Update vLLM dependency to 0.5.3.post1

This commit is contained in:
Daniël de Kok 2024-07-26 08:51:32 +00:00
parent 5d85a958c9
commit b890c8c47d
3 changed files with 10 additions and 188 deletions

View File

@ -1,9 +1,9 @@
commit_cuda := d243e9dc7e2c9c2e36a4150ec8e64809cb55c01b
commit_cuda := 1ce677148e4d0252c7f668b87905bcec210207a6
commit_rocm := c6ee53b1be97e3bbc791b95f22827501297f8921
build-vllm-cuda:
if [ ! -d 'vllm' ]; then \
pip install -U ninja packaging --no-cache-dir && \
git clone https://github.com/Narsil/vllm.git vllm; \
git clone https://github.com/danieldk/vllm.git vllm; \
fi
cd vllm && git fetch origin && git checkout $(commit_cuda) && python setup.py build

View File

@ -9,8 +9,7 @@ is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512
try:
from vllm._C import cache_ops
from vllm._C import ops
import vllm._custom_ops as ops
except Exception as e:
raise ImportError(
f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
@ -29,8 +28,8 @@ def reshape_and_cache(
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
else:
cache_ops.reshape_and_cache(
key, value, key_cache, value_cache, slots, "auto", 1.0
ops.reshape_and_cache(
key, value, key_cache, value_cache, slots, "auto", 1.0, 1.0
)
@ -114,7 +113,7 @@ def paged_attention(
if softcap is not None:
raise RuntimeError("Paged attention doesn't support softcapping")
input_lengths = seqlen.input_lengths
from vllm._C import ops
import vllm._custom_ops as ops
use_v1 = max_s <= 8192 and (
max_num_partitions == 1 or num_seqs * num_heads > 512
@ -134,6 +133,7 @@ def paged_attention(
None,
"auto",
1.0,
1.0,
)
else:
# Run PagedAttention V2.
@ -167,6 +167,7 @@ def paged_attention(
None,
"auto",
1.0,
1.0,
)
return out

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple
from typing import List, Optional, Tuple
import torch
import torch.distributed
@ -38,6 +38,7 @@ from text_generation_server.utils.weights import Weights
from torch import nn
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from vllm.model_executor.layers.fused_moe import fused_experts, grouped_topk
class DeepseekV2Config(PretrainedConfig):
@ -798,183 +799,3 @@ class FlashDeepseekV2ForCausalLM(torch.nn.Module):
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.lm_head(hidden_states)
return logits, speculative_logits
# Functions below are from vLLM:
#
# https://github.com/vllm-project/vllm/blob/f7160d946a0a07703e72d81ba9ecf3913f192605/vllm/model_executor/layers/fused_moe/fused_moe.py#L397
#
# Remove after we have synced our version with upstream.
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
scores = torch.softmax(gating_output, dim=-1)
num_token = scores.shape[0]
group_scores = (
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
) # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
.reshape(num_token, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids
def get_default_config(
M: int,
E: int,
N: int,
K: int,
topk: int,
dtype: Optional[str],
) -> Dict[str, int]:
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
}
if M <= E:
config = {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
}
return config
def fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
override_config: Optional[Dict[str, Any]] = None,
use_fp8: bool = False,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
):
# Check constraints.
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]
import triton.language as tl
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe.fused_moe import (
get_moe_configs,
invoke_fused_moe_kernel,
moe_align_block_size,
)
M, _ = hidden_states.shape
E, N, _ = w1.shape
if override_config:
config = override_config
else:
# First try to load optimal config from the file
configs = get_moe_configs(E, w2.shape[2], "float8" if use_fp8 else None)
if configs:
# If an optimal configuration map has been found, look up the
# optimal config
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
else:
# Else use the default config
config = get_default_config(
M, E, N, w1.shape[2], topk_ids.shape[1], "float8" if use_fp8 else None
)
intermediate_cache1 = torch.empty(
(M, topk_ids.shape[1], N),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
intermediate_cache2 = torch.empty(
(M * topk_ids.shape[1], N // 2),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
intermediate_cache3 = torch.empty(
(M, topk_ids.shape[1], w2.shape[1]),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
topk_ids, config["BLOCK_SIZE_M"], E
)
compute_type = tl.bfloat16 if hidden_states.dtype == torch.bfloat16 else tl.float16
invoke_fused_moe_kernel(
hidden_states,
w1,
intermediate_cache1,
a1_scale,
w1_scale,
topk_weights,
topk_ids,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
False,
topk_ids.shape[1],
config,
compute_type=compute_type,
use_fp8=use_fp8,
)
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))
invoke_fused_moe_kernel(
intermediate_cache2,
w2,
intermediate_cache3,
a2_scale,
w2_scale,
topk_weights,
topk_ids,
sorted_token_ids,
expert_ids,
num_tokens_post_padded,
True,
1,
config,
compute_type=compute_type,
use_fp8=use_fp8,
)
if inplace:
return torch.sum(
intermediate_cache3.view(*intermediate_cache3.shape),
dim=1,
out=hidden_states,
)
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)