dropout_layer_norm.dropout_add_ln_fwd(
hidden_states,
residual,
self.weight,
None,
None,
None,
None,
None,
0.0,
self.variance_epsilon,
1.0,
0,
None,
False,
True, # Activate RMSNorm
)
if res is None:
res = hidden_states
return normed_hidden_states, res
elif SYSTEM == "rocm":
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
if residual is not None:
hidden_states += residual
residual = hidden_states
out = torch.empty_like(hidden_states)
ops.rms_norm(
out,
hidden_states,
self.weight.data,
self.variance_epsilon,
)
return out, residual
else:
raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
)

View File

@ -0,0 +1,216 @@
import torch
from torch.nn import functional as F
from text_generation_server.utils.import_utils import SYSTEM
if SYSTEM == "rocm":
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
class FastLinear(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.weight = torch.nn.Parameter(weight, requires_grad=False)
if bias is not None:
self.bias = torch.nn.Parameter(bias, requires_grad=False)
else:
self.bias = None
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_tensor(f"{prefix}.weight")
if bias:
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(weight, bias)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight, self.bias)
class FastLinearROCm(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.weight = torch.nn.Parameter(weight)
if bias is not None:
self.bias = torch.nn.Parameter(bias)
else:
self.bias = None
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_tensor(f"{prefix}.weight")
if bias:
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(weight, bias)
def forward(self, inp: torch.Tensor) -> torch.Tensor:
weight = self.weight
bias = self.bias
if SYSTEM == "rocm" and inp.numel() // inp.shape[-1] == 1:
batched = False
inp_shape = inp.shape
if inp.dim() == 3:
inp = inp.view(-1, inp_shape[-1])
batched = True
m, k = weight.shape[0], inp_shape[1]
out = torch.empty(
inp_shape[0], weight.shape[0], dtype=inp.dtype, device="cuda"
)
if (k == 8192 and (m == 1280 or m == 7168)) or (k == 3584 and m == 8192):
_custom_C.LLMM1(weight, inp, out, 8)
elif k <= 8192 and k % 8 == 0 and m % 4 == 0:
_custom_C.LLMM1(weight, inp, out, 4)
else:
out = F.linear(inp, weight)
if batched:
out.view(*inp_shape[:-1], out.shape[-1])
if bias is not None:
out = out + bias
return out
return F.linear(inp, self.weight, self.bias)
def get_linear(weight, bias, quantize):
if quantize is None:
if SYSTEM == "rocm":
linear = FastLinearROCm(weight, bias)
else:
linear = FastLinear(weight, bias)
elif quantize == "eetq":
try:
from text_generation_server.layers.eetq import EETQLinear
linear = EETQLinear(weight, bias)
except ImportError:
raise ImportError(
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
)
elif quantize == "fp8":
from text_generation_server.layers.fp8 import Fp8Linear
linear = Fp8Linear(weight, bias)
elif quantize == "bitsandbytes":
try:
from text_generation_server.layers.bnb import (
warn_deprecate_bnb,
Linear8bitLt,
)
except ImportError:
raise NotImplementedError(
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
)
warn_deprecate_bnb()
linear = Linear8bitLt(
weight,
bias,
has_fp16_weights=False,
threshold=6.0,
)
if bias is not None:
linear.bias = nn.Parameter(bias)
elif quantize == "bitsandbytes-fp4":
try:
from text_generation_server.layers.bnb import Linear4bit
except ImportError:
raise NotImplementedError(
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
)
linear = Linear4bit(
weight,
bias,
quant_type="fp4",
)
elif quantize == "bitsandbytes-nf4":
try:
from text_generation_server.layers.bnb import Linear4bit
except ImportError:
raise NotImplementedError(
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
)
linear = Linear4bit(
weight,
bias,
quant_type="nf4",
)
elif quantize == "gptq":
try:
qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
except Exception:
raise NotImplementedError(
f"The passed weight is not `gptq` compatible, loader needs to be updated."
)
if use_exllama:
try:
from text_generation_server.layers.gptq import (
ExllamaQuantLinear,
)
except ImportError:
raise NotImplementedError(
f"Exllama gptq kernels are not installed. Install them `cd server/exllama_kernels && python setup.py install && cd ../exllamav2_kernels && python setup.py install`"
)
linear = ExllamaQuantLinear(
qweight, qzeros, scales, g_idx, bias, bits, groupsize
)
else:
from text_generation_server.layers.gptq.quant_linear import QuantLinear
linear = QuantLinear(
qweight,
qzeros,
scales,
g_idx,
bias,
bits,
groupsize,
)
elif quantize == "awq":
try:
qweight, qzeros, scales, _, bits, groupsize, _ = weight
except Exception:
raise NotImplementedError(
f"The passed weight is not `awq` compatible, loader needs to be updated."
)
if SYSTEM == "rocm":
raise NotImplementedError(
"AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
"to use Exllama/GPTQ kernels for AWQ inference."
)
try:
from text_generation_server.layers.awq.quantize.qmodule import WQLinear
linear = WQLinear(
w_bit=bits,
group_size=groupsize,
qweight=qweight,
qzeros=qzeros,
scales=scales,
bias=bias is not None,
)
except ImportError:
raise NotImplementedError(
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
)
else:
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
return linear

View File

@ -0,0 +1,189 @@
import torch
from torch import nn
from typing import Tuple, Optional
from text_generation_server.utils.speculate import get_speculate
from text_generation_server.layers.linear import FastLinear
from text_generation_server.layers.tensor_parallel import (
TensorParallelHead,
TensorParallelColumnLinear,
)
class ResBlock(torch.nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.linear = FastLinear.load(
config, prefix=f"{prefix}.linear", weights=weights, bias=True
)
self.act = torch.nn.SiLU()
def forward(self, x):
return x + self.act(self.linear(x))
class MedusaModel(torch.nn.Module):
def __init__(self, config, medusa_config, weights):
super().__init__()
self.heads = torch.nn.ModuleList(
[
MedusaHead(config, medusa_config, prefix=f"{i}", weights=weights)
for i in range(get_speculate())
]
)
def forward(self, x):
speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
return speculative_logits
class MedusaHead(torch.nn.Module):
def __init__(self, config, medusa_config, prefix, weights):
super().__init__()
self.blocks = torch.nn.ModuleList(
[
ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
for i in range(medusa_config["medusa_num_layers"])
]
)
n = len(self.blocks)
self.out = FastLinear.load(
config, prefix=f"{prefix}.{n}", weights=weights, bias=False
)
def forward(self, x):
for block in self.blocks:
x = block(x)
x = self.out(x)
return x
class MedusaHeadV1(nn.Module):
def __init__(self, lm_head, medusa):
super().__init__()
self.lm_head = lm_head
self.medusa = medusa
@staticmethod
def load(config, prefix: str, weights):
from pathlib import Path
from safetensors import safe_open
import json
speculator = config.speculator
path = speculator["path"]
medusa_config = str(Path(path) / "config.json")
for fname in speculator["model_paths"]:
filename = str(Path(path) / fname)
with open(medusa_config, "r") as f:
medusa_config = json.load(f)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
medusa = MedusaModel(config, medusa_config, weights)
lm_head = TensorParallelHead.load(config, prefix, weights)
return MedusaHeadV1(lm_head, medusa)
def forward(
self, input: torch.Tensor
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
logits = self.lm_head(input)
# If we have too many tokens, we skip speculative logits
if input.shape[0] > 128:
return logits, None
speculative_logits = self.medusa(input)
return logits, speculative_logits
class MedusaHeadV2(nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
from pathlib import Path
from safetensors import safe_open
import json
speculator_path = config.speculator["path"]
medusa_config = str(Path(speculator_path) / "config.json")
filename = str(Path(speculator_path) / "medusa_lm_head.safetensors")
with open(medusa_config, "r") as f:
medusa_config = json.load(f)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
self.n_medusa_heads = get_speculate()
assert medusa_config["medusa_num_layers"] == 1
self.linear = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{i}.0.linear" for i in range(self.n_medusa_heads)],
dim=0,
weights=weights,
bias=True,
)
self.process_group = weights.process_group
self.world_size = self.process_group.size()
self.rank = self.process_group.rank()
self.act = torch.nn.SiLU()
self.lm_head = TensorParallelHead.load(config, prefix, weights)
def forward(self, x):
# If we have too many tokens, we skip speculative logits
if x.shape[0] > 128:
logits = self.lm_head(x)
return logits, None
size = x.shape[-1]
block_size = (size + self.world_size - 1) // self.world_size
start = self.rank * block_size
stop = (self.rank + 1) * block_size
x_block = x[:, start:stop]
# Compute all medusa heads at the same time, then reshape and move the n_medusa_heads dim to dim 1
medusa_res = self.act(self.linear(x)).reshape(
*x_block.shape[:-1], self.n_medusa_heads, x_block.shape[-1]
)
# Apply all residual medusa heads
output = x[:, start:stop].unsqueeze(-2) + medusa_res
# Gather medusa heads
world_output = [
torch.empty_like(output) for _ in range(self.process_group.size())
]
torch.distributed.all_gather(world_output, output, group=self.process_group)
world_output = torch.cat(world_output, dim=-1)
# Stack x and medusa residual x
stacked_x = torch.cat([x.unsqueeze(-2), world_output], dim=-2)
# Compute lm head on x + medusa residual x
logits = self.lm_head(stacked_x)
# Finally, split logits from speculative logits
logits, speculative_logits = torch.split(
logits, [1, self.n_medusa_heads], dim=-2
)
# Squeeze added dimension
logits = logits.squeeze(-2)
return logits, speculative_logits

View File

@ -0,0 +1,176 @@
import torch
import math
from torch import nn
from torch.nn import functional as F
from typing import Optional, Tuple
from text_generation_server.layers import TensorParallelEmbedding, FastLinear
from text_generation_server.layers.tensor_parallel import TensorParallelHead
from text_generation_server.utils.speculate import get_speculate
class MLPSpeculatorLayerNorm(nn.Module):
"""
A L2 normalization implementation
...
Args
----
normalized_shape : int
Dimensionality of input data (size of final tensor axis)
elementwise_scale_weight : torch.Tensor
learned scaling term after normalization?
elementwise_shift_bias : torch.Tensor
learned bias term after normalization?
eps : float
Safety term to prevent division by zero. Make sure the chosen value fits in the range of your encoding scheme (i.e. fp16 requires eps >= 6e-8).
"""
def __init__(
self,
prefix,
config,
weights,
eps=1e-06,
):
super(MLPSpeculatorLayerNorm, self).__init__()
self.weight = weights.get_tensor(f"{prefix}.weight")
self.bias = weights.get_tensor(f"{prefix}.bias")
self.eps = eps
def forward(self, x):
xf = x
xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps)
x = xf.type_as(x)
x = self.weight * x
x = x + self.bias
return x
class MLPSpeculatorModel(torch.nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.config = config
self.n_predict = get_speculate()
self.hidden_size = config.hidden_size
self.emb = nn.ModuleList(
[
TensorParallelEmbedding(f"{prefix}.emb.{i}", weights)
for i in range(self.n_predict)
]
)
self.proj = [
FastLinear.load(
config,
prefix=f"{prefix}.proj.{i}",
weights=weights,
bias=False,
)
for i in range(self.n_predict)
]
self.head = nn.ModuleList(
[
FastLinear.load(config, f"{prefix}.head.{i}", weights, bias=False)
for i in range(self.n_predict)
]
)
self.ln = nn.ModuleList(
[
MLPSpeculatorLayerNorm(
prefix=f"{prefix}.ln.{i}",
config=config,
weights=weights,
)
for i in range(self.n_predict)
]
)
# Weights ensure that state_0 accounts for 50% of state magnitude by final head in expectation
self.state_weight = 0.5 ** (0.5 / self.n_predict)
self.emb_weight = math.sqrt(1 - self.state_weight**2)
self.activation = nn.GELU()
# TODO
self.vsize = config.vocab_size
self.inner_dim = config.speculator_config["inner_dim"]
self.top_k_tokens_per_head = [1] * self.n_predict
def forward(
self,
hidden_states: torch.Tensor,
input_ids: torch.Tensor,
):
top_k_tokens_per_head = self.top_k_tokens_per_head
# k indicates # of candidates
# h indicates # of generated tokens
state = hidden_states
b = state.size(0)
ind = input_ids.unsqueeze(0)
all_probs = torch.empty(
b, self.n_predict, self.vsize, device=state.device
) # b k h v
assert (
len(top_k_tokens_per_head) == self.n_predict
), f"You must provide a topk number for each head ({self.n_predict} heads, {len(top_k_tokens_per_head)} provided)"
for i in range(self.n_predict):
# Project and predict
z = self.emb[i](ind)
z = z.mul(self.emb_weight * math.sqrt(self.inner_dim / 2)) # b k d
state = self.proj[i](state) * self.state_weight + z
state = self.activation(self.ln[i](state)) # b k d
probs = F.log_softmax(self.head[i](state), dim=-1) # b k v
_probs, preds = probs.topk(top_k_tokens_per_head[i], dim=-1) # b k k'
# Update candidate set with new predictions
# Update distribution set with new logits
all_probs[:, i] = probs.exp()
# Update state, log_probs and ind for new predictions
state = state.unsqueeze(2).expand(
-1, -1, top_k_tokens_per_head[i], -1
) # b k k' d
state = state.reshape(-1, b, state.size(3)) # b kk' d
ind = preds.view(-1, b) # b kk'
speculative_logits = all_probs
return speculative_logits
class MLPSpeculatorHead(nn.Module):
def __init__(self, lm_head, mlp_speculator):
super().__init__()
self.lm_head = lm_head
self.mlp_speculator = mlp_speculator
def forward(
self, input: torch.Tensor
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
logits = self.lm_head(input)
# If we have too many tokens, we skip speculative logits
if input.shape[0] > 128:
return logits, None
input_ids = logits.argmax(dim=-1)
speculative_logits = self.mlp_speculator(input, input_ids)
return logits, speculative_logits
@staticmethod
def load(config, prefix: str, weights):
from pathlib import Path
from safetensors import safe_open
speculator_path = config.speculator["path"]
for fname in config.speculator["model_paths"]:
filename = str(Path(speculator_path) / fname)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing and routing[k] != filename:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
mlp_speculator = MLPSpeculatorModel(config, "speculator", weights)
lm_head = TensorParallelHead.load(config, prefix, weights)
return MLPSpeculatorHead(lm_head, mlp_speculator)

View File

@ -0,0 +1,421 @@
import os
import torch
from torch import nn
from text_generation_server.utils.import_utils import SYSTEM
if SYSTEM == "cuda":
from flash_attn.layers.rotary import RotaryEmbedding
import rotary_emb
elif SYSTEM == "rocm":
from vllm._C import ops
elif SYSTEM == "xpu":
import intel_extension_for_pytorch as ipex
def _create_inv_freq(dim, base, device):
inv_freq = 1.0 / (
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
)
return inv_freq
def _get_rope_config(config):
if os.getenv("ROPE_SCALING", None) is not None:
rope_scaling = {
"type": os.environ["ROPE_SCALING"],
"factor": float(os.environ["ROPE_FACTOR"]),
}
return rope_scaling
return getattr(config, "rope_scaling", None)
class PositionRotaryEmbedding(nn.Module):
def __init__(self, inv_freq, scaling_factor):
super().__init__()
self.inv_freq = inv_freq
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.scaling_factor = scaling_factor
self.dynamic_args = None
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
):
# Such controlflows may add some overhead.
if SYSTEM == "cuda":
rotary_dim = cos.shape[-1]
q1 = query[..., :rotary_dim]
q2 = query[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
k1 = key[..., :rotary_dim]
k2 = key[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif SYSTEM == "rocm":
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
head_size = query.shape[-1]
# Inplace operation, updating query and key.
ops.rotary_embedding(query, key, head_size, cos, sin, True)
elif SYSTEM == "xpu":
ipex.llm.functional.rotary_embedding(
query, key, sin, cos, query.size(-1), True
)
else:
raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
)
@classmethod
def static(cls, config, dim, base, device):
inv_freq = _create_inv_freq(dim, base, device)
scaling_factor = None
rope_scaling = _get_rope_config(config)
if rope_scaling is not None:
if rope_scaling["type"] == "linear":
pass
elif rope_scaling["type"] == "dynamic":
scaling_factor = rope_scaling["factor"]
return DynamicPositionRotaryEmbedding(
dim=dim,
max_position_embeddings=config.max_position_embeddings,
base=base,
device=inv_freq.device,
scaling_factor=scaling_factor,
)
elif rope_scaling["type"] == "yarn":
scaling_factor = rope_scaling["factor"]
return YarnPositionRotaryEmbedding(
dim=2 * inv_freq.shape[0],
max_position_embeddings=rope_scaling[
"original_max_position_embeddings"
],
base=10000.0,
device=inv_freq.device,
scaling_factor=scaling_factor,
extrapolation_factor=1,
attn_factor=1,
beta_fast=32,
beta_slow=1,
)
elif rope_scaling["type"] == "su":
short_factor = torch.tensor(
rope_scaling["short_factor"], dtype=torch.float32, device=device
)
short_inv_freq = 1.0 / (
short_factor
* base
** (
torch.arange(0, dim, 2, device=device, dtype=torch.float32)
/ dim
)
)
long_factor = torch.tensor(
rope_scaling["long_factor"], dtype=torch.float32, device=device
)
long_inv_freq = 1.0 / (
long_factor
* base
** (
torch.arange(0, dim, 2, device=device, dtype=torch.float32)
/ dim
)
)
original_max_position_embeddings = (
config.original_max_position_embeddings
)
max_position_embeddings = config.max_position_embeddings
if max_position_embeddings <= original_max_position_embeddings:
scaling_factor = 1.0
else:
scale = max_position_embeddings / original_max_position_embeddings
scaling_factor = math.sqrt(
1 + math.log(scale) / math.log(original_max_position_embeddings)
)
return SuRotaryEmbedding(
short_inv_freq=short_inv_freq,
long_inv_freq=long_inv_freq,
scaling_factor=scaling_factor,
original_max_position_embeddings=original_max_position_embeddings,
)
else:
raise NotImplementedError(
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
)
return cls(inv_freq, scaling_factor)
@classmethod
def load(cls, config, prefix, weights):
# XXX: Always load this in float32 !
dtype = weights.dtype
weights.dtype = torch.float32
inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
weights.dtype = dtype
scaling_factor = None
rope_scaling = _get_rope_config(config)
if rope_scaling is not None:
scaling_factor = rope_scaling["factor"]
if rope_scaling["type"] == "linear":
pass
elif rope_scaling["type"] == "dynamic":
return DynamicPositionRotaryEmbedding(
dim=2 * inv_freq.shape[0],
max_position_embeddings=config.max_position_embeddings,
base=10000.0,
device=inv_freq.device,
scaling_factor=scaling_factor,
)
elif rope_scaling["type"] == "yarn":
return YarnPositionRotaryEmbedding(
dim=2 * inv_freq.shape[0],
max_position_embeddings=rope_scaling[
"original_max_position_embeddings"
],
base=10000.0,
device=inv_freq.device,
scaling_factor=scaling_factor,
extrapolation_factor=1,
attn_factor=1,
beta_fast=32,
beta_slow=1,
)
else:
raise NotImplementedError(
f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
)
return cls(inv_freq, scaling_factor)
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if (
seqlen > self._seq_len_cached
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
):
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
if self.scaling_factor is not None:
t /= self.scaling_factor
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
"""
Return cos and sin for the asked position ids
"""
if SYSTEM == "rocm":
# For RoCm, we always use float cos/sin to avoid a cast.
# For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
# But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
dtype = torch.float32
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
cos = torch.index_select(self._cos_cached, 0, position_ids)
sin = torch.index_select(self._sin_cached, 0, position_ids)
# Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
return cos.unsqueeze(1), sin.unsqueeze(1)
class SuRotaryEmbedding(PositionRotaryEmbedding):
def __init__(
self,
short_inv_freq,
long_inv_freq,
scaling_factor,
original_max_position_embeddings,
):
super(PositionRotaryEmbedding, self).__init__()
self.short_inv_freq = short_inv_freq
self.long_inv_freq = long_inv_freq
self.scaling_factor = scaling_factor
self.original_max_position_embeddings = original_max_position_embeddings
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.dynamic_args = None
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if (
seqlen > self._seq_len_cached
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
):
self._seq_len_cached = seqlen
if seqlen > self.original_max_position_embeddings:
inv_freq = self.long_inv_freq
else:
inv_freq = self.short_inv_freq
t = torch.arange(seqlen, device=device, dtype=inv_freq.dtype)
if self.scaling_factor is not None:
t /= self.scaling_factor
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq.to(device=t.device))
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
inv_freq = _create_inv_freq(dim, base, device)
super().__init__(inv_freq, scaling_factor)
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if (
seqlen > self._seq_len_cached
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
):
if seqlen > self.max_position_embeddings:
newbase = self.base * (
(self.scaling_factor * seqlen / self.max_position_embeddings)
- (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
self.inv_freq = _create_inv_freq(
self.dim, newbase, self.inv_freq.device
)
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
# Inverse dim formula to find dim based on number of rotations
import math
def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
2 * math.log(base)
)
# Find dim range bounds based on rotations
def find_correction_range(
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
):
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
return max(low, 0), min(high, dim - 1) # Clamp values just in case
def linear_ramp_mask(min, max, dim):
if min == max:
max += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
def get_mscale(scale=1):
if scale <= 1:
return 1.0
return 0.1 * math.log(scale) + 1.0
class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
def __init__(
self,
dim,
max_position_embeddings,
base,
device,
scaling_factor,
*,
extrapolation_factor,
attn_factor,
beta_fast,
beta_slow,
):
inv_freq = _create_inv_freq(dim, base, device)
super().__init__(inv_freq, scaling_factor)
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.extrapolation_factor = extrapolation_factor
self.attn_factor = attn_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = float(
get_mscale(self.scaling_factor) * self.attn_factor
) # Get n-d magnitude scaling corrected for interpolation
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if (
seqlen > self._seq_len_cached
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
):
if seqlen > self.max_position_embeddings:
inv_freq_extrapolation = _create_inv_freq(
self.dim, self.base, self.inv_freq.device
)
freqs = 1.0 / inv_freq_extrapolation
inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
low, high = find_correction_range(
self.beta_fast,
self.beta_slow,
self.dim,
self.base,
self.max_position_embeddings,
)
inv_freq_mask = (
1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
inv_freq = (
inv_freq_interpolation * (1 - inv_freq_mask)
+ inv_freq_extrapolation * inv_freq_mask
)
self.inv_freq = inv_freq
self.mscale = float(
get_mscale(self.scaling_factor) * self.attn_factor
) # Get n-d magnitude scaling corrected for interpolation
self._seq_len_cached = seqlen
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
# Don't do einsum, it converts fp32 to fp16
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

View File

@ -0,0 +1,52 @@
import torch
import json
from typing import Tuple, Optional
from text_generation_server.layers.tensor_parallel import TensorParallelHead
from text_generation_server.layers.medusa import MedusaHeadV1, MedusaHeadV2
from text_generation_server.layers.mlp import MLPSpeculatorHead
class SpeculativeHead(torch.nn.Module):
def __init__(self, lm_head, speculator):
super().__init__()
self.head = lm_head
self.speculator = speculator
@staticmethod
def load(config, prefix: str, weights):
speculator = config.speculator
if speculator:
speculator_path = config.speculator["path"]
speculator_config = str(speculator_path / "config.json")
with open(speculator_config, "r") as f:
speculator_config = json.load(f)
config.speculator_config = speculator_config
try:
architecture = speculator_config["architectures"][0]
if architecture == "MLPSpeculatorPreTrainedModel":
speculator = MLPSpeculatorHead.load(config, prefix, weights)
else:
speculator = None
except KeyError:
try:
speculator = MedusaHeadV1.load(config, prefix, weights)
except:
speculator = MedusaHeadV2(config, prefix, weights)
lm_head = None
else:
lm_head = TensorParallelHead.load(config, prefix, weights)
speculator = None
return SpeculativeHead(lm_head, speculator)
def forward(
self, input: torch.Tensor
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
if self.speculator is not None:
return self.speculator(input)
assert self.head is not None
logits = self.head(input)
return logits, None

View File

@ -0,0 +1,188 @@
import torch
from torch.nn import functional as F
from typing import List
from text_generation_server.layers.linear import get_linear, FastLinear
class SuperLayer(torch.nn.Module):
def __init__(self, linear):
super().__init__()
self.linear = linear
def forward(self, x):
return self.linear.forward(x)
class TensorParallelHead(SuperLayer):
def __init__(self, linear, process_group, should_gather: bool):
super().__init__(linear)
self.process_group = process_group
self.should_gather = should_gather
@staticmethod
def load(config, prefix: str, weights):
if weights.process_group.size() > 1:
try:
weight = weights.get_sharded(f"{prefix}.weight", dim=0)
should_gather = True
except AssertionError:
# If the vocab size is not divisible by number of shards
# just load the entire thing.
weight = weights.get_tensor(f"{prefix}.weight")
should_gather = False
else:
weight = weights.get_tensor(f"{prefix}.weight")
should_gather = False
# GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
if config.quantize in ["gptq", "awq", "eetq"]:
quantize = None
else:
quantize = config.quantize
return TensorParallelHead(
get_linear(weight, bias=None, quantize=quantize),
process_group=weights.process_group,
should_gather=should_gather,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if not self.should_gather:
return super().forward(input)
world_size = self.process_group.size()
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
out_dim = self.linear.weight.shape[0]
if input.shape[0] == 1:
world_out = input.new_empty(1, out_dim * world_size)
local_out = input.new_empty(1, out_dim)
gather_input = local_out
else:
world_out = input.new_empty(out_dim * world_size, input.shape[0])
gather_input = input.new_empty(out_dim, input.shape[0])
local_out = gather_input.T
torch.mm(input, self.linear.weight.T, out=local_out)
torch.distributed.all_gather_into_tensor(
world_out, gather_input, group=self.process_group
)
if input.shape[0] == 1:
return world_out
return world_out.T
output = super().forward(input)
world_output = [
torch.empty_like(output) for _ in range(self.process_group.size())
]
torch.distributed.all_gather(world_output, output, group=self.process_group)
world_output = torch.cat(world_output, dim=-1)
return world_output
class TensorParallelColumnLinear(SuperLayer):
@classmethod
def load_gate_up(cls, config, prefix: str, weights, bias: bool):
"""Specific method when the QKV was joined after the fact"""
weight = weights.get_weights_col_packed_gate_up(
prefix, quantize=config.quantize
)
if bias:
raise NotImplementedError("packed_gate_up only implemented without bias")
else:
bias = None
linear = get_linear(weight, bias, config.quantize)
return cls(linear)
@classmethod
def load_qkv(cls, config, prefix: str, weights, bias: bool):
"""Specific method when the QKV was joined after the fact"""
weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
if bias:
raise NotImplementedError("packed_qkv only implemented for baichuan")
else:
bias = None
linear = get_linear(weight, bias, config.quantize)
return cls(linear)
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
return cls.load_multi(config, [prefix], weights, bias, dim=0)
@classmethod
def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
weight = weights.get_multi_weights_col(
prefixes, quantize=config.quantize, dim=dim
)
if bias:
b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
bias = torch.cat(b, dim=dim)
else:
bias = None
linear = get_linear(weight, bias, config.quantize)
return cls(linear)
class TensorParallelRowLinear(SuperLayer):
def __init__(self, linear, process_group):
super().__init__(linear)
self.process_group = process_group
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
if bias and weights.process_group.rank() == 0:
# Rank is only on the first rank process
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(
get_linear(weight, bias, config.quantize),
process_group=weights.process_group,
)
def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
out = super().forward(input)
if self.process_group.size() > 1 and reduce:
torch.distributed.all_reduce(out, group=self.process_group)
return out
class TensorParallelEmbedding(torch.nn.Module):
def __init__(self, prefix: str, weights, reduce=True):
super().__init__()
weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
num_embeddings = weights.get_shape(f"{prefix}.weight")[0]
process_group = weights.process_group
world_size = process_group.size()
rank = process_group.rank()
block_size = (num_embeddings + world_size - 1) // world_size
self.min_id = rank * block_size
self.max_id = min(num_embeddings, (rank + 1) * block_size)
self.null_idx = weight.shape[
0
] # Usually block_size, might be less in non even vocab_size.
self.process_group = weights.process_group
self.reduce = reduce
"""Additional 0 entry used for masking"""
self.weight = torch.nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
def forward(self, input: torch.Tensor) -> torch.Tensor:
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
# translate for [0, self.max_id - self.min_id[
input = torch.where(
(self.min_id > input) | (input >= self.max_id),
self.null_idx,
input - self.min_id,
)
out = torch.nn.functional.embedding(input, self.weight)
if self.reduce and self.process_group.size() > 1:
torch.distributed.all_reduce(out, group=self.process_group)
return out

View File

@ -1,9 +1,10 @@
import torch import torch
import os
from loguru import logger from loguru import logger
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import modeling_auto from transformers.models.auto import modeling_auto
from huggingface_hub import hf_hub_download from huggingface_hub import hf_hub_download, HfApi
from typing import Optional from typing import Optional
from pathlib import Path from pathlib import Path
@ -15,6 +16,12 @@ from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM from text_generation_server.models.causal_lm import CausalLM
from text_generation_server.models.bloom import BLOOM from text_generation_server.models.bloom import BLOOM
from text_generation_server.models.starcoder import StarCoder from text_generation_server.models.starcoder import StarCoder
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
from text_generation_server.models.custom_modeling.llava_next import (
LlavaNextForConditionalGeneration,
)
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
@ -40,8 +47,9 @@ def get_model(
config_dict, _ = PretrainedConfig.get_config_dict( config_dict, _ = PretrainedConfig.get_config_dict(
model_id, revision=revision, trust_remote_code=trust_remote_code model_id, revision=revision, trust_remote_code=trust_remote_code
) )
model_type = config_dict.get("model_type", None)
use_medusa = None speculator = None
if "medusa_num_heads" in config_dict: if "medusa_num_heads" in config_dict:
medusa_model_id = model_id medusa_model_id = model_id
medusa_revision = revision medusa_revision = revision
@ -61,6 +69,8 @@ def get_model(
config_dict, _ = PretrainedConfig.get_config_dict( config_dict, _ = PretrainedConfig.get_config_dict(
model_id, revision=revision, trust_remote_code=trust_remote_code model_id, revision=revision, trust_remote_code=trust_remote_code
) )
# Reload model type from parent.
model_type = config_dict.get("model_type", None)
is_local = Path(medusa_model_id).exists() is_local = Path(medusa_model_id).exists()
if not is_local: if not is_local:
medusa_config = hf_hub_download( medusa_config = hf_hub_download(
@ -71,11 +81,70 @@ def get_model(
revision=medusa_revision, revision=medusa_revision,
filename="medusa_lm_head.safetensors", filename="medusa_lm_head.safetensors",
) )
use_medusa = Path(medusa_config).parent speculator = {
"path": Path(medusa_config).parent,
"model_paths": ["medusa_lm_head.safetensors"],
}
else: else:
use_medusa = Path(medusa_model_id) speculator = {
"path": Path(medusa_model_id),
"model_paths": ["medusa_lm_head.safetensors"],
}
method = "medusa" method = "medusa"
elif model_type == "mlp_speculator":
mlp_model_id = model_id
mlp_revision = revision
model_id = config_dict["base_model_name_or_path"]
revision = "main"
speculate_mlp = config_dict["n_predict"]
if speculate is not None:
if speculate > speculate_mlp:
raise RuntimeError(
f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
)
else:
set_speculate(speculate)
else:
set_speculate(speculate_mlp)
config_dict, _ = PretrainedConfig.get_config_dict(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
# Reload model type from parent.
model_type = config_dict.get("model_type", None)
is_local = Path(mlp_model_id).exists()
extension = ".safetensors"
if not is_local:
mlp_speculator_config = hf_hub_download(
mlp_model_id, revision=mlp_revision, filename="config.json"
)
api = HfApi()
info = api.model_info(mlp_model_id, revision=mlp_revision)
filenames = [
s.rfilename
for s in info.siblings
if s.rfilename.endswith(extension)
and len(s.rfilename.split("/")) == 1
and "arguments" not in s.rfilename
and "args" not in s.rfilename
and "training" not in s.rfilename
]
for filename in filenames:
hf_hub_download(
mlp_model_id,
revision=mlp_revision,
filename=filename,
)
speculator = {
"path": Path(mlp_speculator_config).parent,
"model_paths": filenames,
}
else:
speculator = Path(mlp_model_id)
filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
speculator = {"path": speculator, "model_paths": filenames}
method = "mlp_speculator"
else: else:
method = "n-gram" method = "n-gram"
@ -92,7 +161,18 @@ def get_model(
return BLOOM( return BLOOM(
model_id, model_id,
revision, revision,
use_medusa=use_medusa, speculator=speculator,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "llava_next":
return VlmCausalLM(
model_class=LlavaNextForConditionalGeneration,
model_id=model_id,
revision=revision,
quantize=None,
speculator=speculator,
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
@ -101,7 +181,7 @@ def get_model(
return CausalLM( return CausalLM(
model_id, model_id,
revision, revision,
use_medusa=use_medusa, speculator=speculator,
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )

View File

@ -35,14 +35,14 @@ class BLOOM(CausalLM):
self, self,
model_id: str, model_id: str,
revision: Optional[str] = None, revision: Optional[str] = None,
use_medusa: Optional[str] = None, speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
super(BLOOM, self).__init__( super(BLOOM, self).__init__(
model_id=model_id, model_id=model_id,
revision=revision, revision=revision,
use_medusa=use_medusa, speculator=speculator,
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )

View File

@ -2,7 +2,7 @@ import math
import torch import torch
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM from text_generation_server.utils.import_utils import SYSTEM
BLOCK_SIZE: int = 16 BLOCK_SIZE: int = 16
# Will be set in warmup # Will be set in warmup
@ -25,7 +25,7 @@ class CacheManager:
self.repeat_slots = repeat_slots self.repeat_slots = repeat_slots
element_size = torch.tensor([], dtype=dtype).element_size() element_size = torch.tensor([], dtype=dtype).element_size()
if IS_XPU_SYSTEM: if SYSTEM == "xpu":
x = 1 x = 1
else: else:
x = self.block_size // element_size x = self.block_size // element_size

View File

@ -367,6 +367,7 @@ class CausalLMBatch(Batch):
input_lengths = [b.input_length for b in batches] input_lengths = [b.input_length for b in batches]
max_input_length = max(input_lengths) max_input_length = max(input_lengths)
offsets = [max_input_length - b.input_length for b in batches] offsets = [max_input_length - b.input_length for b in batches]
cur_padding = [b.right_padding for b in batches] cur_padding = [b.right_padding for b in batches]
# For prefill there is a space allocated only for first token # For prefill there is a space allocated only for first token
# Need to add padding to the max total tokens before first decode # Need to add padding to the max total tokens before first decode
@ -596,13 +597,15 @@ class CausalLM(Model):
self, self,
model_id: str, model_id: str,
revision: Optional[str] = None, revision: Optional[str] = None,
use_medusa: Optional[str] = None, speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
if speculator:
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
self.prev_bs = 0 self.prev_bs = 0
if use_medusa:
raise RuntimeError("Medusa decoding is not enabled for AutoModel")
# Create tokenizer # Create tokenizer
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(

View File

@ -32,7 +32,7 @@ from transformers.modeling_outputs import (
) )
from transformers import BloomConfig, PreTrainedModel from transformers import BloomConfig, PreTrainedModel
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
TensorParallelRowLinear, TensorParallelRowLinear,

View File

@ -15,7 +15,7 @@ from transformers.modeling_outputs import (
) )
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelEmbedding, TensorParallelEmbedding,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelRowLinear, TensorParallelRowLinear,

View File

@ -26,18 +26,22 @@ from transformers.activations import ACT2FN
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.import_utils import IS_ROCM_SYSTEM, IS_CUDA_SYSTEM from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm, FastLayerNorm,
) )
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
if IS_CUDA_SYSTEM: if SYSTEM == "cuda":
import dropout_layer_norm import dropout_layer_norm
else: else:
dropout_layer_norm = None dropout_layer_norm = None
@ -52,7 +56,7 @@ class CohereRotary(PositionRotaryEmbedding):
sin: torch.Tensor, sin: torch.Tensor,
): ):
# Such controlflows may add some overhead. # Such controlflows may add some overhead.
if IS_CUDA_SYSTEM: if SYSTEM == "cuda":
import rotary_emb import rotary_emb
q1 = query[..., ::2] q1 = query[..., ::2]
@ -64,8 +68,8 @@ class CohereRotary(PositionRotaryEmbedding):
k2 = key[..., 1::2] k2 = key[..., 1::2]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False) rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif IS_ROCM_SYSTEM: elif SYSTEM == "rocm":
from vllm import pos_encoding_ops from vllm._C import ops
# NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems. # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
# Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773 # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
@ -73,7 +77,7 @@ class CohereRotary(PositionRotaryEmbedding):
head_size = query.shape[-1] head_size = query.shape[-1]
# Inplace operation, updating query and key. # Inplace operation, updating query and key.
pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, False) ops.rotary_embedding(query, key, head_size, cos, sin, False)
else: else:
raise ValueError( raise ValueError(
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
@ -90,7 +94,7 @@ class CohereLayerNorm(nn.Module):
self.eps = eps self.eps = eps
def forward(self, hidden_states): def forward(self, hidden_states):
if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM: if hidden_states.shape[-1] > 8192 or SYSTEM == "rocm":
hidden_states = hidden_states.reshape( hidden_states = hidden_states.reshape(
-1, self.weight.shape[0], self.weight.shape[1] -1, self.weight.shape[0], self.weight.shape[1]
) )

View File

@ -21,21 +21,26 @@ from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple, Any from typing import Optional, List, Tuple, Any
from loguru import logger from loguru import logger
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM from text_generation_server.utils.import_utils import SYSTEM
if not IS_XPU_SYSTEM: if SYSTEM != "xpu":
from vllm.model_executor.layers.fused_moe import fused_moe from vllm.model_executor.layers.fused_moe import fused_moe
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
FastLinear, FastLinear,
FastLayerNorm,
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
) )
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.utils.log import log_once from text_generation_server.utils.log import log_once
@ -216,7 +221,7 @@ def _load_gqa(config, prefix: str, weights):
bits, groupsize, desc_act, quant_method = weights._get_gptq_params() bits, groupsize, desc_act, quant_method = weights._get_gptq_params()
from text_generation_server.utils.layers import HAS_EXLLAMA from text_generation_server.layers import HAS_EXLLAMA
use_exllama = ( use_exllama = (
bits == 4 and HAS_EXLLAMA and config.quantize == "gptq" and not desc_act bits == 4 and HAS_EXLLAMA and config.quantize == "gptq" and not desc_act
@ -236,7 +241,7 @@ def _load_gqa(config, prefix: str, weights):
log_once( log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format." logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
) )
from text_generation_server.utils.awq.conversion_utils import ( from text_generation_server.layers.awq.conveersion_utils import (
fast_awq_to_gptq, fast_awq_to_gptq,
) )

View File

@ -27,13 +27,15 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm, FastRMSNorm,
) )
@ -97,8 +99,13 @@ class GemmaConfig(PretrainedConfig):
class GemmaFastRMSNorm(FastRMSNorm): class GemmaFastRMSNorm(FastRMSNorm):
@classmethod @classmethod
def load(cls, prefix, weights, eps=1e-6): def load(cls, prefix, weights, eps=1e-6):
dtype = weights.dtype
weights.dtype = torch.float32
weight = weights.get_tensor(f"{prefix}.weight") + 1 weight = weights.get_tensor(f"{prefix}.weight") + 1
return cls(weight, eps) weights.dtype = dtype
new = cls(weight, eps)
new.dtype = dtype
return new
# perform the multiplication in full precision and downcast after # perform the multiplication in full precision and downcast after
def forward(self, hidden_states, residual=None): def forward(self, hidden_states, residual=None):
@ -109,7 +116,7 @@ class GemmaFastRMSNorm(FastRMSNorm):
variance = hidden_states.pow(2).mean(-1, keepdim=True) variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
hidden_states = hidden_states * self.weight hidden_states = hidden_states * self.weight
return hidden_states.to(self.weight.dtype), residual return hidden_states.to(self.dtype), residual
def load_attention(config, prefix, weights): def load_attention(config, prefix, weights):
@ -151,15 +158,11 @@ def _load_gqa(config, prefix: str, weights):
class FlashGemmaAttention(torch.nn.Module): class FlashGemmaAttention(torch.nn.Module):
def __init__( def __init__(self, prefix: str, config, weights, causal: bool):
self,
prefix: str,
config,
weights,
):
super().__init__() super().__init__()
self.num_heads = config.num_attention_heads self.num_heads = config.num_attention_heads
self.head_size = config.head_dim self.head_size = config.head_dim
self.causal = causal
self.rotary_emb = PositionRotaryEmbedding.static( self.rotary_emb = PositionRotaryEmbedding.static(
config=config, config=config,
@ -236,6 +239,7 @@ class FlashGemmaAttention(torch.nn.Module):
cu_seqlen_prefill, cu_seqlen_prefill,
max_s, max_s,
self.softmax_scale, self.softmax_scale,
causal=self.causal,
) )
# Decode # Decode
else: else:
@ -293,11 +297,10 @@ class GemmaMLP(nn.Module):
class FlashGemmaLayer(nn.Module): class FlashGemmaLayer(nn.Module):
def __init__(self, layer_id, config, weights): def __init__(self, prefix, config, weights, causal: bool):
super().__init__() super().__init__()
prefix = f"model.layers.{layer_id}"
self.self_attn = FlashGemmaAttention( self.self_attn = FlashGemmaAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights prefix=f"{prefix}.self_attn", config=config, weights=weights, causal=causal
) )
self.mlp = GemmaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) self.mlp = GemmaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
@ -349,30 +352,25 @@ class FlashGemmaLayer(nn.Module):
class FlashGemmaModel(torch.nn.Module): class FlashGemmaModel(torch.nn.Module):
def __init__(self, config, weights): def __init__(self, prefix, config, weights, causal: bool):
super().__init__() super().__init__()
process_group = weights.process_group process_group = weights.process_group
self.tp_rank = process_group.rank() self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size() self.tp_world_size = process_group.size()
embed_norm = config.hidden_size**0.5
self.embed_tokens = TensorParallelEmbedding(
prefix="model.embed_tokens", weights=weights
)
self.embed_tokens.weight *= embed_norm
self.layers = nn.ModuleList( self.layers = nn.ModuleList(
[ [
FlashGemmaLayer( FlashGemmaLayer(
layer_id, prefix=f"{prefix}.layers.{layer_id}",
config, config=config,
weights, weights=weights,
causal=causal,
) )
for layer_id in range(config.num_hidden_layers) for layer_id in range(config.num_hidden_layers)
] ]
) )
self.norm = GemmaFastRMSNorm.load( self.norm = GemmaFastRMSNorm.load(
prefix="model.norm", weights=weights, eps=config.rms_norm_eps prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
) )
self.gradient_checkpointing = False self.gradient_checkpointing = False
@ -383,7 +381,7 @@ class FlashGemmaModel(torch.nn.Module):
def forward( def forward(
self, self,
input_ids: torch.Tensor, inputs_embeds: torch.Tensor,
position_ids: torch.Tensor, position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor], cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -392,7 +390,7 @@ class FlashGemmaModel(torch.nn.Module):
input_lengths: torch.Tensor, input_lengths: torch.Tensor,
max_s: int, max_s: int,
) -> torch.Tensor: ) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids) hidden_states = inputs_embeds
# Get rotary cos and sin for this forward # Get rotary cos and sin for this forward
# Avoid to index in each layer # Avoid to index in each layer
@ -421,13 +419,30 @@ class FlashGemmaModel(torch.nn.Module):
class FlashGemmaForCausalLM(torch.nn.Module): class FlashGemmaForCausalLM(torch.nn.Module):
def __init__(self, config, weights): def __init__(self, prefix, config, weights, causal: bool):
super().__init__() super().__init__()
self.model = FlashGemmaModel(config, weights) embed_norm = config.hidden_size**0.5
if prefix is None:
prefix = "model"
else:
prefix = f"{prefix}.model"
self.embed_tokens = TensorParallelEmbedding(
prefix=f"{prefix}.embed_tokens", weights=weights
)
self.embed_tokens.weight *= embed_norm
self.model = FlashGemmaModel(
prefix=prefix, config=config, weights=weights, causal=causal
)
self.lm_head = SpeculativeHead.load( self.lm_head = SpeculativeHead.load(
config, prefix=(
prefix="model.embed_tokens" if config.tie_word_embeddings else "lm_head", f"{prefix}.embed_tokens"
if config.tie_word_embeddings
else f"{prefix}.lm_head"
),
config=config,
weights=weights, weights=weights,
) )
@ -443,8 +458,9 @@ class FlashGemmaForCausalLM(torch.nn.Module):
max_s: int, max_s: int,
lm_head_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
input_embeds = self.embed_tokens(input_ids)
hidden_states = self.model( hidden_states = self.model(
input_ids, input_embeds,
position_ids, position_ids,
cu_seqlen_prefill, cu_seqlen_prefill,
kv_cache, kv_cache,

View File

@ -0,0 +1,454 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.distributed
from torch import nn
from transformers.activations import ACT2FN
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
SpeculativeHead,
get_linear,
)
def load_qkv(config, prefix: str, weights, head_size, num_heads):
if config.quantize == "gptq":
return _load_qkv_gptq(
config,
prefix,
weights,
)
else:
return _load_qkv(config, prefix, weights, head_size, num_heads)
def _load_qkv_gptq(config, prefix: str, weights):
world_size = weights.process_group.size()
rank = weights.process_group.rank()
# Weights
weight = weights.get_weights_col_packed_qkv(f"{prefix}.c_attn", config.quantize)
# Bias
slice_ = weights._get_slice(f"{prefix}.c_attn.bias")
shape = slice_.get_shape()
total_size = shape[0]
assert total_size % 3 == 0, f"Prepacked is not divisible by {3}"
single_size = total_size // 3
assert single_size % world_size == 0
block_size = single_size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensors = []
for i in range(3):
tensor = slice_[start + i * single_size : stop + i * single_size]
tensors.append(tensor)
bias = torch.cat(tensors, dim=0)
bias = bias.to(device=weights.device)
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
def _load_qkv(config, prefix: str, weights, head_size, num_heads):
"""Load QKV from a single, transposed matrix."""
slice_ = weights._get_slice(f"{prefix}.c_attn.weight")
shape = slice_.get_shape()
total_size = shape[1]
assert total_size % 3 == 0, f"Prepacked is not divisible by {3}"
world_size = weights.process_group.size()
single_size = total_size // 3
assert single_size % world_size == 0
rank = weights.process_group.rank()
# Weights
block_size = single_size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensors = []
for i in range(3):
tensor = slice_[:, start + i * single_size : stop + i * single_size]
tensors.append(tensor)
weight = torch.cat(tensors, dim=1).T
weight = weight.to(dtype=weights.dtype)
weight = weight.to(device=weights.device)
# Bias
slice_ = weights._get_slice(f"{prefix}.c_attn.bias")
shape = slice_.get_shape()
total_size = shape[0]
single_size = total_size // 3
block_size = single_size // world_size
assert single_size % world_size == 0
start = rank * block_size
stop = (rank + 1) * block_size
b = []
for i in range(3):
tensor = slice_[start + i * single_size : stop + i * single_size]
b.append(tensor)
bias = torch.cat(b, dim=0)
bias = bias.to(dtype=weights.dtype)
bias = bias.to(device=weights.device)
assert list(bias.shape) == [
3 * num_heads * head_size
], f"{weight.shape} != {[3 * num_heads * head_size]}"
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
def load_row(config, prefix: str, weights, bias: bool):
"""load_row, but with transposed weight matrices."""
if config.quantize == "gptq":
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
else:
weight = weights.get_sharded(f"{prefix}.weight", dim=0).T
if bias and weights.process_group.rank() == 0:
# Rank is only on the first rank process
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return TensorParallelRowLinear(
get_linear(weight, bias, config.quantize), process_group=weights.process_group
)
def load_col(config, prefix: str, weights, bias: bool):
"""load_col, but with transposed weight matrices."""
if config.quantize == "gptq":
weight = weights.get_multi_weights_col(
[prefix], quantize=config.quantize, dim=1
)
else:
weight = weights.get_sharded(f"{prefix}.weight", dim=1).T
if bias:
bias = weights.get_sharded(f"{prefix}.bias", dim=0)
else:
bias = None
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
class FlashGPT2Attention(torch.nn.Module):
def __init__(
self,
prefix: str,
config,
weights,
):
super().__init__()
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.softmax_scale = self.head_size**-0.5
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.query_key_value = load_qkv(
config,
prefix=prefix,
weights=weights,
head_size=self.head_size,
num_heads=self.num_heads,
)
self.o_proj = load_row(
config,
prefix=f"{prefix}.c_proj",
weights=weights,
bias=True,
)
self.kv_head_mapping = torch.arange(
0, self.num_heads, dtype=torch.int32, device=weights.device
)
def forward(
self,
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
):
query, key, value = self.query_key_value(hidden_states).split(
self.head_size * self.num_heads, dim=1
)
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_heads, self.head_size)
value = value.view(-1, self.num_heads, self.head_size)
paged_attention.reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
# output tensor
attn_output = torch.empty_like(query)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
flash_attn.attention(
query,
key,
value,
attn_output,
cu_seqlen_prefill,
max_s,
self.softmax_scale,
)
# Decode
else:
paged_attention.attention(
attn_output,
query,
kv_cache[0],
kv_cache[1],
self.kv_head_mapping,
self.softmax_scale,
block_tables,
input_lengths,
max_s,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
class GPT2MLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
act = config.activation_function
self.act = (
ACT2FN[act]
if "gelu" not in act
else lambda x: torch.nn.functional.gelu(
x,
approximate=(
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
),
)
)
self.c_fc = load_col(
config, prefix=f"{prefix}.c_fc", weights=weights, bias=True
)
self.c_proj = load_row(
config,
prefix=f"{prefix}.c_proj",
weights=weights,
bias=True,
)
intermediate_size = (
config.n_inner if config.n_inner is not None else 4 * config.hidden_size
)
self.intermediate_size = intermediate_size // weights.process_group.size()
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
return self.c_proj(hidden_states)
class FlashGPT2Layer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.self_attn = FlashGPT2Attention(
prefix=f"{prefix}.attn", config=config, weights=weights
)
self.mlp = GPT2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.input_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.ln_1", weights=weights, eps=config.layer_norm_epsilon
)
self.post_attention_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.ln_2",
weights=weights,
eps=config.layer_norm_epsilon,
)
def forward(
self,
hidden_states,
residual,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
attn_output = self.self_attn(
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
)
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
mlp_output = self.mlp(hidden_states)
return residual + mlp_output, residual
class FlashGPT2Model(torch.nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
self.layers = nn.ModuleList(
[
FlashGPT2Layer(
prefix=(
f"h.{layer_id}" if not prefix else f"{prefix}.h.{layer_id}"
),
config=config,
weights=weights,
)
for layer_id in range(config.num_hidden_layers)
]
)
self.norm = nn.LayerNorm.load(
prefix="ln_f" if not prefix else f"{prefix}.ln_f",
weights=weights,
eps=config.layer_norm_epsilon,
)
self.gradient_checkpointing = False
self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
) -> torch.Tensor:
hidden_states = inputs_embeds
residual = None
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
residual,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
input_lengths,
max_s,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class FlashGPT2ForCausalLM(torch.nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.embed_tokens = TensorParallelEmbedding(
prefix=("wte" if not prefix else f"{prefix}.wte"),
weights=weights,
)
self.embed_positions = TensorParallelEmbedding(
prefix=("wpe" if not prefix else f"{prefix}.wpe"),
weights=weights,
)
self.model = FlashGPT2Model(prefix, config, weights)
self.lm_head = SpeculativeHead.load(
config,
prefix="wte" if not prefix else f"{prefix}.wte",
weights=weights,
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
lm_head_indices: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
token_embeds = self.embed_tokens(input_ids)
position_embeds = self.embed_positions(position_ids)
inputs_embeds = token_embeds + position_embeds
hidden_states = self.model(
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
true_max_s=max_s,
prefill_cache_indices=prefill_cache_indices,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -18,43 +18,59 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from typing import List, Optional, Tuple
import torch import torch
import torch.distributed import torch.distributed
from torch import nn from torch import nn
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, )
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm, FastRMSNorm,
) )
if SYSTEM == "rocm":
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
def load_attention(config, prefix, weights): def load_attention(config, prefix, weights):
bias = config.attention_bias
if config.num_attention_heads != config.num_key_value_heads: if config.num_attention_heads != config.num_key_value_heads:
return _load_gqa(config, prefix, weights) return TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=bias,
)
else: else:
if config.model_type == "baichuan": if config.model_type == "baichuan":
return TensorParallelColumnLinear.load_qkv( return TensorParallelColumnLinear.load_qkv(
config, config,
prefix=f"{prefix}.W_pack", prefix=f"{prefix}.W_pack",
weights=weights, weights=weights,
bias=False, bias=bias,
) )
elif config.model_type == "phi3": elif config.model_type == "phi3":
return TensorParallelColumnLinear.load_qkv( return TensorParallelColumnLinear.load_qkv(
config, config,
prefix=f"{prefix}.qkv_proj", prefix=f"{prefix}.qkv_proj",
weights=weights, weights=weights,
bias=False, bias=bias,
) )
else: else:
return TensorParallelColumnLinear.load_multi( return TensorParallelColumnLinear.load_multi(
@ -62,36 +78,10 @@ def load_attention(config, prefix, weights):
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0, dim=0,
weights=weights, weights=weights,
bias=False, bias=bias,
) )
def _load_gqa(config, prefix: str, weights):
assert config.hidden_size % config.num_attention_heads == 0
assert config.num_attention_heads % weights.process_group.size() == 0
weight = weights.get_multi_weights_col(
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
quantize=config.quantize,
dim=0,
)
if config.quantize not in ["gptq", "awq"]:
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
head_size = config.hidden_size // config.num_attention_heads
num_heads = config.num_attention_heads // weights.process_group.size()
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
assert list(weight.shape) == [
(num_heads + 2 * num_key_value_heads) * head_size,
config.hidden_size,
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
return TensorParallelColumnLinear(
get_linear(weight, bias=None, quantize=config.quantize)
)
class FlashLlamaAttention(torch.nn.Module): class FlashLlamaAttention(torch.nn.Module):
def __init__( def __init__(
self, self,
@ -200,24 +190,27 @@ class FlashLlamaAttention(torch.nn.Module):
class LlamaMLP(nn.Module): class LlamaMLP(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
act = config.hidden_act self.hidden_act = config.hidden_act
self.act = ( self.act = (
ACT2FN[act] ACT2FN[self.hidden_act]
if "gelu" not in act if "gelu" not in self.hidden_act
else lambda x: torch.nn.functional.gelu( else lambda x: torch.nn.functional.gelu(
x, x,
approximate=( approximate=(
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" "tanh"
if self.hidden_act in ["gelu_fast", "gelu_pytorch_tanh"]
else "none"
), ),
) )
) )
# Fuse gate and up proj # Fuse gate and up proj
bias = getattr(config, "mlp_bias", False)
if config.model_type == "phi3": if config.model_type == "phi3":
self.gate_up_proj = TensorParallelColumnLinear.load_gate_up( self.gate_up_proj = TensorParallelColumnLinear.load_gate_up(
config, config,
prefix=f"{prefix}.gate_up_proj", prefix=f"{prefix}.gate_up_proj",
weights=weights, weights=weights,
bias=False, bias=bias,
) )
else: else:
self.gate_up_proj = TensorParallelColumnLinear.load_multi( self.gate_up_proj = TensorParallelColumnLinear.load_multi(
@ -225,22 +218,40 @@ class LlamaMLP(nn.Module):
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights, weights=weights,
dim=0, dim=0,
bias=False, bias=bias,
) )
self.down_proj = TensorParallelRowLinear.load( self.down_proj = TensorParallelRowLinear.load(
config, config,
prefix=f"{prefix}.down_proj", prefix=f"{prefix}.down_proj",
weights=weights, weights=weights,
bias=False, bias=bias,
) )
self.intermediate_size = ( self.intermediate_size = (
config.intermediate_size // weights.process_group.size() config.intermediate_size // weights.process_group.size()
) )
# TODO: This is a hotfix to be removed & properly refactored.
self.quantize = config.quantize
def forward(self, hidden_states): def forward(self, hidden_states):
gate_up_states = self.gate_up_proj(hidden_states) if (
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) SYSTEM == "rocm"
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) and self.hidden_act == "silu"
and hidden_states.shape[0] == 1
and not self.quantize
):
out = torch.empty(
hidden_states.shape[0],
self.intermediate_size,
dtype=hidden_states.dtype,
device="cuda",
)
_custom_C.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
return self.down_proj(out)
else:
gate_up_states = self.gate_up_proj(hidden_states)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
class FlashLlamaLayer(nn.Module): class FlashLlamaLayer(nn.Module):
@ -383,9 +394,14 @@ class FlashLlamaForCausalLM(torch.nn.Module):
weights=weights, weights=weights,
) )
self.model = FlashLlamaModel(prefix, config, weights) self.model = FlashLlamaModel(prefix, config, weights)
if config.tie_word_embeddings:
suffix = "model.embed_tokens"
else:
suffix = "lm_head"
self.lm_head = SpeculativeHead.load( self.lm_head = SpeculativeHead.load(
config, config,
prefix="lm_head" if not prefix else f"{prefix}.lm_head", prefix=suffix if not prefix else f"{prefix}.suffix",
weights=weights, weights=weights,
) )

View File

@ -26,18 +26,28 @@ from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm, FastRMSNorm,
) )
if SYSTEM == "rocm":
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
class MistralConfig(PretrainedConfig): class MistralConfig(PretrainedConfig):
model_type = "mistral" model_type = "mistral"
@ -249,14 +259,16 @@ class MistralAttention(torch.nn.Module):
class MistralMLP(nn.Module): class MistralMLP(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
act = config.hidden_act self.hidden_act = config.hidden_act
self.act = ( self.act = (
ACT2FN[act] ACT2FN[self.hidden_act]
if "gelu" not in act if "gelu" not in self.hidden_act
else lambda x: torch.nn.functional.gelu( else lambda x: torch.nn.functional.gelu(
x, x,
approximate=( approximate=(
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" "tanh"
if self.hidden_act in ["gelu_fast", "gelu_pytorch_tanh"]
else "none"
), ),
) )
) )
@ -278,10 +290,28 @@ class MistralMLP(nn.Module):
config.intermediate_size // weights.process_group.size() config.intermediate_size // weights.process_group.size()
) )
# TODO: This is a hotfix to be removed & properly refactored.
self.quantize = config.quantize
def forward(self, hidden_states): def forward(self, hidden_states):
gate_up_states = self.gate_up_proj(hidden_states) if (
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) SYSTEM == "rocm"
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) and self.hidden_act == "silu"
and hidden_states.shape[0] == 1
and not self.quantize
):
out = torch.empty(
hidden_states.shape[0],
self.intermediate_size,
dtype=hidden_states.dtype,
device="cuda",
)
_custom_C.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
return self.down_proj(out)
else:
gate_up_states = self.gate_up_proj(hidden_states)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
class MistralLayer(nn.Module): class MistralLayer(nn.Module):

View File

@ -24,9 +24,9 @@ import torch.distributed
import numpy as np import numpy as np
from torch import nn from torch import nn
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM from text_generation_server.utils.import_utils import SYSTEM
if not IS_XPU_SYSTEM: if SYSTEM != "xpu":
from vllm.model_executor.layers.fused_moe import fused_moe from vllm.model_executor.layers.fused_moe import fused_moe
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
@ -34,16 +34,20 @@ from typing import Optional, List, Tuple
from loguru import logger from loguru import logger
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
FastLinear, FastLinear,
FastRMSNorm,
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
) )
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
class MixtralConfig(PretrainedConfig): class MixtralConfig(PretrainedConfig):

View File

@ -29,15 +29,19 @@ from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.flash_attn import attention from text_generation_server.utils.flash_attn import attention
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
SpeculativeHead, SpeculativeHead,
FastLayerNorm,
PositionRotaryEmbedding,
get_linear, get_linear,
) )
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
def load_row(config, prefix: str, weights, bias: bool): def load_row(config, prefix: str, weights, bias: bool):

View File

@ -0,0 +1,110 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.distributed
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.layers.tensor_parallel import TensorParallelColumnLinear
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
class PaliGemmaForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = config.quantize
self.vision_tower = load_vision_model(
prefix="vision_tower" if not prefix else f"{prefix}.vision_tower",
config=config.vision_config,
weights=weights,
)
self.multi_modal_projector = TensorParallelColumnLinear.load(
config,
prefix="multi_modal_projector.linear",
weights=weights,
bias=True,
)
self.vocab_size = config.vocab_size
self.config = config
text_config = config.text_config
text_config.speculator = config.speculator
text_config.quantize = config.quantize
self.text_model = load_text_model(
prefix="language_model" if not prefix else f"{prefix}.language_model",
config=config.text_config,
weights=weights,
)
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
# Unused here
pixel_attention_mask: Optional[torch.BoolTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
inputs_embeds = self.text_model.embed_tokens(input_ids)
# TODO This is odd but apparently pali gemma position ids start at 1.
if cu_seqlen_prefill is not None:
max_s += 1
position_ids += 1
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=inputs_embeds.dtype)
image_outputs = self.vision_tower(pixel_values)
image_features = self.multi_modal_projector(image_outputs.last_hidden_state)
# mask where image or padding tokens
mask = input_ids == self.config.image_token_index
# insert image features into input embeddings
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -7,15 +7,19 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
)
from text_generation_server.layers.layernorm import (
FastLayerNorm, FastLayerNorm,
) )
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
class PhiConfig(PretrainedConfig): class PhiConfig(PretrainedConfig):

View File

@ -6,13 +6,15 @@ from transformers.activations import ACT2FN
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
)
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm, FastRMSNorm,
) )

View File

@ -1,22 +1,21 @@
from typing import List, Optional, Tuple
import torch import torch
import torch.distributed import torch.distributed
from torch import nn from torch import nn
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from transformers.modeling_utils import PreTrainedModel
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.layers import (
from text_generation_server.utils.flash_attn import attention SpeculativeHead,
from text_generation_server.utils.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
SpeculativeHead, TensorParallelRowLinear,
FastLayerNorm,
PositionRotaryEmbedding,
get_linear, get_linear,
) )
from text_generation_server.layers.layernorm import FastLayerNorm
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.utils import flash_attn, paged_attention
def load_row(config, prefix: str, weights, bias: bool): def load_row(config, prefix: str, weights, bias: bool):
@ -48,6 +47,7 @@ class RWConfig(PretrainedConfig):
hidden_size=64, hidden_size=64,
num_hidden_layers=None, num_hidden_layers=None,
num_attention_heads=None, num_attention_heads=None,
num_ln_in_prallel_attention=None,
layer_norm_epsilon=1e-5, layer_norm_epsilon=1e-5,
initializer_range=0.02, initializer_range=0.02,
use_cache=True, use_cache=True,
@ -61,6 +61,7 @@ class RWConfig(PretrainedConfig):
new_decoder_architecture=None, new_decoder_architecture=None,
bias=False, bias=False,
parallel_attn=False, parallel_attn=False,
rope_theta=10_000.0,
**kwargs, **kwargs,
): ):
if alibi: if alibi:
@ -71,6 +72,7 @@ class RWConfig(PretrainedConfig):
self.model_type = model_type self.model_type = model_type
self.alibi = False self.alibi = False
self.rotary = True self.rotary = True
self.rope_theta = rope_theta
self.vocab_size = vocab_size self.vocab_size = vocab_size
# Backward compatibility with n_embed kwarg # Backward compatibility with n_embed kwarg
@ -87,6 +89,7 @@ class RWConfig(PretrainedConfig):
else kwargs.pop("n_head", 8) else kwargs.pop("n_head", 8)
) )
self.layer_norm_epsilon = layer_norm_epsilon self.layer_norm_epsilon = layer_norm_epsilon
self.num_ln_in_parallel_attention = num_ln_in_prallel_attention
self.initializer_range = initializer_range self.initializer_range = initializer_range
self.use_cache = use_cache self.use_cache = use_cache
self.hidden_dropout = hidden_dropout self.hidden_dropout = hidden_dropout
@ -128,9 +131,13 @@ class FlashRWAttention(torch.nn.Module):
self.num_heads_kv = config.n_head_kv self.num_heads_kv = config.n_head_kv
self.hidden_size = config.hidden_size self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads self.head_size = self.hidden_size // self.num_heads
self.rope_theta = config.rope_theta
self.rotary_emb = PositionRotaryEmbedding.static( self.rotary_emb = PositionRotaryEmbedding.static(
config=config, dim=self.head_size, base=10000.0, device=weights.device config=config,
dim=self.head_size,
base=self.rope_theta,
device=weights.device,
) )
self.softmax_scale = self.head_size ** (-0.5) self.softmax_scale = self.head_size ** (-0.5)
@ -240,9 +247,13 @@ class FlashRWLargeAttention(torch.nn.Module):
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.head_size = hidden_size // num_heads self.head_size = hidden_size // num_heads
self.num_groups = num_groups self.num_groups = num_groups
self.rope_theta = config.rope_theta
self.rotary_emb = PositionRotaryEmbedding.static( self.rotary_emb = PositionRotaryEmbedding.static(
config=config, dim=self.head_size, base=10000.0, device=weights.device config=config,
dim=self.head_size,
base=self.rope_theta,
device=weights.device,
) )
self.softmax_scale = self.head_size ** (-0.5) self.softmax_scale = self.head_size ** (-0.5)
@ -253,7 +264,7 @@ class FlashRWLargeAttention(torch.nn.Module):
if process_group.size() > self.num_groups: if process_group.size() > self.num_groups:
raise NotImplementedError( raise NotImplementedError(
f"Tensor Parallelism is not implemented for world_size > n groups" "Tensor Parallelism is not implemented for world_size > n groups"
) )
if self.num_groups % process_group.size() != 0: if self.num_groups % process_group.size() != 0:
raise NotImplementedError( raise NotImplementedError(
@ -455,29 +466,61 @@ class FlashRWLayer(nn.Module):
max_s, max_s,
) )
hidden_states, residual = self.post_attention_layernorm( if self.post_attention_layernorm is not None:
hidden_states, residual hidden_states, residual = self.post_attention_layernorm(
) hidden_states, residual
)
mlp_output = self.mlp(hidden_states) mlp_output = self.mlp(hidden_states)
return mlp_output, residual return mlp_output, residual
class FlashRWLayerNorm(nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.num_ln = config.num_ln_in_parallel_attn
if self.num_ln == 1:
self.input_ln = FastLayerNorm.load(
prefix=f"{prefix}.input_layernorm",
weights=weights,
eps=config.layer_norm_epsilon,
)
elif self.num_ln == 2:
self.ln_attn = FastLayerNorm.load(
prefix=f"{prefix}.ln_attn",
weights=weights,
eps=config.layer_norm_epsilon,
)
self.ln_mlp = FastLayerNorm.load(
prefix=f"{prefix}.ln_mlp",
weights=weights,
eps=config.layer_norm_epsilon,
)
else:
raise ValueError("Number of layer norms can either be 1 or 2.")
def forward(
self,
hidden_states,
residual,
):
if self.num_ln == 1:
ln_hidden_states, residual = self.input_ln(hidden_states, residual)
return ln_hidden_states, ln_hidden_states, residual
elif self.num_ln == 2:
ln_attn, residual = self.ln_attn(hidden_states, residual)
ln_mlp, _ = self.ln_mlp(residual)
return ln_attn, ln_mlp, residual
class FlashRWLargeLayer(nn.Module): class FlashRWLargeLayer(nn.Module):
def __init__(self, layer_id, config, weights): def __init__(self, layer_id, config, weights):
super().__init__() super().__init__()
prefix = f"transformer.h.{layer_id}" prefix = f"transformer.h.{layer_id}"
self.ln_attn = FastLayerNorm.load(
prefix=f"{prefix}.ln_attn", self.ln_layer = FlashRWLayerNorm(config, prefix, weights)
weights=weights,
eps=config.layer_norm_epsilon,
)
self.ln_mlp = FastLayerNorm.load(
prefix=f"{prefix}.ln_mlp",
weights=weights,
eps=config.layer_norm_epsilon,
)
self.self_attention = FlashRWLargeAttention( self.self_attention = FlashRWLargeAttention(
config, config,
@ -503,8 +546,8 @@ class FlashRWLargeLayer(nn.Module):
input_lengths, input_lengths,
max_s, max_s,
): ):
ln_attn, residual = self.ln_attn(hidden_states, residual) # Layer norm.
ln_mlp, _ = self.ln_mlp(residual) ln_attn, ln_mlp, residual = self.ln_layer(hidden_states, residual)
# Self attention. # Self attention.
attn_output = self.self_attention( attn_output = self.self_attention(

View File

@ -6,14 +6,16 @@ from transformers.activations import ACT2FN
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
SpeculativeHead, SpeculativeHead,
TensorParallelEmbedding, TensorParallelEmbedding,
FastLayerNorm,
get_linear, get_linear,
) )
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
def load_multi_mqa( def load_multi_mqa(
@ -80,13 +82,13 @@ def _load_multi_mqa_gptq(
g_idx = g_idx.to(device=weights.device) g_idx = g_idx.to(device=weights.device)
elif quant_method == "awq": elif quant_method == "awq":
g_idx = None g_idx = None
from text_generation_server.utils.awq.conversion_utils import ( from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq, fast_awq_to_gptq,
) )
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros) qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
from text_generation_server.utils.layers import HAS_EXLLAMA from text_generation_server.layers.gptq import HAS_EXLLAMA
use_exllama = HAS_EXLLAMA use_exllama = HAS_EXLLAMA
weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama) weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama)

View File

@ -27,15 +27,19 @@ from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelRowLinear, TensorParallelRowLinear,
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
PositionRotaryEmbedding,
SpeculativeHead, SpeculativeHead,
get_linear, get_linear,
FastRMSNorm, )
from text_generation_server.layers.layernorm import (
FastLayerNorm, FastLayerNorm,
FastRMSNorm,
)
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
) )

View File

@ -29,7 +29,7 @@ from text_generation_server.models.custom_modeling.vlm import (
) )
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
from text_generation_server.utils.layers import ( from text_generation_server.layers import (
TensorParallelColumnLinear, TensorParallelColumnLinear,
TensorParallelEmbedding, TensorParallelEmbedding,
TensorParallelRowLinear, TensorParallelRowLinear,
@ -683,9 +683,9 @@ class Idefics2ForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
config.vision_config.quantize = config.quantize config.vision_config.quantize = config.quantize
config.vision_config.use_medusa = config.use_medusa config.vision_config.speculator = config.speculator
config.text_config.quantize = config.quantize config.text_config.quantize = config.quantize
config.text_config.use_medusa = config.use_medusa config.text_config.speculator = config.speculator
vision_config = config.vision_config vision_config = config.vision_config
self.text_model = load_text_model( self.text_model = load_text_model(

Some files were not shown because too many files have changed in this diff Show More