mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-12 04:44:52 +00:00
Doc review from Nico.
This commit is contained in:
parent
00edb1a789
commit
bb2b93e7a3
@ -11,7 +11,7 @@ You can make the requests using any tool of your preference, such as curl, Pytho
|
||||
After a successful server launch, you can query the model using the `v1/chat/completions` route, to get responses that are compliant to the OpenAI Chat Completion spec:
|
||||
|
||||
```bash
|
||||
curl -N localhost:3000/v1/chat/completions \
|
||||
curl localhost:8080/v1/chat/completions \
|
||||
-X POST \
|
||||
-d '{
|
||||
"model": "tgi",
|
||||
@ -33,39 +33,6 @@ curl -N localhost:3000/v1/chat/completions \
|
||||
|
||||
## Python
|
||||
|
||||
### OpenAI Client
|
||||
|
||||
You can directly use the OpenAI [Python](https://github.com/openai/openai-python) or [JS](https://github.com/openai/openai-node) clients to interact with TGI.
|
||||
|
||||
Install the OpenAI Python package via pip.
|
||||
|
||||
```bash
|
||||
pip install openai
|
||||
```
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
# init the client but point it to TGI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:3000/v1/",
|
||||
api_key="-"
|
||||
)
|
||||
|
||||
chat_completion = client.chat.completions.create(
|
||||
model="tgi",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant." },
|
||||
{"role": "user", "content": "What is deep learning?"}
|
||||
],
|
||||
stream=True
|
||||
)
|
||||
|
||||
# iterate and print stream
|
||||
for message in chat_completion:
|
||||
print(message)
|
||||
```
|
||||
|
||||
### Inference Client
|
||||
|
||||
[`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/main/en/index) is a Python library to interact with the Hugging Face Hub, including its endpoints. It provides a high-level class, [`huggingface_hub.InferenceClient`](https://huggingface.co/docs/huggingface_hub/package_reference/inference_client#huggingface_hub.InferenceClient), which makes it easy to make calls to TGI's Messages API. `InferenceClient` also takes care of parameter validation and provides a simple-to-use interface.
|
||||
@ -84,7 +51,7 @@ You can now use `InferenceClient` the exact same way you would use `OpenAI` clie
|
||||
|
||||
- client = OpenAI(
|
||||
+ client = InferenceClient(
|
||||
base_url="http://localhost:3000/v1/",
|
||||
base_url="http://localhost:8080/v1/",
|
||||
)
|
||||
|
||||
output = client.chat.completions.create(
|
||||
@ -105,6 +72,39 @@ You can check out more details about OpenAI compatibility [here](https://hugging
|
||||
|
||||
There is also an async version of the client, `AsyncInferenceClient`, based on `asyncio` and `aiohttp`. You can find docs for it [here](https://huggingface.co/docs/huggingface_hub/package_reference/inference_client#huggingface_hub.AsyncInferenceClient)
|
||||
|
||||
### OpenAI Client
|
||||
|
||||
You can directly use the OpenAI [Python](https://github.com/openai/openai-python) or [JS](https://github.com/openai/openai-node) clients to interact with TGI.
|
||||
|
||||
Install the OpenAI Python package via pip.
|
||||
|
||||
```bash
|
||||
pip install openai
|
||||
```
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
# init the client but point it to TGI
|
||||
client = OpenAI(
|
||||
base_url="http://localhost:8080/v1/",
|
||||
api_key="-"
|
||||
)
|
||||
|
||||
chat_completion = client.chat.completions.create(
|
||||
model="tgi",
|
||||
messages=[
|
||||
{"role": "system", "content": "You are a helpful assistant." },
|
||||
{"role": "user", "content": "What is deep learning?"}
|
||||
],
|
||||
stream=True
|
||||
)
|
||||
|
||||
# iterate and print stream
|
||||
for message in chat_completion:
|
||||
print(message)
|
||||
```
|
||||
|
||||
## UI
|
||||
|
||||
### Gradio
|
||||
|
Loading…
Reference in New Issue
Block a user