mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-27 13:02:12 +00:00
fix: fix gpt-q with groupsize = -1 (#1358)
This commit is contained in:
parent
5ff9e81952
commit
b7299e1b7f
@ -213,6 +213,9 @@ message DecodeResponse {
|
||||
message WarmupRequest {
|
||||
/// Batch to warmup on
|
||||
repeated Batch batches = 1;
|
||||
uint32 max_input_length = 2;
|
||||
uint32 max_prefill_tokens = 3;
|
||||
uint32 max_total_tokens = 4;
|
||||
}
|
||||
|
||||
/// Empty response
|
||||
|
@ -167,7 +167,12 @@ impl Client {
|
||||
);
|
||||
num_batches
|
||||
];
|
||||
let request = tonic::Request::new(WarmupRequest { batches }).inject_context();
|
||||
let request = tonic::Request::new(WarmupRequest {
|
||||
batches,
|
||||
max_input_length,
|
||||
max_prefill_tokens,
|
||||
max_total_tokens,
|
||||
}).inject_context();
|
||||
let _response = self.stub.warmup(request).await?.into_inner();
|
||||
}
|
||||
|
||||
@ -188,7 +193,12 @@ impl Client {
|
||||
);
|
||||
num_batches
|
||||
];
|
||||
let request = tonic::Request::new(WarmupRequest { batches }).inject_context();
|
||||
let request = tonic::Request::new(WarmupRequest {
|
||||
batches,
|
||||
max_input_length,
|
||||
max_prefill_tokens,
|
||||
max_total_tokens,
|
||||
}).inject_context();
|
||||
let _response = self.stub.warmup(request).await?.into_inner();
|
||||
}
|
||||
Ok(None) // No support for maximum total tokens
|
||||
|
@ -21,7 +21,12 @@ from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
|
||||
|
||||
|
||||
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||
def __init__(self, model: Model, cache: Cache, server_urls: List[str]):
|
||||
def __init__(
|
||||
self,
|
||||
model: Model,
|
||||
cache: Cache,
|
||||
server_urls: List[str],
|
||||
):
|
||||
self.cache = cache
|
||||
self.model = model
|
||||
self.server_urls = server_urls
|
||||
|
@ -37,19 +37,12 @@ def set_device(device):
|
||||
DEVICE = device
|
||||
|
||||
|
||||
def create_exllama_buffers():
|
||||
def create_exllama_buffers(max_total_tokens: int):
|
||||
global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE, TEMP_STATE, TEMP_DQ
|
||||
|
||||
assert DEVICE is not None, "call set_device first"
|
||||
|
||||
if ACT_ORDER:
|
||||
# TODO: this should be set to rust side `max_total_tokens`, but TGI
|
||||
# does not offer an API to expose this variable to python, as this variable
|
||||
# is handled by the client but it appears the model is initialized by the server.
|
||||
# An alternative could be to initialize the buffers during warmup.
|
||||
# Dummy
|
||||
max_total_tokens = 2048
|
||||
else:
|
||||
if not ACT_ORDER:
|
||||
max_total_tokens = 1
|
||||
|
||||
# This temp_state buffer is required to reorder X in the act-order case.
|
||||
|
@ -101,7 +101,7 @@ def set_device(device):
|
||||
DEVICE = device
|
||||
|
||||
|
||||
def create_exllama_buffers():
|
||||
def create_exllama_buffers(max_total_tokens: int):
|
||||
global FIXED_BYTES, LAYERS, DEVICE
|
||||
temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES)
|
||||
|
||||
@ -138,17 +138,6 @@ class QuantLinear(nn.Module):
|
||||
self.bias = bias if bias is not None else None
|
||||
self.group_size = groupsize
|
||||
|
||||
infeatures = self.infeatures
|
||||
outfeatures = self.outfeatures
|
||||
assert qweight.shape == (infeatures // 32 * self.bits, outfeatures)
|
||||
assert infeatures % self.group_size == 0
|
||||
assert qzeros.shape == (
|
||||
infeatures // self.group_size,
|
||||
outfeatures // 32 * self.bits,
|
||||
)
|
||||
assert scales.shape == (infeatures // self.group_size, outfeatures)
|
||||
assert g_idx.shape == (infeatures,), f"{g_idx.shape}, {infeatures}"
|
||||
|
||||
global FIXED_BYTES, LAYERS
|
||||
FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed())
|
||||
LAYERS.append(self)
|
||||
|
@ -281,17 +281,17 @@ class Weights:
|
||||
else:
|
||||
logger.info(f"Using exllama kernels v{HAS_EXLLAMA}")
|
||||
|
||||
if use_exllama:
|
||||
if use_exllama and groupsize != -1:
|
||||
qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
|
||||
scales = self.get_sharded(f"{prefix}.scales", dim=0)
|
||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
g_idx = g_idx - g_idx[0]
|
||||
else:
|
||||
# The triton kernel reorders the scales/zero points instead of the weight/activation.
|
||||
# Thus, each rank needs the full qzeros/scales.
|
||||
qzeros = self.get_tensor(f"{prefix}.qzeros")
|
||||
scales = self.get_tensor(f"{prefix}.scales")
|
||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
|
||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
|
||||
if use_exllama:
|
||||
g_idx = g_idx - g_idx[0]
|
||||
|
||||
weight = (qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama)
|
||||
elif quantize == "awq":
|
||||
|
Loading…
Reference in New Issue
Block a user