Removed a bunch of hardcodes.

This commit is contained in:
Nicolas Patry 2024-05-08 12:20:00 +00:00
parent 1a8a18d541
commit b884899086
2 changed files with 51 additions and 51 deletions

View File

@ -1,9 +1,10 @@
import torch
import os
from loguru import logger
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import modeling_auto
from huggingface_hub import hf_hub_download
from huggingface_hub import hf_hub_download, HfApi
from typing import Optional
from pathlib import Path
@ -166,9 +167,15 @@ def get_model(
revision=medusa_revision,
filename="medusa_lm_head.safetensors",
)
speculator = Path(medusa_config).parent
speculator = {
"path": Path(medusa_config).parent,
"model_paths": ["medusa_lm_head.safetensors"],
}
else:
speculator = Path(medusa_model_id)
speculator = {
"path": Path(medusa_model_id),
"model_paths": ["medusa_lm_head.safetensors"],
}
method = "medusa"
elif config_dict["model_type"] == "mlp_speculator":
@ -192,23 +199,36 @@ def get_model(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
is_local = Path(mlp_model_id).exists()
extension = ".safetensors"
if not is_local:
mlp_speculator_config = hf_hub_download(
mlp_model_id, revision=mlp_revision, filename="config.json"
)
hf_hub_download(
mlp_model_id,
revision=mlp_revision,
filename="model-00001-of-00002.safetensors",
)
hf_hub_download(
mlp_model_id,
revision=mlp_revision,
filename="model-00002-of-00002.safetensors",
)
speculator = Path(mlp_speculator_config).parent
api = HfApi()
info = api.model_info(mlp_model_id, revision=mlp_revision)
filenames = [
s.rfilename
for s in info.siblings
if s.rfilename.endswith(extension)
and len(s.rfilename.split("/")) == 1
and "arguments" not in s.rfilename
and "args" not in s.rfilename
and "training" not in s.rfilename
]
for filename in filenames:
hf_hub_download(
mlp_model_id,
revision=mlp_revision,
filename=filename,
)
speculator = {
"path": Path(mlp_speculator_config).parent,
"model_paths": filenames,
}
else:
speculator = Path(mlp_model_id)
filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
speculator = {"path": speculator, "model_paths": filenames}
method = "mlp_speculator"
else:
method = "n-gram"

View File

@ -525,10 +525,9 @@ class MLPSpeculatorModel(torch.nn.Module):
self.emb_weight = math.sqrt(1 - self.state_weight**2)
self.activation = nn.GELU()
# TODO
self.vsize = 128256
self.inner_dim = 3072
self.vsize = config.vocab_size
self.inner_dim = config.speculator_config["inner_dim"]
self.top_k_tokens_per_head = [1] * self.n_predict
self.candidates = 1
def forward(
self,
@ -536,27 +535,20 @@ class MLPSpeculatorModel(torch.nn.Module):
input_ids: torch.Tensor,
):
top_k_tokens_per_head = self.top_k_tokens_per_head
num_candidates = self.candidates
# if state.shape[0] > 1:
# state = state[:1]
# k indicates # of candidates
# h indicates # of generated tokens
state = hidden_states
b = state.size(0)
ind = input_ids.unsqueeze(0)
out = torch.empty(1, b, self.n_predict, device=state.device).int() # b k h
# log_probs = torch.zeros(1, b, device=state.device) # b k
all_probs = torch.empty(
1, b, self.n_predict, self.vsize, device=state.device
b, self.n_predict, self.vsize, device=state.device
) # b k h v
assert (
len(top_k_tokens_per_head) == self.n_predict
), f"You must provide a topk number for each head ({self.n_predict} heads, {len(top_k_tokens_per_head)} provided)"
for i in range(self.n_predict):
# Project and predict
# print(ind)
z = self.emb[i](ind)
z = z.mul(self.emb_weight * math.sqrt(self.inner_dim / 2)) # b k d
state = self.proj[i](state) * self.state_weight + z
@ -565,10 +557,9 @@ class MLPSpeculatorModel(torch.nn.Module):
_probs, preds = probs.topk(top_k_tokens_per_head[i], dim=-1) # b k k'
# Update candidate set with new predictions
out[:, :, i : i + 1] = preds
# Update distribution set with new logits
all_probs[:, :, i] = probs.exp()
all_probs[:, i] = probs.exp()
# Update state, log_probs and ind for new predictions
state = state.unsqueeze(2).expand(
@ -576,20 +567,8 @@ class MLPSpeculatorModel(torch.nn.Module):
) # b k k' d
state = state.reshape(-1, b, state.size(3)) # b kk' d
ind = preds.view(-1, b) # b kk'
# log_probs = log_probs.unsqueeze(2).expand(
# -1, b, top_k_tokens_per_head[i]
# ) # b k k'
# log_probs = log_probs.add(probs).reshape(-1, b) # b kk'
# print("done")
# Take only top n best guesses
# best_guesses = log_probs.topk(num_candidates, dim=1)[1] # b k
# speculative_logits = all_probs.gather(
# 1, best_guesses[:, :, None, None].expand(-1, -1, self.n_predict, self.vsize)
# ).squeeze(0)
speculative_logits = all_probs[0]
# assert list(speculative_logits.shape) == [hidden_states.shape[0], self.n_predict, self.vsize], f"{speculative_logits.shape}, {hidden_states.shape[0]} {self.n_predict} {self.vsize}"
# TODO Why is this shift existing, are speculative logits also including the natural next token ?
speculative_logits = all_probs
return speculative_logits
@ -612,16 +591,13 @@ class MLPSpeculatorHead(nn.Module):
return logits, speculative_logits
@staticmethod
def load(speculator_config, prefix: str, weights):
def load(config, prefix: str, weights):
from pathlib import Path
from safetensors import safe_open
speculator_path = speculator_config.speculator
speculator_path = config.speculator["path"]
for fname in [
"model-00001-of-00002.safetensors",
"model-00002-of-00002.safetensors",
]:
for fname in config.speculator["model_paths"]:
filename = str(Path(speculator_path) / fname)
routing = weights.routing
with safe_open(filename, framework="pytorch") as f:
@ -632,8 +608,8 @@ class MLPSpeculatorHead(nn.Module):
)
routing[k] = filename
mlp_speculator = MLPSpeculatorModel(speculator_config, "speculator", weights)
lm_head = TensorParallelHead.load(speculator_config, prefix, weights)
mlp_speculator = MLPSpeculatorModel(config, "speculator", weights)
lm_head = TensorParallelHead.load(config, prefix, weights)
return MLPSpeculatorHead(lm_head, mlp_speculator)
@ -726,8 +702,9 @@ class MedusaHeadV2(nn.Module):
speculator = config.speculator
medusa_config = str(Path(speculator) / "config.json")
filename = str(Path(speculator) / "medusa_lm_head.safetensors")
path = Path(speculator["path"])
medusa_config = str(path / "config.json")
filename = path / speculator["model_paths"][0]
with open(medusa_config, "r") as f:
medusa_config = json.load(f)
@ -812,11 +789,14 @@ class SpeculativeHead(nn.Module):
def load(config, prefix: str, weights):
speculator = config.speculator
if speculator:
speculator_config = str(Path(speculator) / "config.json")
speculator_path = config.speculator["path"]
speculator_config = str(speculator_path / "config.json")
with open(speculator_config, "r") as f:
speculator_config = json.load(f)
lm_head = None
config.speculator_config = speculator_config
# currently medusa does not have an architecture specified, so try-except for now
# this should really be handled in a better way though (maybe the classname can be part of the config)