This commit is contained in:
OlivierDehaene 2023-03-30 12:36:17 +02:00
parent 17a75c8845
commit b6df2036ed
8 changed files with 265 additions and 169 deletions

View File

@ -7,6 +7,9 @@ install-router:
install-launcher:
cd launcher && cargo install --path .
install-benchmark:
cd benchmark && cargo install --path .
install: install-server install-router install-launcher
server-dev:

View File

@ -9,7 +9,7 @@ description = "Text Generation Benchmarking tool"
path = "src/lib.rs"
[[bin]]
name = "text-generation-bench"
name = "text-generation-benchmark"
path = "src/main.rs"
[dependencies]

24
benchmark/README.md Normal file
View File

@ -0,0 +1,24 @@
# Text Generation Inference benchmarking tool
A lightweight benchmarking tool based inspired by [oha](https://github.com/hatoo/oha)
and powered by [tui](https://github.com/tui-rs-revival/ratatui).
## Install
```shell
make install-benchmark
```
## Run
First, start `text-generation-inference`:
```shell
text-generation-launcher --model-id bigscience/bloom-560m
```
Then run the benchmarking tool:
```shell
text-generation-benchmark --tokenizer-name bigscience/bloom-560m
```

View File

@ -1,5 +1,5 @@
/// Inspired by https://github.com/hatoo/oha/blob/bb989ea3cd77727e7743e7daa60a19894bb5e901/src/monitor.rs
use crate::generation::{Decode, Message, Prefill};
/// Inspired by https://github.com/hatoo/oha/blob/master/src/monitor.rs
use crossterm::event::{KeyCode, KeyEvent, KeyModifiers};
use text_generation_client::ClientError;
use tokio::sync::mpsc;
@ -12,70 +12,8 @@ use tui::widgets::{
};
use tui::{symbols, Frame};
struct Data {
prefill_latencies: Vec<Vec<f64>>,
prefill_throughputs: Vec<Vec<f64>>,
decode_latencies: Vec<Vec<f64>>,
decode_throughputs: Vec<Vec<f64>>,
prefill_batch_latency_throughput: Vec<(f64, f64)>,
decode_batch_latency_throughput: Vec<(f64, f64)>,
}
impl Data {
fn new(n_run: usize, n_batch: usize) -> Self {
let prefill_latencies: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let prefill_throughputs: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let decode_latencies: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let decode_throughputs: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let prefill_batch_latency_throughput: Vec<(f64, f64)> = Vec::with_capacity(n_batch);
let decode_batch_latency_throughput: Vec<(f64, f64)> = Vec::with_capacity(n_batch);
Self {
prefill_latencies,
prefill_throughputs,
decode_latencies,
decode_throughputs,
prefill_batch_latency_throughput,
decode_batch_latency_throughput,
}
}
fn push_prefill(&mut self, prefill: Prefill, batch_idx: usize) {
let latency = prefill.latency.as_millis() as f64;
self.prefill_latencies[batch_idx].push(latency);
self.prefill_throughputs[batch_idx].push(prefill.throughput);
}
fn push_decode(&mut self, prefill: Decode, batch_idx: usize) {
let latency = prefill.latency.as_millis() as f64;
self.decode_latencies[batch_idx].push(latency);
self.decode_throughputs[batch_idx].push(prefill.throughput);
}
fn end_batch(&mut self, batch_idx: usize) {
self.prefill_batch_latency_throughput.push((
self.prefill_latencies[batch_idx].iter().sum::<f64>()
/ self.prefill_latencies[batch_idx].len() as f64,
self.prefill_throughputs[batch_idx].iter().sum::<f64>()
/ self.prefill_throughputs[batch_idx].len() as f64,
));
self.decode_batch_latency_throughput.push((
self.decode_latencies[batch_idx].iter().sum::<f64>()
/ self.decode_latencies[batch_idx].len() as f64,
self.decode_throughputs[batch_idx].iter().sum::<f64>()
/ self.decode_throughputs[batch_idx].len() as f64,
));
}
}
pub(crate) struct UI {
/// TUI powered App
pub(crate) struct App {
pub(crate) running: bool,
completed_runs: Vec<usize>,
completed_batch: usize,
@ -92,7 +30,7 @@ pub(crate) struct UI {
receiver: mpsc::Receiver<Result<Message, ClientError>>,
}
impl UI {
impl App {
pub(crate) fn new(
receiver: mpsc::Receiver<Result<Message, ClientError>>,
tokenizer_name: String,
@ -127,18 +65,20 @@ impl UI {
}
}
/// Handle crossterm key events
pub(crate) fn handle_key_event(&mut self, key_event: KeyEvent) {
match key_event {
// Increase and wrap tab
KeyEvent {
code: KeyCode::Right,
..
} |
KeyEvent {
code: KeyCode::Tab,
..
}
| KeyEvent {
code: KeyCode::Tab, ..
} => {
self.current_tab = (self.current_tab + 1) % self.batch_size.len();
}
// Decrease and wrap tab
KeyEvent {
code: KeyCode::Left,
..
@ -149,19 +89,21 @@ impl UI {
self.current_tab = self.batch_size.len() - 1;
}
}
// Zoom on throughput/latency fig
KeyEvent {
code: KeyCode::Char('+'),
..
} => {
self.zoom = true;
}
// Unzoom on throughput/latency fig
KeyEvent {
code: KeyCode::Char('-'),
..
} => {
self.zoom = false;
}
// Quit
KeyEvent {
code: KeyCode::Char('q'),
..
@ -177,13 +119,14 @@ impl UI {
}
}
/// Get all pending messages from generation task
pub(crate) fn tick(&mut self) {
while let Ok(message) = self.receiver.try_recv() {
match message {
Ok(message) => match message {
Message::Prefill(step) => self.data.push_prefill(step, self.current_batch),
Message::Decode(step) => self.data.push_decode(step, self.current_batch),
Message::Run(_) => {
Message::EndRun => {
self.completed_runs[self.current_batch] += 1;
}
Message::EndBatch => {
@ -201,6 +144,7 @@ impl UI {
}
}
/// Render frame
pub fn render<B: Backend>(&mut self, f: &mut Frame<'_, B>) {
let batch_progress =
(self.completed_batch as f64 / self.batch_size.len() as f64).clamp(0.0, 1.0);
@ -277,14 +221,9 @@ impl UI {
// Helper
let helper = Block::default()
.borders(Borders::NONE)
.title(format!(
"<- | tab | ->: change batch tab | q / CTRL + c: quit | +/-: zoom"
))
.title("<- | tab | ->: change batch tab | q / CTRL + c: quit | +/-: zoom")
.title_alignment(Alignment::Right)
.style(
Style::default()
.fg(Color::White),
);
.style(Style::default().fg(Color::White));
f.render_widget(helper, row5[0]);
// Batch tabs
@ -404,6 +343,71 @@ impl UI {
}
}
/// App internal data struct
struct Data {
prefill_latencies: Vec<Vec<f64>>,
prefill_throughputs: Vec<Vec<f64>>,
decode_latencies: Vec<Vec<f64>>,
decode_throughputs: Vec<Vec<f64>>,
prefill_batch_latency_throughput: Vec<(f64, f64)>,
decode_batch_latency_throughput: Vec<(f64, f64)>,
}
impl Data {
fn new(n_run: usize, n_batch: usize) -> Self {
let prefill_latencies: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let prefill_throughputs: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let decode_latencies: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let decode_throughputs: Vec<Vec<f64>> =
(0..n_batch).map(|_| Vec::with_capacity(n_run)).collect();
let prefill_batch_latency_throughput: Vec<(f64, f64)> = Vec::with_capacity(n_batch);
let decode_batch_latency_throughput: Vec<(f64, f64)> = Vec::with_capacity(n_batch);
Self {
prefill_latencies,
prefill_throughputs,
decode_latencies,
decode_throughputs,
prefill_batch_latency_throughput,
decode_batch_latency_throughput,
}
}
fn push_prefill(&mut self, prefill: Prefill, batch_idx: usize) {
let latency = prefill.latency.as_millis() as f64;
self.prefill_latencies[batch_idx].push(latency);
self.prefill_throughputs[batch_idx].push(prefill.throughput);
}
fn push_decode(&mut self, prefill: Decode, batch_idx: usize) {
let latency = prefill.latency.as_millis() as f64;
self.decode_latencies[batch_idx].push(latency);
self.decode_throughputs[batch_idx].push(prefill.throughput);
}
fn end_batch(&mut self, batch_idx: usize) {
self.prefill_batch_latency_throughput.push((
self.prefill_latencies[batch_idx].iter().sum::<f64>()
/ self.prefill_latencies[batch_idx].len() as f64,
self.prefill_throughputs[batch_idx].iter().sum::<f64>()
/ self.prefill_throughputs[batch_idx].len() as f64,
));
self.decode_batch_latency_throughput.push((
self.decode_latencies[batch_idx].iter().sum::<f64>()
/ self.decode_latencies[batch_idx].len() as f64,
self.decode_throughputs[batch_idx].iter().sum::<f64>()
/ self.decode_throughputs[batch_idx].len() as f64,
));
}
}
/// Progress bar
fn progress_gauge(title: &str, label: String, progress: f64, color: Color) -> Gauge {
Gauge::default()
.block(Block::default().title(title).borders(Borders::ALL))
@ -412,31 +416,40 @@ fn progress_gauge(title: &str, label: String, progress: f64, color: Color) -> Ga
.ratio(progress)
}
/// Prefill or Decode text infos
fn text_info<'a>(
latency: &mut Vec<f64>,
throughput: &Vec<f64>,
name: &'static str,
) -> (Paragraph<'a>, Paragraph<'a>) {
let mut latency_texts = statis_spans(&latency, "ms");
// Latency average/high/low texts
let mut latency_texts = statis_spans(latency, "ms");
// Sort latency for percentiles
float_ord::sort(latency);
let latency_percentiles = crate::utils::percentiles(latency, &[50, 90, 99]);
// Latency p50/p90/p99 texts
let colors = vec![Color::LightGreen, Color::LightYellow, Color::LightRed];
for (i, (name, value)) in latency_percentiles.iter().enumerate() {
let span = Spans::from(vec![Span::styled(
format!("{name}: {:.4} ms", value),
format!("{name}: {value:.4} ms"),
Style::default().fg(colors[i]),
)]);
latency_texts.push(span);
}
let throughput_texts = statis_spans(&throughput, "tokens/secs");
// Throughput average/high/low texts
let throughput_texts = statis_spans(throughput, "tokens/secs");
// Latency Block
let latency_statics = Paragraph::new(latency_texts).block(
Block::default()
.title(Span::raw(format!("{name} Latency")))
.borders(Borders::ALL),
);
// Throughput block
let throughput_statics = Paragraph::new(throughput_texts).block(
Block::default()
.title(Span::raw(format!("{name} Throughput")))
@ -446,32 +459,7 @@ fn text_info<'a>(
(latency_statics, throughput_statics)
}
fn latency_histogram_data(latency: &Vec<f64>, bins: usize) -> Vec<(String, u64)> {
let histo_data: Vec<(String, u64)> = {
let histo = crate::utils::histogram(latency, bins);
histo
.into_iter()
.map(|(label, v)| (format!("{label:.2}"), v as u64))
.collect()
};
histo_data
}
fn latency_histogram<'a>(
histo_data_str: &'a Vec<(&'a str, u64)>,
name: &'static str,
) -> BarChart<'a> {
BarChart::default()
.block(
Block::default()
.title(format!("{name} latency histogram"))
.style(Style::default().fg(Color::LightYellow).bg(Color::Reset))
.borders(Borders::ALL),
)
.data(histo_data_str.as_slice())
}
/// Average/High/Low spans
fn statis_spans<'a>(data: &Vec<f64>, unit: &'static str) -> Vec<Spans<'a>> {
vec![
Spans::from(vec![Span::styled(
@ -502,15 +490,45 @@ fn statis_spans<'a>(data: &Vec<f64>, unit: &'static str) -> Vec<Spans<'a>> {
]
}
/// Latency histogram data
fn latency_histogram_data(latency: &[f64], bins: usize) -> Vec<(String, u64)> {
let histo_data: Vec<(String, u64)> = {
let histo = crate::utils::histogram(latency, bins);
histo
.into_iter()
.map(|(label, v)| (format!("{label:.2}"), v as u64))
.collect()
};
histo_data
}
/// Latency Histogram
fn latency_histogram<'a>(
histo_data_str: &'a Vec<(&'a str, u64)>,
name: &'static str,
) -> BarChart<'a> {
BarChart::default()
.block(
Block::default()
.title(format!("{name} latency histogram"))
.style(Style::default().fg(Color::LightYellow).bg(Color::Reset))
.borders(Borders::ALL),
)
.data(histo_data_str.as_slice())
}
/// Latency/Throughput chart
fn latency_throughput_chart<'a>(
latency_throughput: &'a Vec<(f64, f64)>,
batch_sizes: &'a Vec<u32>,
batch_sizes: &'a [u32],
zoom: bool,
name: &'static str,
) -> Chart<'a> {
let latency_iter = latency_throughput.iter().map(|(l, _)| l);
let throughput_iter = latency_throughput.iter().map(|(_, t)| t);
// Get extreme values
let min_latency: f64 = *latency_iter
.clone()
.min_by(|a, b| a.total_cmp(b))
@ -526,6 +544,7 @@ fn latency_throughput_chart<'a>(
.max_by(|a, b| a.total_cmp(b))
.unwrap_or(&std::f64::NAN);
// Char min max values
let min_x = if zoom {
((min_latency - 0.05 * min_latency) / 100.0).floor() * 100.0
} else {
@ -534,6 +553,7 @@ fn latency_throughput_chart<'a>(
let max_x = ((max_latency + 0.05 * max_latency) / 100.0).ceil() * 100.0;
let step_x = (max_x - min_x) / 4.0;
// Chart min max values
let min_y = if zoom {
((min_throughput - 0.05 * min_throughput) / 100.0).floor() * 100.0
} else {
@ -542,8 +562,9 @@ fn latency_throughput_chart<'a>(
let max_y = ((max_throughput + 0.05 * max_throughput) / 100.0).ceil() * 100.0;
let step_y = (max_y - min_y) / 4.0;
// Labels
let mut x_labels = vec![Span::styled(
format!("{:.2}", min_x),
format!("{min_x:.2}"),
Style::default()
.add_modifier(Modifier::BOLD)
.fg(Color::Gray)
@ -556,15 +577,16 @@ fn latency_throughput_chart<'a>(
));
}
x_labels.push(Span::styled(
format!("{:.2}", max_x),
format!("{max_x:.2}"),
Style::default()
.add_modifier(Modifier::BOLD)
.fg(Color::Gray)
.bg(Color::Reset),
));
// Labels
let mut y_labels = vec![Span::styled(
format!("{:.2}", min_y),
format!("{min_y:.2}"),
Style::default()
.add_modifier(Modifier::BOLD)
.fg(Color::Gray)
@ -577,25 +599,29 @@ fn latency_throughput_chart<'a>(
));
}
y_labels.push(Span::styled(
format!("{:.2}", max_y),
format!("{max_y:.2}"),
Style::default()
.add_modifier(Modifier::BOLD)
.fg(Color::Gray)
.bg(Color::Reset),
));
// Chart dataset
let colors = color_vec();
let datasets: Vec<Dataset> = (0..latency_throughput.len())
.map(|i| {
let color_idx = i % colors.len();
Dataset::default()
.name(batch_sizes[i].to_string())
.marker(symbols::Marker::Block)
.style(Style::default().fg(colors[i]))
.style(Style::default().fg(colors[color_idx]))
.graph_type(GraphType::Scatter)
.data(&latency_throughput[i..(i + 1)])
})
.collect();
// Chart
Chart::new(datasets)
.style(Style::default().fg(Color::Cyan).bg(Color::Reset))
.block(
@ -608,20 +634,21 @@ fn latency_throughput_chart<'a>(
)
.x_axis(
Axis::default()
.title(format!("ms"))
.title("ms")
.style(Style::default().fg(Color::Gray).bg(Color::Reset))
.labels(x_labels)
.bounds([min_x, max_x]),
)
.y_axis(
Axis::default()
.title(format!("tokens/secs"))
.title("tokens/secs")
.style(Style::default().fg(Color::Gray).bg(Color::Reset))
.labels(y_labels)
.bounds([min_y, max_y]),
)
}
// Colors for latency/throughput chart
fn color_vec() -> Vec<Color> {
vec![
Color::Red,

View File

@ -1,4 +1,4 @@
/// Inspired by https://github.com/orhun/rust-tui-template
/// Inspired by https://github.com/orhun/rust-tui-template/blob/472aa515119d4c94903eac12d9784417281dc7f5/src/event.rs
use crossterm::event;
use std::time::{Duration, Instant};
use tokio::sync::{broadcast, mpsc};
@ -20,6 +20,8 @@ pub(crate) async fn terminal_event_task(
mut shutdown_receiver: broadcast::Receiver<()>,
_shutdown_guard_sender: mpsc::Sender<()>,
) {
// End task if a message is received on shutdown_receiver
// _shutdown_guard_sender will be dropped once the task is finished
tokio::select! {
_ = event_loop(fps, event_sender) => {
},
@ -27,14 +29,21 @@ pub(crate) async fn terminal_event_task(
}
}
/// Main event loop
async fn event_loop(fps: u32, event_sender: mpsc::Sender<Event>) {
let per_frame = Duration::from_secs(1) / fps as u32;
// Frame budget
let per_frame = Duration::from_secs(1) / fps;
// When was last frame executed
let mut last_frame = Instant::now();
loop {
// Sleep to avoid blocking the thread for too long
if let Some(sleep) = per_frame.checked_sub(last_frame.elapsed()) {
tokio::time::sleep(sleep).await;
}
// Get crossterm event and send a new one over the channel
if event::poll(Duration::from_secs(0)).expect("no events available") {
match event::read().expect("unable to read event") {
event::Event::Key(e) => event_sender.send(Event::Key(e)).await.unwrap_or(()),
@ -45,8 +54,11 @@ async fn event_loop(fps: u32, event_sender: mpsc::Sender<Event>) {
}
}
// Frame budget exceeded
if last_frame.elapsed() >= per_frame {
// Send tick
event_sender.send(Event::Tick).await.unwrap_or(());
// Rest last_frame time
last_frame = Instant::now();
}
}

View File

@ -16,28 +16,21 @@ pub(crate) struct Prefill {
#[derive(Debug, Clone)]
pub(crate) struct Decode {
pub(crate) decode_length: u32,
pub(crate) latency: Duration,
pub(crate) throughput: f64,
}
#[derive(Debug)]
pub(crate) struct Run {
pub(crate) batch_size: u32,
pub(crate) sequence_length: u32,
pub(crate) prefill: Prefill,
pub(crate) decode: Decode,
}
#[derive(Debug)]
pub(crate) enum Message {
Warmup,
Prefill(Prefill),
Decode(Decode),
Run(Run),
EndRun,
EndBatch,
}
/// Benchmarking task
#[allow(clippy::too_many_arguments)]
pub(crate) async fn generation_task(
tokenizer: Tokenizer,
batch_size: Vec<u32>,
@ -50,6 +43,8 @@ pub(crate) async fn generation_task(
mut shutdown_receiver: broadcast::Receiver<()>,
_shutdown_guard_sender: mpsc::Sender<()>,
) {
// End task if a message is received on shutdown_receiver
// _shutdown_guard_sender will be dropped once the task is finished
tokio::select! {
res = generate_runs(tokenizer, batch_size, sequence_length, decode_length, n_runs, warmups, client, run_sender.clone()) => {
if let Err(err) = res {
@ -60,6 +55,8 @@ pub(crate) async fn generation_task(
}
}
/// Benchmark prefill/decode
#[allow(clippy::too_many_arguments)]
async fn generate_runs(
tokenizer: Tokenizer,
batch_size: Vec<u32>,
@ -70,52 +67,53 @@ async fn generate_runs(
mut client: ShardedClient,
run_sender: mpsc::Sender<Result<Message, ClientError>>,
) -> Result<(), ClientError> {
// Create a dummy sequence
let sequence = create_sequence(sequence_length, tokenizer);
for b in batch_size {
// Warmups on batch size
for _ in 0..warmups {
let (_, decode_batch) =
prefill(sequence.clone(), b, decode_length, &mut client).await?;
let _ = decode(decode_batch, &mut client).await?;
// Send warmup message
run_sender.send(Ok(Message::Warmup)).await.unwrap_or(());
}
for _ in 0..n_runs {
let (prefill, decode_batch) =
prefill(sequence.clone(), b, decode_length, &mut client).await?;
// Send prefill message
run_sender
.send(Ok(Message::Prefill(prefill.clone())))
.send(Ok(Message::Prefill(prefill)))
.await
.unwrap_or(());
let decode = decode(decode_batch, &mut client).await?;
// Send decode message
run_sender
.send(Ok(Message::Decode(decode.clone())))
.send(Ok(Message::Decode(decode)))
.await
.unwrap_or(());
run_sender
.send(Ok(Message::Run(Run {
batch_size: b,
sequence_length,
prefill,
decode,
})))
.await
.unwrap_or(());
// Send run ended message
run_sender.send(Ok(Message::EndRun)).await.unwrap_or(());
}
// Batch ended
run_sender.send(Ok(Message::EndBatch)).await.unwrap_or(());
}
Ok(())
}
// Run a prefill step
async fn prefill(
sequence: String,
batch_size: u32,
decode_length: u32,
client: &mut ShardedClient,
) -> Result<(Prefill, Batch), ClientError> {
// Create requests
let requests = (0..batch_size)
.map(|id| Request {
id: id.into(),
@ -133,7 +131,7 @@ async fn prefill(
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: decode_length,
stop_sequences: vec![],
ignore_eos_token: true,
ignore_eos_token: true, // Will not stop even if a eos token is generated
}),
})
.collect();
@ -144,11 +142,17 @@ async fn prefill(
size: batch_size,
};
// Run prefill
let start_time = Instant::now();
let (_, decode_batch) = client.prefill(batch.clone()).await?;
// Get latency
let latency = start_time.elapsed();
// Compute throughput from latency and batch size
let throughput = batch_size as f64 / latency.as_secs_f64();
// Decode batch cannot be empty
let decode_batch = decode_batch.expect("decode_batch is None. This is a bug.");
let step = Prefill {
@ -159,28 +163,35 @@ async fn prefill(
Ok((step, decode_batch))
}
/// Run a full decode
async fn decode(batch: Batch, client: &mut ShardedClient) -> Result<Decode, ClientError> {
let mut decode_length = 0;
let start_time = Instant::now();
let batch_size = batch.size;
let start_time = Instant::now();
// Full decode over decode length
let mut next_batch = Some(batch);
while let Some(batch) = next_batch {
let result = client.decode(vec![batch]).await?;
next_batch = result.1;
decode_length += 1;
}
// Get latency
let latency = start_time.elapsed();
// Compute throughput from latency, batch size and decode length
let throughput = (batch_size * decode_length) as f64 / latency.as_secs_f64();
let step = Decode {
decode_length,
latency,
throughput,
};
Ok(step)
}
/// Create a dummy sequence of the correct length
fn create_sequence(sequence_length: u32, tokenizer: Tokenizer) -> String {
let lorem_ipsum_length = tokenizer.encode(LOREM_IPSUM, true).unwrap().len();
// Repeat lorem ipsum to cover sequence length

View File

@ -1,12 +1,10 @@
extern crate core;
mod app;
mod event;
mod generation;
mod ui;
mod utils;
use crate::app::App;
use crate::event::Event;
use crate::ui::UI;
use crossterm::ExecutableCommand;
use std::io;
use text_generation_client::ShardedClient;
@ -15,6 +13,8 @@ use tokio::sync::{broadcast, mpsc};
use tui::backend::CrosstermBackend;
use tui::Terminal;
/// Run benchmarking app
#[allow(clippy::too_many_arguments)]
pub async fn run(
tokenizer_name: String,
tokenizer: Tokenizer,
@ -25,11 +25,27 @@ pub async fn run(
warmups: usize,
client: ShardedClient,
) -> Result<(), crossterm::ErrorKind> {
// Initialize terminal properties
crossterm::terminal::enable_raw_mode()?;
io::stdout().execute(crossterm::terminal::EnterAlternateScreen)?;
io::stdout().execute(crossterm::cursor::Hide)?;
// Initialize terminal
let mut terminal = {
let backend = CrosstermBackend::new(io::stdout());
Terminal::new(backend)?
};
// Create message channel between generation_task and app
let (run_sender, run_receiver) = mpsc::channel(8);
// Crossterm event channel
let (event_sender, mut event_receiver) = mpsc::channel(8);
// Shutdown channel to terminate tasks
let (shutdown_sender, _) = broadcast::channel(1);
// Channel to check if tasks terminated
let (shutdown_guard_sender, mut shutdown_guard_receiver) = mpsc::channel(1);
// Create generation task
tokio::spawn(generation::generation_task(
tokenizer,
batch_size.clone(),
@ -43,6 +59,7 @@ pub async fn run(
shutdown_guard_sender.clone(),
));
// Create event task
tokio::spawn(event::terminal_event_task(
250,
event_sender,
@ -50,9 +67,11 @@ pub async fn run(
shutdown_guard_sender.clone(),
));
// Drop our end of shutdown sender
drop(shutdown_guard_sender);
let mut ui = UI::new(
// Create App
let mut app = App::new(
run_receiver,
tokenizer_name,
sequence_length,
@ -61,23 +80,17 @@ pub async fn run(
batch_size,
);
crossterm::terminal::enable_raw_mode()?;
io::stdout().execute(crossterm::terminal::EnterAlternateScreen)?;
io::stdout().execute(crossterm::cursor::Hide)?;
let mut terminal = {
let backend = CrosstermBackend::new(io::stdout());
Terminal::new(backend)?
};
while ui.running {
terminal.draw(|frame| ui.render(frame))?;
while app.running {
// Draw frame
terminal.draw(|frame| app.render(frame))?;
// Await a new event from event handling task
match event_receiver.recv().await {
None => break,
// Update app state
Some(event) => match event {
Event::Tick => ui.tick(),
Event::Key(key_event) => ui.handle_key_event(key_event),
Event::Tick => app.tick(),
Event::Key(key_event) => app.handle_key_event(key_event),
_ => {}
},
}

View File

@ -1,5 +1,8 @@
use clap::Parser;
/// Text Generation Inference benchmarking tool
///
/// Inspired by the great Oha app: https://github.com/hatoo/oha
/// and: https://github.com/orhun/rust-tui-template
use clap::Parser;
use std::path::Path;
use text_generation_client::ShardedClient;
use tokenizers::Tokenizer;
@ -11,17 +14,17 @@ use tracing_subscriber::EnvFilter;
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
#[clap(default_value = "bigscience/bloom", long, env)]
#[clap(long, env)]
tokenizer_name: String,
#[clap(default_value = "1", long, env)]
batch_size: Vec<u32>,
#[clap(long)]
batch_size: Option<Vec<u32>>,
#[clap(default_value = "10", long, env)]
sequence_length: u32,
#[clap(default_value = "64", long, env)]
decode_length: u32,
#[clap(default_value = "10", long, env)]
runs: usize,
#[clap(default_value = "2", long, env)]
#[clap(default_value = "1", long, env)]
warmups: usize,
#[clap(default_value = "/tmp/text-generation-server-0", long, env)]
master_shard_uds_path: String,
@ -41,6 +44,8 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
master_shard_uds_path,
} = args;
let batch_size = batch_size.unwrap_or(vec![1, 2, 4, 8, 16, 32]);
init_logging();
// Tokenizer instance
@ -79,6 +84,7 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
.expect("Unable to clear cache");
tracing::info!("Connected");
// Run app
text_generation_benchmark::run(
tokenizer_name,
tokenizer,