mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-12 04:44:52 +00:00
Merge branch 'support-openai-models-endpoint' of github.com:huggingface/text-generation-inference into support-openai-models-endpoint
This commit is contained in:
commit
b348ab4c55
1
Cargo.lock
generated
1
Cargo.lock
generated
@ -2174,6 +2174,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "45f7e8e35b6c7b169bf40b0176d2c79291ab8ee53290b84e0668ab21d841aa9d"
|
||||
dependencies = [
|
||||
"serde",
|
||||
"serde_json",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -316,10 +316,15 @@ impl State {
|
||||
+ self.speculate
|
||||
- 1;
|
||||
|
||||
match block_allocator
|
||||
.allocate(tokens, entry.request.input_ids.clone())
|
||||
.await
|
||||
{
|
||||
// If users wants the prefill logprobs, we cannot reuse the cache.
|
||||
// So no input_ids for the radix tree.
|
||||
let input_ids = if entry.request.decoder_input_details {
|
||||
None
|
||||
} else {
|
||||
entry.request.input_ids.clone()
|
||||
};
|
||||
|
||||
match block_allocator.allocate(tokens, input_ids).await {
|
||||
None => {
|
||||
// Entry is over budget
|
||||
// Add it back to the front
|
||||
|
@ -205,6 +205,7 @@ pub struct RadixTrie {
|
||||
/// call that a real time lookup would require.
|
||||
time: u64,
|
||||
}
|
||||
|
||||
impl Default for RadixTrie {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
|
@ -757,7 +757,12 @@ class AsyncClient:
|
||||
continue
|
||||
payload = byte_payload.decode("utf-8")
|
||||
if payload.startswith("data:"):
|
||||
json_payload = json.loads(payload.lstrip("data:").rstrip("\n"))
|
||||
payload_data = (
|
||||
payload.lstrip("data:").rstrip("\n").removeprefix(" ")
|
||||
)
|
||||
if payload_data == "[DONE]":
|
||||
break
|
||||
json_payload = json.loads(payload_data)
|
||||
try:
|
||||
response = ChatCompletionChunk(**json_payload)
|
||||
yield response
|
||||
|
@ -924,7 +924,7 @@
|
||||
"tool_prompt": {
|
||||
"type": "string",
|
||||
"description": "A prompt to be appended before the tools",
|
||||
"example": "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\"",
|
||||
"example": "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.",
|
||||
"nullable": true
|
||||
},
|
||||
"tools": {
|
||||
|
127
flake.lock
127
flake.lock
@ -492,24 +492,6 @@
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"flake-utils_7": {
|
||||
"inputs": {
|
||||
"systems": "systems_7"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1710146030,
|
||||
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"gitignore": {
|
||||
"inputs": {
|
||||
"nixpkgs": [
|
||||
@ -594,27 +576,6 @@
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"nix-github-actions": {
|
||||
"inputs": {
|
||||
"nixpkgs": [
|
||||
"poetry2nix",
|
||||
"nixpkgs"
|
||||
]
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1703863825,
|
||||
"narHash": "sha256-rXwqjtwiGKJheXB43ybM8NwWB8rO2dSRrEqes0S7F5Y=",
|
||||
"owner": "nix-community",
|
||||
"repo": "nix-github-actions",
|
||||
"rev": "5163432afc817cf8bd1f031418d1869e4c9d5547",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "nix-community",
|
||||
"repo": "nix-github-actions",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"nix-test-runner": {
|
||||
"flake": false,
|
||||
"locked": {
|
||||
@ -753,31 +714,6 @@
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"poetry2nix": {
|
||||
"inputs": {
|
||||
"flake-utils": "flake-utils_7",
|
||||
"nix-github-actions": "nix-github-actions",
|
||||
"nixpkgs": [
|
||||
"tgi-nix",
|
||||
"nixpkgs"
|
||||
],
|
||||
"systems": "systems_8",
|
||||
"treefmt-nix": "treefmt-nix"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1723854676,
|
||||
"narHash": "sha256-+BrHfNuXrqeE7PoV6xDaoh0joYiJkvTTCIV0fFR3THw=",
|
||||
"owner": "nix-community",
|
||||
"repo": "poetry2nix",
|
||||
"rev": "d650118bce34c0238b9b54f23f7f173f9e4db867",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "nix-community",
|
||||
"repo": "poetry2nix",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"pre-commit-hooks": {
|
||||
"inputs": {
|
||||
"flake-compat": [
|
||||
@ -887,7 +823,6 @@
|
||||
"tgi-nix",
|
||||
"nixpkgs"
|
||||
],
|
||||
"poetry2nix": "poetry2nix",
|
||||
"rust-overlay": "rust-overlay",
|
||||
"tgi-nix": "tgi-nix"
|
||||
}
|
||||
@ -900,11 +835,11 @@
|
||||
]
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1723515680,
|
||||
"narHash": "sha256-nHdKymsHCVIh0Wdm4MvSgxcTTg34FJIYHRQkQYaSuvk=",
|
||||
"lastModified": 1724206841,
|
||||
"narHash": "sha256-L8dKaX4T3k+TR2fEHCfGbH4UXdspovz/pj87iai9qmc=",
|
||||
"owner": "oxalica",
|
||||
"repo": "rust-overlay",
|
||||
"rev": "4ee3d9e9569f70d7bb40f28804d6fe950c81eab3",
|
||||
"rev": "45e98fbd62c32e5927e952d2833fa1ba4fb35a61",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@ -1003,46 +938,17 @@
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"systems_7": {
|
||||
"locked": {
|
||||
"lastModified": 1681028828,
|
||||
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||
"owner": "nix-systems",
|
||||
"repo": "default",
|
||||
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "nix-systems",
|
||||
"repo": "default",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"systems_8": {
|
||||
"locked": {
|
||||
"lastModified": 1681028828,
|
||||
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||
"owner": "nix-systems",
|
||||
"repo": "default",
|
||||
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"id": "systems",
|
||||
"type": "indirect"
|
||||
}
|
||||
},
|
||||
"tgi-nix": {
|
||||
"inputs": {
|
||||
"flake-compat": "flake-compat_4",
|
||||
"nixpkgs": "nixpkgs_6"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1723973328,
|
||||
"narHash": "sha256-q5FmW4YFQcRb6fXHnrxL0uno6xcw9dcg+pFBbVM1xeQ=",
|
||||
"lastModified": 1724270760,
|
||||
"narHash": "sha256-KX566x0+3HZcB20HPdvdwyMm7ZJg21M+iqVrs/HCimA=",
|
||||
"owner": "danieldk",
|
||||
"repo": "tgi-nix",
|
||||
"rev": "d2038f36589a8a179834e5771ffd081620ba94c3",
|
||||
"rev": "12cbaa76ff258351741d3b5afb7161f617fe7b4c",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@ -1050,27 +956,6 @@
|
||||
"repo": "tgi-nix",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"treefmt-nix": {
|
||||
"inputs": {
|
||||
"nixpkgs": [
|
||||
"poetry2nix",
|
||||
"nixpkgs"
|
||||
]
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1719749022,
|
||||
"narHash": "sha256-ddPKHcqaKCIFSFc/cvxS14goUhCOAwsM1PbMr0ZtHMg=",
|
||||
"owner": "numtide",
|
||||
"repo": "treefmt-nix",
|
||||
"rev": "8df5ff62195d4e67e2264df0b7f5e8c9995fd0bd",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "numtide",
|
||||
"repo": "treefmt-nix",
|
||||
"type": "github"
|
||||
}
|
||||
}
|
||||
},
|
||||
"root": "root",
|
||||
|
80
flake.nix
80
flake.nix
@ -8,10 +8,6 @@
|
||||
tgi-nix.url = "github:danieldk/tgi-nix";
|
||||
nixpkgs.follows = "tgi-nix/nixpkgs";
|
||||
flake-utils.url = "github:numtide/flake-utils";
|
||||
poetry2nix = {
|
||||
url = "github:nix-community/poetry2nix";
|
||||
inputs.nixpkgs.follows = "tgi-nix/nixpkgs";
|
||||
};
|
||||
rust-overlay = {
|
||||
url = "github:oxalica/rust-overlay";
|
||||
inputs.nixpkgs.follows = "tgi-nix/nixpkgs";
|
||||
@ -26,7 +22,6 @@
|
||||
flake-utils,
|
||||
rust-overlay,
|
||||
tgi-nix,
|
||||
poetry2nix,
|
||||
}:
|
||||
flake-utils.lib.eachDefaultSystem (
|
||||
system:
|
||||
@ -47,14 +42,32 @@
|
||||
tgi-nix.overlay
|
||||
];
|
||||
};
|
||||
inherit (poetry2nix.lib.mkPoetry2Nix { inherit pkgs; }) mkPoetryEditablePackage;
|
||||
text-generation-server = mkPoetryEditablePackage { editablePackageSources = ./server; };
|
||||
crateOverrides = import ./nix/crate-overrides.nix { inherit pkgs nix-filter; };
|
||||
benchmark = cargoNix.workspaceMembers.text-generation-benchmark.build.override {
|
||||
inherit crateOverrides;
|
||||
};
|
||||
launcher = cargoNix.workspaceMembers.text-generation-launcher.build.override {
|
||||
inherit crateOverrides;
|
||||
};
|
||||
router = cargoNix.workspaceMembers.text-generation-router-v3.build.override {
|
||||
inherit crateOverrides;
|
||||
};
|
||||
server = pkgs.python3.pkgs.callPackage ./nix/server.nix { inherit nix-filter; };
|
||||
in
|
||||
{
|
||||
devShells.default =
|
||||
with pkgs;
|
||||
mkShell {
|
||||
devShells = with pkgs; rec {
|
||||
default = pure;
|
||||
|
||||
pure = mkShell {
|
||||
buildInputs = [
|
||||
benchmark
|
||||
launcher
|
||||
router
|
||||
server
|
||||
];
|
||||
};
|
||||
|
||||
impure = mkShell {
|
||||
buildInputs =
|
||||
[
|
||||
openssl.dev
|
||||
@ -65,42 +78,16 @@
|
||||
"rust-src"
|
||||
];
|
||||
})
|
||||
protobuf
|
||||
]
|
||||
++ (with python3.pkgs; [
|
||||
venvShellHook
|
||||
pip
|
||||
|
||||
causal-conv1d
|
||||
click
|
||||
einops
|
||||
exllamav2
|
||||
fbgemm-gpu
|
||||
flashinfer
|
||||
flash-attn
|
||||
flash-attn-layer-norm
|
||||
flash-attn-rotary
|
||||
grpc-interceptor
|
||||
grpcio-reflection
|
||||
grpcio-status
|
||||
grpcio-tools
|
||||
hf-transfer
|
||||
loguru
|
||||
mamba-ssm
|
||||
marlin-kernels
|
||||
opentelemetry-api
|
||||
opentelemetry-exporter-otlp
|
||||
opentelemetry-instrumentation-grpc
|
||||
opentelemetry-semantic-conventions
|
||||
peft
|
||||
tokenizers
|
||||
torch
|
||||
transformers
|
||||
vllm
|
||||
|
||||
(cargoNix.workspaceMembers.text-generation-launcher.build.override { inherit crateOverrides; })
|
||||
(cargoNix.workspaceMembers.text-generation-router-v3.build.override { inherit crateOverrides; })
|
||||
ipdb
|
||||
]);
|
||||
|
||||
inputsFrom = [ server ];
|
||||
|
||||
venvDir = "./.venv";
|
||||
|
||||
postVenv = ''
|
||||
@ -108,6 +95,19 @@
|
||||
'';
|
||||
postShellHook = ''
|
||||
unset SOURCE_DATE_EPOCH
|
||||
export PATH=$PATH:~/.cargo/bin
|
||||
'';
|
||||
};
|
||||
};
|
||||
|
||||
packages.default = pkgs.writeShellApplication {
|
||||
name = "text-generation-inference";
|
||||
runtimeInputs = [
|
||||
server
|
||||
router
|
||||
];
|
||||
text = ''
|
||||
${launcher}/bin/text-generation-launcher "$@"
|
||||
'';
|
||||
};
|
||||
}
|
||||
|
@ -257,7 +257,7 @@ class IgnoreLogProbResponseComparator(ResponseComparator):
|
||||
|
||||
class LauncherHandle:
|
||||
def __init__(self, port: int):
|
||||
self.client = AsyncClient(f"http://localhost:{port}")
|
||||
self.client = AsyncClient(f"http://localhost:{port}", timeout=30)
|
||||
|
||||
def _inner_health(self):
|
||||
raise NotImplementedError
|
||||
|
@ -36,6 +36,7 @@ tools = [
|
||||
},
|
||||
},
|
||||
"required": ["location", "format"],
|
||||
"additionalProperties": False,
|
||||
},
|
||||
},
|
||||
},
|
||||
@ -62,13 +63,13 @@ tools = [
|
||||
},
|
||||
},
|
||||
"required": ["location", "format", "num_days"],
|
||||
"additionalProperties": False,
|
||||
},
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Takes too long to run")
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_grammar_tools(flash_llama_grammar_tools, response_snapshot):
|
||||
@ -76,7 +77,7 @@ async def test_flash_llama_grammar_tools(flash_llama_grammar_tools, response_sna
|
||||
max_tokens=100,
|
||||
seed=1,
|
||||
tools=tools,
|
||||
presence_penalty=-1.1,
|
||||
temperature=0.0,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
@ -91,19 +92,18 @@ async def test_flash_llama_grammar_tools(flash_llama_grammar_tools, response_sna
|
||||
assert response.choices[0].message.content is None
|
||||
assert response.choices[0].message.tool_calls == [
|
||||
{
|
||||
"id": 0,
|
||||
"id": "0",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"description": None,
|
||||
"name": "get_current_weather",
|
||||
"arguments": {"format": "celsius", "location": "New York, NY"},
|
||||
"arguments": {"format": "celsius", "location": "Brooklyn, NY"},
|
||||
},
|
||||
}
|
||||
]
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Takes too long to run")
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_grammar_tools_auto(
|
||||
@ -113,8 +113,8 @@ async def test_flash_llama_grammar_tools_auto(
|
||||
max_tokens=100,
|
||||
seed=1,
|
||||
tools=tools,
|
||||
temperature=0.0,
|
||||
tool_choice="auto",
|
||||
presence_penalty=-1.1,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
@ -129,12 +129,12 @@ async def test_flash_llama_grammar_tools_auto(
|
||||
assert response.choices[0].message.content is None
|
||||
assert response.choices[0].message.tool_calls == [
|
||||
{
|
||||
"id": 0,
|
||||
"id": "0",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"description": None,
|
||||
"name": "get_current_weather",
|
||||
"arguments": {"format": "celsius", "location": "New York, NY"},
|
||||
"arguments": {"format": "celsius", "location": "Brooklyn, NY"},
|
||||
},
|
||||
}
|
||||
]
|
||||
@ -142,7 +142,6 @@ async def test_flash_llama_grammar_tools_auto(
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Takes too long to run")
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_grammar_tools_choice(
|
||||
@ -152,8 +151,8 @@ async def test_flash_llama_grammar_tools_choice(
|
||||
max_tokens=100,
|
||||
seed=1,
|
||||
tools=tools,
|
||||
temperature=0.0,
|
||||
tool_choice="get_current_weather",
|
||||
presence_penalty=-1.1,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
@ -168,12 +167,12 @@ async def test_flash_llama_grammar_tools_choice(
|
||||
assert response.choices[0].message.content is None
|
||||
assert response.choices[0].message.tool_calls == [
|
||||
{
|
||||
"id": 0,
|
||||
"id": "0",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"description": None,
|
||||
"name": "get_current_weather",
|
||||
"arguments": {"format": "celsius", "location": "New York, NY"},
|
||||
"arguments": {"format": "celsius", "location": "Brooklyn, NY"},
|
||||
},
|
||||
}
|
||||
]
|
||||
@ -181,7 +180,6 @@ async def test_flash_llama_grammar_tools_choice(
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Takes too long to run")
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_grammar_tools_stream(
|
||||
@ -191,8 +189,8 @@ async def test_flash_llama_grammar_tools_stream(
|
||||
max_tokens=100,
|
||||
seed=1,
|
||||
tools=tools,
|
||||
temperature=0.0,
|
||||
tool_choice="get_current_weather",
|
||||
presence_penalty=-1.1,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
@ -210,11 +208,10 @@ async def test_flash_llama_grammar_tools_stream(
|
||||
async for response in responses:
|
||||
count += 1
|
||||
|
||||
assert count == 38
|
||||
assert count == 48
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Takes too long to run")
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_grammar_tools_insufficient_information(
|
||||
@ -222,13 +219,13 @@ async def test_flash_llama_grammar_tools_insufficient_information(
|
||||
):
|
||||
responses = await flash_llama_grammar_tools.chat(
|
||||
max_tokens=100,
|
||||
seed=8,
|
||||
seed=24,
|
||||
tools=tools,
|
||||
tool_choice="auto",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "ONLY RESPOND IF THE USER ASKS A WEATHER RELATED QUESTION",
|
||||
"content": "STRICTLY ONLY RESPOND IF THE USER ASKS A WEATHER RELATED QUESTION",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
@ -239,18 +236,7 @@ async def test_flash_llama_grammar_tools_insufficient_information(
|
||||
)
|
||||
|
||||
assert responses.choices[0].message.content is None
|
||||
assert responses.choices[0].message.tool_calls == [
|
||||
{
|
||||
"function": {
|
||||
"arguments": {
|
||||
"error": "Cannot get current weather forecast from specified location and temperature unit. Please try again with different options."
|
||||
},
|
||||
"description": None,
|
||||
"name": "notify_error",
|
||||
},
|
||||
"id": 0,
|
||||
"type": "function",
|
||||
}
|
||||
]
|
||||
|
||||
assert (
|
||||
responses.choices[0].message.tool_calls[0]["function"]["name"] == "notify_error"
|
||||
)
|
||||
assert responses == response_snapshot
|
||||
|
@ -20,8 +20,7 @@ defaultCrateOverrides
|
||||
rav1e = attrs: { env.CARGO_ENCODED_RUSTFLAGS = "-C target-feature=-crt-static"; };
|
||||
|
||||
grpc-metadata = attrs: {
|
||||
src =
|
||||
filter {
|
||||
src = filter {
|
||||
root = ../backends/grpc-metadata;
|
||||
include = with filter; [
|
||||
isDirectory
|
||||
@ -29,9 +28,29 @@ defaultCrateOverrides
|
||||
];
|
||||
};
|
||||
};
|
||||
text-generation-launcer = attrs: {
|
||||
src =
|
||||
filter {
|
||||
text-generation-benchmark = attrs: {
|
||||
src = filter {
|
||||
root = ../benchmark;
|
||||
include = with filter; [
|
||||
isDirectory
|
||||
(matchExt "rs")
|
||||
];
|
||||
};
|
||||
};
|
||||
text-generation-client = attrs: {
|
||||
src = filter {
|
||||
root = ../.;
|
||||
include = with filter; [
|
||||
isDirectory
|
||||
(and (inDirectory "backends/client") (matchExt "rs"))
|
||||
(and (inDirectory "proto") (matchExt "proto"))
|
||||
];
|
||||
};
|
||||
postPatch = "cd backends/client";
|
||||
buildInputs = [ protobuf ];
|
||||
};
|
||||
text-generation-launcher = attrs: {
|
||||
src = filter {
|
||||
root = ../launcher;
|
||||
include = with filter; [
|
||||
isDirectory
|
||||
@ -40,8 +59,7 @@ defaultCrateOverrides
|
||||
};
|
||||
};
|
||||
text-generation-router = attrs: {
|
||||
src =
|
||||
filter {
|
||||
src = filter {
|
||||
root = ../router;
|
||||
include = with filter; [
|
||||
isDirectory
|
||||
|
109
nix/server.nix
Normal file
109
nix/server.nix
Normal file
@ -0,0 +1,109 @@
|
||||
{
|
||||
nix-filter,
|
||||
buildPythonPackage,
|
||||
poetry-core,
|
||||
mypy-protobuf,
|
||||
awq-inference-engine,
|
||||
causal-conv1d,
|
||||
eetq,
|
||||
einops,
|
||||
exllamav2,
|
||||
fbgemm-gpu,
|
||||
flashinfer,
|
||||
flash-attn,
|
||||
flash-attn-layer-norm,
|
||||
flash-attn-rotary,
|
||||
grpc-interceptor,
|
||||
grpcio-reflection,
|
||||
grpcio-status,
|
||||
grpcio-tools,
|
||||
hf-transfer,
|
||||
loguru,
|
||||
mamba-ssm,
|
||||
marlin-kernels,
|
||||
opentelemetry-api,
|
||||
opentelemetry-exporter-otlp,
|
||||
opentelemetry-instrumentation-grpc,
|
||||
opentelemetry-semantic-conventions,
|
||||
peft,
|
||||
safetensors,
|
||||
tokenizers,
|
||||
sentencepiece,
|
||||
transformers,
|
||||
typer,
|
||||
vllm,
|
||||
}:
|
||||
|
||||
let
|
||||
filter = nix-filter.lib;
|
||||
in
|
||||
buildPythonPackage {
|
||||
name = "text-generation-server";
|
||||
|
||||
src = filter {
|
||||
root = ../.;
|
||||
include = with filter; [
|
||||
isDirectory
|
||||
(and (inDirectory "server") (or_ (matchExt "py") (matchExt "pyi")))
|
||||
"server/pyproject.toml"
|
||||
(and (inDirectory "proto/v3") (matchExt "proto"))
|
||||
];
|
||||
};
|
||||
|
||||
pyproject = true;
|
||||
|
||||
build-system = [ poetry-core ];
|
||||
|
||||
nativeBuildInputs = [ mypy-protobuf ];
|
||||
|
||||
pythonRelaxDeps = [
|
||||
"einops"
|
||||
"huggingface-hub"
|
||||
"loguru"
|
||||
"opentelemetry-instrumentation-grpc"
|
||||
"sentencepiece"
|
||||
"typer"
|
||||
];
|
||||
|
||||
pythonRemoveDeps = [ "scipy" ];
|
||||
|
||||
dependencies = [
|
||||
awq-inference-engine
|
||||
eetq
|
||||
causal-conv1d
|
||||
einops
|
||||
exllamav2
|
||||
fbgemm-gpu
|
||||
flashinfer
|
||||
flash-attn
|
||||
flash-attn-layer-norm
|
||||
flash-attn-rotary
|
||||
grpc-interceptor
|
||||
grpcio-reflection
|
||||
grpcio-status
|
||||
grpcio-tools
|
||||
hf-transfer
|
||||
loguru
|
||||
mamba-ssm
|
||||
marlin-kernels
|
||||
opentelemetry-api
|
||||
opentelemetry-exporter-otlp
|
||||
opentelemetry-instrumentation-grpc
|
||||
opentelemetry-semantic-conventions
|
||||
peft
|
||||
safetensors
|
||||
sentencepiece
|
||||
tokenizers
|
||||
transformers
|
||||
typer
|
||||
vllm
|
||||
];
|
||||
|
||||
prePatch = ''
|
||||
python -m grpc_tools.protoc -Iproto/v3 --python_out=server/text_generation_server/pb \
|
||||
--grpc_python_out=server/text_generation_server/pb --mypy_out=server/text_generation_server/pb proto/v3/generate.proto
|
||||
find server/text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
|
||||
touch server/text_generation_server/pb/__init__.py
|
||||
cd server
|
||||
'';
|
||||
}
|
@ -46,7 +46,7 @@ ngrok = { version = "0.13.1", features = ["axum"], optional = true }
|
||||
init-tracing-opentelemetry = { version = "0.14.1", features = [
|
||||
"opentelemetry-otlp",
|
||||
] }
|
||||
minijinja = { version = "2.0.2" }
|
||||
minijinja = { version = "2.0.2", features = ["json"] }
|
||||
minijinja-contrib = { version = "2.0.2", features = ["pycompat"] }
|
||||
futures-util = "0.3.30"
|
||||
regex = "1.10.3"
|
||||
|
@ -1,9 +1,7 @@
|
||||
use std::collections::HashSet;
|
||||
|
||||
use crate::infer::InferError;
|
||||
use crate::{
|
||||
ChatTemplateInputs, GrammarType, Message, MessageChunk, TextMessage, TokenizerConfigToken,
|
||||
};
|
||||
use crate::{ChatTemplateInputs, Message, MessageChunk, TextMessage, TokenizerConfigToken, Tool};
|
||||
use minijinja::{Environment, ErrorKind, Template};
|
||||
use minijinja_contrib::pycompat;
|
||||
|
||||
@ -32,6 +30,7 @@ impl ChatTemplate {
|
||||
env.set_unknown_method_callback(pycompat::unknown_method_callback);
|
||||
let template_str = template.into_boxed_str();
|
||||
env.add_function("raise_exception", raise_exception);
|
||||
tracing::debug!("Loading template: {:#?}", template_str);
|
||||
|
||||
// leaking env and template_str as read-only, static resources for performance.
|
||||
let template = Box::leak(env)
|
||||
@ -42,6 +41,7 @@ impl ChatTemplate {
|
||||
let variables = template.undeclared_variables(true);
|
||||
// check if the `tools` variable is used in the template
|
||||
let use_default_tool_template = !variables.contains("tools");
|
||||
tracing::debug!("Use default tool template: {}", use_default_tool_template);
|
||||
|
||||
Self {
|
||||
template,
|
||||
@ -56,25 +56,36 @@ impl ChatTemplate {
|
||||
&self,
|
||||
guideline: Option<&str>,
|
||||
mut messages: Vec<Message>,
|
||||
grammar_with_prompt: Option<(GrammarType, String)>,
|
||||
tools_and_prompt: Option<(Vec<Tool>, String)>,
|
||||
) -> Result<String, InferError> {
|
||||
if self.use_default_tool_template {
|
||||
if let Some(last_message) = messages.last_mut() {
|
||||
if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt {
|
||||
last_message.content.push(MessageChunk::Text {
|
||||
text: format!("\n---\n{}\n{}", tool_prompt, tools),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let messages: Vec<TextMessage> = messages.into_iter().map(|c| c.into()).collect();
|
||||
|
||||
// check if guideline is expected but not provided
|
||||
if self.variables.contains("guideline") && guideline.is_none() {
|
||||
return Err(InferError::MissingTemplateVariable("guideline".to_string()));
|
||||
}
|
||||
|
||||
let tools = match tools_and_prompt {
|
||||
Some((tools, tool_prompt)) => {
|
||||
// check if the `tools` variable is used in the template
|
||||
// if not, we need to append the tools to the last message
|
||||
let text = if self.use_default_tool_template {
|
||||
match serde_json::to_string(&tools) {
|
||||
Ok(tools_str) => format!("\n---\n{}\n{}", tools_str, tool_prompt),
|
||||
Err(e) => return Err(InferError::ToolError(e.to_string())),
|
||||
}
|
||||
} else {
|
||||
// if the `tools` variable is used in the template, we just append the tool_prompt
|
||||
format!("\n---\n{}", tool_prompt)
|
||||
};
|
||||
if let Some(last_message) = messages.last_mut() {
|
||||
last_message.content.push(MessageChunk::Text { text });
|
||||
}
|
||||
Some(tools)
|
||||
}
|
||||
None => None,
|
||||
};
|
||||
|
||||
let messages: Vec<TextMessage> = messages.into_iter().map(|c| c.into()).collect();
|
||||
|
||||
self.template
|
||||
.render(ChatTemplateInputs {
|
||||
guideline,
|
||||
@ -82,8 +93,7 @@ impl ChatTemplate {
|
||||
bos_token: self.bos_token.as_deref(),
|
||||
eos_token: self.eos_token.as_deref(),
|
||||
add_generation_prompt: true,
|
||||
tools: None,
|
||||
tools_prompt: None,
|
||||
tools,
|
||||
})
|
||||
.map_err(InferError::TemplateError)
|
||||
}
|
||||
@ -95,7 +105,7 @@ mod tests {
|
||||
use crate::infer::chat_template::raise_exception;
|
||||
use crate::infer::ChatTemplate;
|
||||
use crate::{
|
||||
ChatTemplateInputs, GrammarType, Message, MessageContent, TextMessage, TokenizerConfigToken,
|
||||
ChatTemplateInputs, Message, MessageContent, TextMessage, TokenizerConfigToken, Tool,
|
||||
};
|
||||
use minijinja::Environment;
|
||||
|
||||
@ -854,11 +864,12 @@ mod tests {
|
||||
content: MessageContent::SingleText("Just testing".to_string()),
|
||||
},
|
||||
];
|
||||
let tools = serde_json::json!("[]");
|
||||
let tools_string = r#"[{"type": "function","function": {"name": "get_current_weather","description": "Get the current weather","parameters": {"type": "object","properties": {"location": {"type": "string","description": "The city and state, e.g. San Francisco, CA"},"format": {"type": "string","enum": ["celsius", "fahrenheit"],"description": "The temperature unit to use. Infer this from the users location."}},"required": ["location", "format"]}}}]"#.to_string();
|
||||
let tools: Vec<Tool> = serde_json::from_str(&tools_string).unwrap();
|
||||
let tool_prompt = "This default prompt will be used".to_string();
|
||||
let grammer_with_prompt = (GrammarType::Json(tools), tool_prompt);
|
||||
let result = ct.apply(None, msgs, Some(grammer_with_prompt));
|
||||
let expected = "<s>[INST] I'd like to show off how chat templating works! [/INST]Great! How can I help you today?</s> [INST] Just testing\n---\nThis default prompt will be used\n\"[]\" [/INST]".to_string();
|
||||
let tools_and_prompt = Some((tools, tool_prompt));
|
||||
let result = ct.apply(None, msgs, tools_and_prompt);
|
||||
let expected = "<s>[INST] I'd like to show off how chat templating works! [/INST]Great! How can I help you today?</s> [INST] Just testing\n---\n[{\"type\":\"function\",\"function\":{\"description\":\"Get the current weather\",\"name\":\"get_current_weather\",\"arguments\":{\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}}}]\nThis default prompt will be used [/INST]".to_string();
|
||||
assert_eq!(result.unwrap(), expected);
|
||||
}
|
||||
}
|
||||
|
@ -3,7 +3,7 @@ mod chat_template;
|
||||
pub mod tool_grammar;
|
||||
|
||||
use crate::validation::{ValidGenerateRequest, Validation, ValidationError};
|
||||
use crate::GrammarType;
|
||||
use crate::Tool;
|
||||
use crate::{
|
||||
ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig, HubTokenizerConfig,
|
||||
Message, PrefillToken, Token,
|
||||
@ -140,12 +140,12 @@ impl Infer {
|
||||
&self,
|
||||
guideline: Option<String>,
|
||||
messages: Vec<Message>,
|
||||
grammar_with_prompt: Option<(GrammarType, String)>,
|
||||
tools_and_prompt: Option<(Vec<Tool>, String)>,
|
||||
) -> Result<String, InferError> {
|
||||
self.chat_template
|
||||
.as_ref()
|
||||
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
|
||||
.apply(guideline.as_deref(), messages, grammar_with_prompt)
|
||||
.apply(guideline.as_deref(), messages, tools_and_prompt)
|
||||
.map_err(|e| {
|
||||
metrics::counter!("tgi_request_failure", "err" => "template").increment(1);
|
||||
tracing::error!("{e}");
|
||||
|
@ -1,5 +1,8 @@
|
||||
use crate::infer::InferError;
|
||||
use crate::{FunctionRef, FunctionsMap, Properties, Tool, ToolChoice, ToolType, Tools};
|
||||
use crate::{
|
||||
FunctionDefinition, FunctionRef, FunctionsMap, JsonSchemaTool, Properties, Tool, ToolChoice,
|
||||
ToolType,
|
||||
};
|
||||
use serde_json::{json, Map, Value};
|
||||
use std::collections::HashMap;
|
||||
|
||||
@ -16,17 +19,38 @@ impl ToolGrammar {
|
||||
}
|
||||
|
||||
pub fn apply(
|
||||
tools: Option<Vec<Tool>>,
|
||||
tools: Vec<Tool>,
|
||||
tool_choice: ToolChoice,
|
||||
) -> Result<Option<Tools>, InferError> {
|
||||
) -> Result<(Vec<Tool>, Option<JsonSchemaTool>), InferError> {
|
||||
// if no tools are provided, we return None
|
||||
let tools = match tools {
|
||||
Some(tools) if !tools.is_empty() => tools,
|
||||
_ => return Ok(None),
|
||||
};
|
||||
if tools.is_empty() {
|
||||
return Ok((tools, None));
|
||||
}
|
||||
|
||||
let tool_choice = tool_choice.0.unwrap_or(ToolType::OneOf);
|
||||
|
||||
let mut tools = tools.clone();
|
||||
|
||||
// add the notify_error function to the tools
|
||||
let notify_error = Tool {
|
||||
r#type: "function".to_string(),
|
||||
function: FunctionDefinition {
|
||||
name: "notify_error".to_string(),
|
||||
description: Some("Notify an error or issue".to_string()),
|
||||
arguments: json!({
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"error": {
|
||||
"type": "string",
|
||||
"description": "The error or issue to notify"
|
||||
}
|
||||
},
|
||||
"required": ["error"]
|
||||
}),
|
||||
},
|
||||
};
|
||||
tools.push(notify_error);
|
||||
|
||||
// if tools are provided and no tool_choice we default to the OneOf
|
||||
let tools_to_use = match tool_choice {
|
||||
ToolType::FunctionName(name) => {
|
||||
@ -35,87 +59,57 @@ impl ToolGrammar {
|
||||
ToolType::Function { function } => {
|
||||
vec![Self::find_tool_by_name(&tools, &function.name)?]
|
||||
}
|
||||
ToolType::OneOf => tools,
|
||||
ToolType::NoTool => return Ok(None),
|
||||
ToolType::OneOf => tools.clone(),
|
||||
ToolType::NoTool => return Ok((tools, None)),
|
||||
};
|
||||
|
||||
// adds the error notification function for LLM feedback if required
|
||||
let mut text_response_properties = Map::new();
|
||||
text_response_properties.insert(
|
||||
"error".to_string(),
|
||||
serde_json::json!({
|
||||
"type": "string",
|
||||
"description": "The error or issue to notify"
|
||||
}),
|
||||
);
|
||||
text_response_properties.insert(
|
||||
"_name".to_string(),
|
||||
serde_json::json!({
|
||||
"type": "string",
|
||||
"const": "notify_error"
|
||||
}),
|
||||
);
|
||||
|
||||
let functions: HashMap<String, serde_json::Value> = tools_to_use
|
||||
.iter()
|
||||
.map(|tool| {
|
||||
let func = tool.function.clone();
|
||||
|
||||
// Clone the existing parameters, which are expected to be a JSON object
|
||||
let mut params = if let Value::Object(params) = &func.arguments {
|
||||
params.clone()
|
||||
} else {
|
||||
Map::new()
|
||||
};
|
||||
let mut params = Map::new();
|
||||
|
||||
// Insert the function's description at the top level, outside of properties
|
||||
params.insert(
|
||||
"description".to_string(),
|
||||
Value::String(func.description.clone().unwrap_or_default()),
|
||||
Value::String(func.description.unwrap_or_default()),
|
||||
);
|
||||
|
||||
// Ensure 'properties' exists and is an object
|
||||
let properties = params
|
||||
.entry("properties".to_string())
|
||||
.or_insert_with(|| json!({}))
|
||||
.as_object_mut()
|
||||
.unwrap();
|
||||
let mut properties = Map::new();
|
||||
let mut required = vec![Value::String("_name".to_string())];
|
||||
|
||||
// Insert the constant for the function name inside 'properties'
|
||||
properties.insert(
|
||||
"_name".to_string(),
|
||||
json!({
|
||||
"type": "string",
|
||||
"const": func.name.clone(),
|
||||
// "description": "The name of the function"
|
||||
}),
|
||||
);
|
||||
|
||||
// Check if 'required' exists, and it is an array. If not, create an empty array.
|
||||
let required = params
|
||||
.entry("required".to_string())
|
||||
.or_insert_with(|| json!([]))
|
||||
.as_array_mut()
|
||||
.unwrap();
|
||||
|
||||
// Add 'name' to the 'required' array if it is not already present
|
||||
if !required.iter().any(|r| r == "_name") {
|
||||
required.push(json!("_name"));
|
||||
if let Value::Object(args) = func.arguments {
|
||||
if let Some(Value::Object(props)) = args.get("properties") {
|
||||
properties.extend(props.clone());
|
||||
}
|
||||
if let Some(Value::Array(reqs)) = args.get("required") {
|
||||
required.extend(reqs.clone());
|
||||
}
|
||||
params.insert(
|
||||
"additionalProperties".to_string(),
|
||||
Value::Bool(
|
||||
args.get("additionalProperties").and_then(|v| v.as_str())
|
||||
== Some("true"),
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
params.insert("properties".to_string(), Value::Object(properties));
|
||||
params.insert("required".to_string(), Value::Array(required));
|
||||
|
||||
(func.name, Value::Object(params))
|
||||
})
|
||||
.chain([(
|
||||
"notify_error".to_string(),
|
||||
serde_json::json!({
|
||||
"properties": text_response_properties,
|
||||
"required": ["error", "_name"],
|
||||
"type": "object"
|
||||
}),
|
||||
)])
|
||||
.collect();
|
||||
|
||||
let tools = Tools {
|
||||
let tool_schema = JsonSchemaTool {
|
||||
functions_map: FunctionsMap { functions },
|
||||
properties: Properties {
|
||||
function: tools_to_use
|
||||
@ -123,13 +117,10 @@ impl ToolGrammar {
|
||||
.map(|tool| FunctionRef {
|
||||
ref_path: format!("#/$functions/{}", tool.function.name.clone()),
|
||||
})
|
||||
.chain(std::iter::once(FunctionRef {
|
||||
ref_path: "#/$functions/notify_error".to_string(),
|
||||
}))
|
||||
.collect(),
|
||||
},
|
||||
};
|
||||
|
||||
Ok(Some(tools))
|
||||
Ok((tools, Some(tool_schema)))
|
||||
}
|
||||
}
|
||||
|
@ -840,10 +840,10 @@ pub(crate) struct ChatRequest {
|
||||
pub tools: Option<Vec<Tool>>,
|
||||
|
||||
/// A prompt to be appended before the tools
|
||||
#[serde(default = "default_tool_prompt")]
|
||||
#[serde(default)]
|
||||
#[schema(
|
||||
nullable = true,
|
||||
example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
|
||||
example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables."
|
||||
)]
|
||||
pub tool_prompt: Option<String>,
|
||||
|
||||
@ -865,10 +865,8 @@ pub(crate) struct ChatRequest {
|
||||
pub guideline: Option<String>,
|
||||
}
|
||||
|
||||
fn default_tool_prompt() -> Option<String> {
|
||||
Some(
|
||||
"\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
|
||||
)
|
||||
pub fn default_tool_prompt() -> String {
|
||||
"\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.\n".to_string()
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
|
||||
@ -910,7 +908,7 @@ impl From<ToolTypeDeserializer> for ToolChoice {
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
|
||||
pub struct Tools {
|
||||
pub struct JsonSchemaTool {
|
||||
#[serde(flatten)]
|
||||
functions_map: FunctionsMap,
|
||||
properties: Properties,
|
||||
@ -968,8 +966,7 @@ pub(crate) struct ChatTemplateInputs<'a> {
|
||||
bos_token: Option<&'a str>,
|
||||
eos_token: Option<&'a str>,
|
||||
add_generation_prompt: bool,
|
||||
tools: Option<&'a str>,
|
||||
tools_prompt: Option<&'a str>,
|
||||
tools: Option<Vec<Tool>>,
|
||||
guideline: Option<&'a str>,
|
||||
}
|
||||
|
||||
|
@ -8,7 +8,7 @@ use crate::kserve::{
|
||||
kserve_model_metadata, kserve_model_metadata_ready,
|
||||
};
|
||||
use crate::validation::ValidationError;
|
||||
use crate::ChatTokenizeResponse;
|
||||
use crate::{default_tool_prompt, ChatTokenizeResponse};
|
||||
use crate::{
|
||||
usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
|
||||
GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
|
||||
@ -166,7 +166,7 @@ async fn get_chat_tokenize(
|
||||
} = req;
|
||||
|
||||
let tool_prompt = tool_prompt.unwrap_or_default();
|
||||
let (inputs, _grammar, _tool_grammar) = prepare_chat_input(
|
||||
let (inputs, _grammar, _using_tools) = prepare_chat_input(
|
||||
&infer,
|
||||
response_format,
|
||||
tools,
|
||||
@ -1178,14 +1178,16 @@ async fn chat_completions(
|
||||
let repetition_penalty = presence_penalty.map(|x| x + 2.0);
|
||||
let max_new_tokens = max_tokens.or(Some(100));
|
||||
let logprobs = logprobs.unwrap_or(false);
|
||||
let tool_prompt = tool_prompt.unwrap_or_default();
|
||||
let tool_prompt = tool_prompt
|
||||
.filter(|s| !s.is_empty())
|
||||
.unwrap_or_else(default_tool_prompt);
|
||||
let stop = stop.unwrap_or_default();
|
||||
// enable greedy only when temperature is 0
|
||||
let (do_sample, temperature) = match temperature {
|
||||
Some(temperature) if temperature == 0.0 => (false, None),
|
||||
other => (true, other),
|
||||
};
|
||||
let (inputs, grammar, tool_grammar) = prepare_chat_input(
|
||||
let (inputs, grammar, using_tools) = prepare_chat_input(
|
||||
&infer,
|
||||
response_format,
|
||||
tools,
|
||||
@ -1241,7 +1243,7 @@ async fn chat_completions(
|
||||
});
|
||||
|
||||
// replace the content with the tool calls if grammar is present
|
||||
let (content, tool_calls) = if tool_grammar.is_some() {
|
||||
let (content, tool_calls) = if using_tools {
|
||||
(None, Some(vec![stream_token.token.text]))
|
||||
} else {
|
||||
let content = if !stream_token.token.special {
|
||||
@ -1295,7 +1297,7 @@ async fn chat_completions(
|
||||
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
||||
.as_secs();
|
||||
|
||||
let (tool_calls, output) = if tool_grammar.is_some() {
|
||||
let (tool_calls, output) = if using_tools {
|
||||
let gen_text_value: Value =
|
||||
serde_json::from_str(&generation.generated_text).map_err(|e| {
|
||||
InferError::ToolError(format!(
|
||||
@ -2560,7 +2562,7 @@ fn create_post_processor(
|
||||
Ok(post_processor)
|
||||
}
|
||||
|
||||
type PreparedInput = (String, Option<GrammarType>, Option<Tools>);
|
||||
type PreparedInput = (String, Option<GrammarType>, bool);
|
||||
|
||||
fn prepare_chat_input(
|
||||
infer: &Infer,
|
||||
@ -2577,19 +2579,139 @@ fn prepare_chat_input(
|
||||
));
|
||||
}
|
||||
|
||||
// when response_format is set, tools are not included when applying the chat template to generate inputs
|
||||
if let Some(format) = response_format {
|
||||
let inputs = infer.apply_chat_template(guideline, messages, None)?;
|
||||
return Ok((inputs, Some(format), None));
|
||||
return Ok((inputs, Some(format), false));
|
||||
}
|
||||
|
||||
// if tools are set, apply the tool grammar and then the chat template
|
||||
let tool_grammar: Option<Tools> = ToolGrammar::apply(tools, tool_choice)?;
|
||||
let grammar = tool_grammar
|
||||
// when no response_format is set and tools are included, apply the chat template with the tools
|
||||
// to generate inputs
|
||||
if let Some(tools) = tools {
|
||||
let (updated_tools, tool_schema) = ToolGrammar::apply(tools, tool_choice)?;
|
||||
|
||||
let grammar = tool_schema
|
||||
.as_ref()
|
||||
.map(|t| GrammarType::Json(serde_json::json!(t)));
|
||||
let tools_grammar_prompt = tool_grammar
|
||||
.as_ref()
|
||||
.map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt.into()));
|
||||
let inputs = infer.apply_chat_template(guideline, messages, tools_grammar_prompt)?;
|
||||
Ok((inputs, grammar, tool_grammar))
|
||||
|
||||
let inputs: String = infer.apply_chat_template(
|
||||
guideline,
|
||||
messages,
|
||||
Some((updated_tools, tool_prompt.into())),
|
||||
)?;
|
||||
return Ok((inputs, grammar, tool_schema.is_some()));
|
||||
}
|
||||
|
||||
// if no response_format or tools are set simply apply the chat template to generate inputs
|
||||
let inputs = infer.apply_chat_template(guideline, messages, None)?;
|
||||
Ok((inputs, None, false))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::ChatTemplateVersions;
|
||||
use crate::HubTokenizerConfig;
|
||||
use crate::TokenizerConfigToken;
|
||||
use crate::Tool;
|
||||
|
||||
use serde_json::json;
|
||||
|
||||
#[test]
|
||||
fn test_prepare_chat_input() {
|
||||
// Mock Backend to avoid network requests
|
||||
struct MockBackend;
|
||||
|
||||
impl Backend for MockBackend {
|
||||
fn schedule(
|
||||
&self,
|
||||
_request: crate::validation::ValidGenerateRequest,
|
||||
) -> Result<
|
||||
tokio_stream::wrappers::UnboundedReceiverStream<
|
||||
Result<InferStreamResponse, InferError>,
|
||||
>,
|
||||
InferError,
|
||||
> {
|
||||
unimplemented!("Never called in this test");
|
||||
}
|
||||
fn health<'a, 'async_trait>(
|
||||
&'a self,
|
||||
_current_health: bool,
|
||||
) -> core::pin::Pin<
|
||||
Box<dyn core::future::Future<Output = bool> + core::marker::Send + 'async_trait>,
|
||||
>
|
||||
where
|
||||
'a: 'async_trait,
|
||||
Self: 'async_trait,
|
||||
{
|
||||
unimplemented!("Never called in this test");
|
||||
}
|
||||
}
|
||||
|
||||
let backend = MockBackend {};
|
||||
|
||||
let mut tokenizer_config = HubTokenizerConfig::default();
|
||||
|
||||
// mock tokenizer config values
|
||||
tokenizer_config.bos_token = Some(TokenizerConfigToken::String("<s>".to_string()));
|
||||
tokenizer_config.eos_token = Some(TokenizerConfigToken::String("</s>".to_string()));
|
||||
tokenizer_config.chat_template = Some(
|
||||
ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message[\"role\"] == \"user\" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- \"[AVAILABLE_TOOLS] [\" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- '{\"type\": \"function\", \"function\": {' }}\n {%- for key, val in tool.items() if key != \"return\" %}\n {%- if val is string %}\n {{- '\"' + key + '\": \"' + val + '\"' }}\n {%- else %}\n {{- '\"' + key + '\": ' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \"}}\" }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" }}\n {%- endif %}\n {%- endfor %}\n {{- \"[/AVAILABLE_TOOLS]\" }}\n {%- endif %}\n {%- if loop.last and system_message is defined %}\n {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n {%- else %}\n {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n {%- endif %}\n {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n {{- \"[TOOL_CALLS] [\" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message[\"role\"] == \"assistant\" %}\n {{- \" \" + message[\"content\"]|trim + eos_token}}\n {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n {%- else %}\n {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n {%- endif %}\n{%- endfor %}\n".to_string())
|
||||
);
|
||||
|
||||
let infer = Infer::new(
|
||||
backend,
|
||||
Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
|
||||
1,
|
||||
tokenizer_config,
|
||||
HubProcessorConfig::default(),
|
||||
);
|
||||
let response_format = None;
|
||||
let tools = Some(vec![Tool {
|
||||
r#type: "function".to_string(),
|
||||
function: FunctionDefinition {
|
||||
name: "get_current_weather".to_string(),
|
||||
description: Some("Get the current weather".to_string()),
|
||||
arguments: json!({
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The city and state, e.g. San Francisco, CA"
|
||||
},
|
||||
"format": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
"description": "The temperature unit to use. Infer this from the users location."
|
||||
}
|
||||
},
|
||||
"required": ["location", "format"]
|
||||
}),
|
||||
},
|
||||
}]);
|
||||
let tool_prompt = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.";
|
||||
let guideline = None;
|
||||
let messages = vec![Message {
|
||||
name: None,
|
||||
role: "user".to_string(),
|
||||
content: MessageContent::SingleText(
|
||||
"What is the weather like in New York?".to_string(),
|
||||
),
|
||||
}];
|
||||
|
||||
let result = prepare_chat_input(
|
||||
&infer,
|
||||
response_format,
|
||||
tools,
|
||||
ToolChoice(None),
|
||||
tool_prompt,
|
||||
guideline,
|
||||
messages,
|
||||
);
|
||||
|
||||
assert!(result.is_ok());
|
||||
let (inputs, _grammar, using_tools) = result.unwrap();
|
||||
assert_eq!(using_tools, true);
|
||||
assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"error\":{\"description\":\"The error or issue to notify\",\"type\":\"string\"}},\"required\":[\"error\"],\"type\":\"object\"}, \"description\": \"Notify an error or issue\", \"name\": \"notify_error\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
|
||||
}
|
||||
}
|
||||
|
@ -6,7 +6,12 @@ from .common import Seqlen
|
||||
if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false":
|
||||
raise ImportError("`USE_FLASH_ATTENTION` is false.")
|
||||
if SYSTEM == "cuda":
|
||||
from .cuda import attention, paged_attention, reshape_and_cache, SUPPORTS_WINDOWING
|
||||
from .cuda import (
|
||||
attention,
|
||||
paged_attention,
|
||||
reshape_and_cache,
|
||||
SUPPORTS_WINDOWING,
|
||||
)
|
||||
elif SYSTEM == "rocm":
|
||||
from .rocm import attention, paged_attention, reshape_and_cache, SUPPORTS_WINDOWING
|
||||
elif SYSTEM == "ipex":
|
||||
|
@ -76,7 +76,7 @@ def paged_attention(
|
||||
# sequences or heads is large, we use V1 since there is enough work
|
||||
# to parallelize.
|
||||
if ATTENTION == "flashinfer":
|
||||
from text_generation_server.layers.attention.flash_infer import decode_state
|
||||
from text_generation_server.layers.attention.flashinfer import decode_state
|
||||
|
||||
return decode_state.get().forward(
|
||||
query.contiguous(),
|
||||
@ -221,9 +221,11 @@ SUPPORTS_WINDOWING = V2
|
||||
if ATTENTION == "flashinfer":
|
||||
|
||||
def attention(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
key_cache: torch.Tensor,
|
||||
value_cache: torch.Tensor,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
softmax_scale,
|
||||
@ -231,14 +233,15 @@ if ATTENTION == "flashinfer":
|
||||
causal=True,
|
||||
softcap=0.0,
|
||||
):
|
||||
from text_generation_server.layers.attention.flash_infer import prefill_state
|
||||
assert window_size_left == -1, "Windowing is not supported with flash infer"
|
||||
from text_generation_server.layers.attention.flashinfer import (
|
||||
prefill_with_paged_kv_state,
|
||||
)
|
||||
|
||||
return prefill_state.get().forward(
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
return prefill_with_paged_kv_state.get().forward(
|
||||
q.contiguous(),
|
||||
causal=causal,
|
||||
window_left=window_size_left,
|
||||
paged_kv_cache=(key_cache, value_cache),
|
||||
logits_soft_cap=softcap,
|
||||
sm_scale=softmax_scale,
|
||||
)
|
||||
@ -249,6 +252,8 @@ elif V2:
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
key_cache: torch.Tensor,
|
||||
value_cache: torch.Tensor,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
softmax_scale,
|
||||
@ -289,6 +294,8 @@ else:
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
key_cache: torch.Tensor,
|
||||
value_cache: torch.Tensor,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
softmax_scale,
|
||||
|
@ -9,6 +9,10 @@ prefill_state: ContextVar[flashinfer.BatchPrefillWithRaggedKVCacheWrapper] = Con
|
||||
"prefill_state"
|
||||
)
|
||||
|
||||
prefill_with_paged_kv_state: ContextVar[
|
||||
flashinfer.BatchPrefillWithPagedKVCacheWrapper
|
||||
] = ContextVar("prefill_with_paged_kv_state")
|
||||
|
||||
decode_state: ContextVar[flashinfer.BatchDecodeWithPagedKVCacheWrapper] = ContextVar(
|
||||
"decode_state"
|
||||
)
|
||||
@ -24,6 +28,78 @@ def get_workspace(device):
|
||||
return workspace
|
||||
|
||||
|
||||
def create_prefill_with_paged_kv_state(
|
||||
*,
|
||||
device: torch.device,
|
||||
):
|
||||
"""Create a prefill state that uses the KV cache."""
|
||||
workspace_buffer = get_workspace(device)
|
||||
return flashinfer.BatchPrefillWithPagedKVCacheWrapper(
|
||||
workspace_buffer, kv_layout="NHD", use_cuda_graph=False
|
||||
)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def use_prefill_with_paged_kv_state(
|
||||
*,
|
||||
state: flashinfer.BatchPrefillWithPagedKVCacheWrapper,
|
||||
block_tables: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
head_size: int,
|
||||
page_size: int,
|
||||
query_dtype: str = "float16",
|
||||
):
|
||||
"""
|
||||
Context manager to set the active flashinfer prefill state to the given
|
||||
`state` and parameters. This state will be used by all calls to the
|
||||
`attention` function while the context manager is active.
|
||||
"""
|
||||
|
||||
indptr = torch.zeros(
|
||||
input_lengths.shape[0] + 1, device=input_lengths.device, dtype=torch.int32
|
||||
)
|
||||
# Round up to page size and then calculate the cumulative sum to get
|
||||
# the indices into the block table.
|
||||
torch.add(input_lengths, page_size - 1, out=indptr[1:])
|
||||
indptr[1:].div_(page_size, rounding_mode="floor")
|
||||
indptr[1:].cumsum_(-1)
|
||||
|
||||
# Get the lengths of the last page in a block.
|
||||
if page_size == 1:
|
||||
last_page_len = torch.ones(
|
||||
input_lengths.shape[0], dtype=torch.int32, device=input_lengths.device
|
||||
)
|
||||
else:
|
||||
last_page_len = torch.empty(
|
||||
input_lengths.shape[0], dtype=torch.int32, device=input_lengths.device
|
||||
)
|
||||
torch.sub(input_lengths, 1, out=last_page_len)
|
||||
last_page_len.remainder_(page_size)
|
||||
last_page_len += 1
|
||||
|
||||
token = prefill_with_paged_kv_state.set(state)
|
||||
try:
|
||||
state.begin_forward(
|
||||
qo_indptr=cu_seqlens,
|
||||
paged_kv_indptr=indptr,
|
||||
paged_kv_indices=block_tables,
|
||||
paged_kv_last_page_len=last_page_len,
|
||||
num_qo_heads=num_heads,
|
||||
num_kv_heads=num_kv_heads,
|
||||
head_dim=head_size,
|
||||
q_data_type=query_dtype,
|
||||
page_size=page_size,
|
||||
)
|
||||
yield
|
||||
finally:
|
||||
state.end_forward()
|
||||
if token is not None:
|
||||
prefill_with_paged_kv_state.reset(token)
|
||||
|
||||
|
||||
def create_prefill_state(
|
||||
*,
|
||||
device: torch.device,
|
@ -32,6 +32,8 @@ class MedusaModel(torch.nn.Module):
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
if not self.heads:
|
||||
return None
|
||||
speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
|
||||
return speculative_logits
|
||||
|
||||
|
@ -298,6 +298,8 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -337,6 +337,8 @@ class DbrxAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -365,6 +365,8 @@ class DeepseekV2Attention(torch.nn.Module):
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -238,6 +238,8 @@ class FlashGemma2Attention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -232,6 +232,8 @@ class FlashGemmaAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -232,6 +232,8 @@ class FlashGPT2Attention(torch.nn.Module):
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -220,6 +220,8 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -219,6 +219,8 @@ class MistralAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -276,6 +276,8 @@ class MixtralAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -173,6 +173,8 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
qkv[:, 0],
|
||||
qkv[:, 1],
|
||||
qkv[:, 2],
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -34,6 +34,11 @@ class PaliGemmaForConditionalGeneration(nn.Module):
|
||||
config=config.vision_config,
|
||||
weights=weights,
|
||||
)
|
||||
self.post_vision_tower_layernorm = nn.LayerNorm.load(
|
||||
prefix="vision_tower.vision_model.post_layernorm",
|
||||
weights=weights,
|
||||
eps=config.vision_config.layer_norm_eps,
|
||||
)
|
||||
|
||||
self.multi_modal_projector = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
@ -84,7 +89,10 @@ class PaliGemmaForConditionalGeneration(nn.Module):
|
||||
if pixel_values is not None:
|
||||
pixel_values = pixel_values.to(dtype=inputs_embeds.dtype)
|
||||
image_outputs = self.vision_tower(pixel_values)
|
||||
image_features = self.multi_modal_projector(image_outputs.last_hidden_state)
|
||||
last_hidden_state = self.post_vision_tower_layernorm(
|
||||
image_outputs.last_hidden_state
|
||||
)
|
||||
image_features = self.multi_modal_projector(last_hidden_state)
|
||||
|
||||
# mask where image or padding tokens
|
||||
mask = input_ids == self.config.image_token_index
|
||||
|
@ -194,6 +194,8 @@ class FlashPhiAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -137,6 +137,8 @@ class Qwen2Attention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -208,6 +208,8 @@ class FlashRWAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
@ -326,6 +328,8 @@ class FlashRWLargeAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=2, index=0),
|
||||
torch.select(kv, dim=2, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -293,6 +293,8 @@ class FlashMQAttention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(key_value, dim=1, index=0),
|
||||
torch.select(key_value, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -242,6 +242,8 @@ class Starcoder2Attention(torch.nn.Module):
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
|
@ -364,7 +364,6 @@ class SiglipEncoder(nn.Module):
|
||||
inputs_embeds,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
):
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
hidden_states, _ = encoder_layer(
|
||||
@ -386,20 +385,11 @@ class SiglipVisionTransformer(nn.Module):
|
||||
self.encoder = SiglipEncoder(
|
||||
prefix=f"{prefix}.encoder", config=config, weights=weights
|
||||
)
|
||||
self.post_layernorm = nn.LayerNorm.load(
|
||||
prefix=f"{prefix}.post_layernorm",
|
||||
weights=weights,
|
||||
eps=config.layer_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
pixel_values: Optional[torch.FloatTensor] = None,
|
||||
):
|
||||
r"""
|
||||
Returns:
|
||||
|
||||
"""
|
||||
if pixel_values is None:
|
||||
raise ValueError("You have to specify pixel_values")
|
||||
|
||||
@ -412,10 +402,9 @@ class SiglipVisionTransformer(nn.Module):
|
||||
inputs_embeds=hidden_states,
|
||||
)
|
||||
last_hidden_state = encoder_outputs
|
||||
post_last_hidden_state = self.post_layernorm(last_hidden_state)
|
||||
|
||||
return BaseModelOutputWithPooling(
|
||||
last_hidden_state=post_last_hidden_state,
|
||||
last_hidden_state=last_hidden_state,
|
||||
# pooler_output=pooled_output,
|
||||
# hidden_states=encoder_outputs,
|
||||
)
|
||||
|
@ -43,6 +43,7 @@ from text_generation_server.models.globals import (
|
||||
ATTENTION,
|
||||
BLOCK_SIZE,
|
||||
CUDA_GRAPHS,
|
||||
PREFIX_CACHING,
|
||||
get_adapter_to_index,
|
||||
)
|
||||
from text_generation_server.layers.attention import Seqlen
|
||||
@ -138,6 +139,9 @@ class FlashCausalLMBatch(Batch):
|
||||
block_tables_tensor: torch.Tensor
|
||||
# tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences
|
||||
slots: torch.Tensor
|
||||
# size [b], containing the number of blocks that can be retrieved from the cache
|
||||
prefix_lens: List[int]
|
||||
prefix_lens_tensor: torch.Tensor
|
||||
|
||||
max_seqlen: int
|
||||
|
||||
@ -146,6 +150,9 @@ class FlashCausalLMBatch(Batch):
|
||||
prefill_next_token_indices: Optional[torch.tensor]
|
||||
prefill_cu_outlens: Optional[List[int]]
|
||||
|
||||
# Prefixes
|
||||
prefix_ids: List[List[int]]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[List[int]]
|
||||
all_input_ids_tensor: torch.Tensor
|
||||
@ -213,6 +220,7 @@ class FlashCausalLMBatch(Batch):
|
||||
prefix_offsets = []
|
||||
read_offsets = []
|
||||
all_input_ids = []
|
||||
prefix_ids = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
all_prefill_logprobs = True
|
||||
@ -230,7 +238,7 @@ class FlashCausalLMBatch(Batch):
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
cumulative_max_length = 0
|
||||
cumulative_slot_tokens = 0
|
||||
prefill_out_cumulative_length = 0
|
||||
|
||||
num_blocks = 0
|
||||
@ -240,6 +248,7 @@ class FlashCausalLMBatch(Batch):
|
||||
|
||||
block_tables = []
|
||||
slots = []
|
||||
prefix_lens = []
|
||||
|
||||
# Parse batch
|
||||
for i, (r, tokenized_input) in enumerate(
|
||||
@ -255,6 +264,19 @@ class FlashCausalLMBatch(Batch):
|
||||
):
|
||||
tokenized_input = tokenized_input[1:]
|
||||
|
||||
orig_input_length = len(tokenized_input)
|
||||
|
||||
if PREFIX_CACHING:
|
||||
prefix_len = r.prefix_len
|
||||
if prefix_len == orig_input_length:
|
||||
assert prefix_len > 0
|
||||
prefix_len -= 1
|
||||
else:
|
||||
prefix_len = 0
|
||||
|
||||
prefix_ids.append(tokenized_input[:prefix_len])
|
||||
tokenized_input = tokenized_input[prefix_len:]
|
||||
|
||||
input_length = len(tokenized_input)
|
||||
input_lengths.append(input_length)
|
||||
|
||||
@ -264,7 +286,9 @@ class FlashCausalLMBatch(Batch):
|
||||
all_input_ids.append(tokenized_input)
|
||||
|
||||
# Position ids
|
||||
request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
|
||||
request_position_ids = torch.arange(
|
||||
prefix_len, orig_input_length, dtype=torch.int32
|
||||
)
|
||||
position_ids.append(request_position_ids)
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
@ -288,11 +312,17 @@ class FlashCausalLMBatch(Batch):
|
||||
# Remove one as the first token des not have a past
|
||||
speculative_length = get_speculate()
|
||||
speculative_length = 0 if speculative_length is None else speculative_length
|
||||
total_tokens = input_length + max_new_tokens - 1 + speculative_length
|
||||
|
||||
# Tokens that need to be mapped to blocks.
|
||||
block_tokens = orig_input_length + max_new_tokens - 1 + speculative_length
|
||||
|
||||
# Tokens that need to be mapped to slots. We don't need slots for the
|
||||
# cached prefix (if present).
|
||||
slot_tokens = input_length + max_new_tokens - 1 + speculative_length
|
||||
|
||||
# blocks and slots can be empty (for example in warmup)
|
||||
if not r.blocks:
|
||||
needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
|
||||
needed_blocks = math.ceil(block_tokens / BLOCK_SIZE)
|
||||
request_blocks = [
|
||||
b for b in range(num_blocks, num_blocks + needed_blocks)
|
||||
]
|
||||
@ -303,16 +333,20 @@ class FlashCausalLMBatch(Batch):
|
||||
]
|
||||
else:
|
||||
request_blocks = r.blocks
|
||||
request_slots = r.slots
|
||||
request_slots = r.slots[
|
||||
prefix_len: #: orig_input_length + max_new_tokens + speculative_length
|
||||
]
|
||||
|
||||
block_tables.append(request_blocks)
|
||||
slots.extend(request_slots[:total_tokens])
|
||||
|
||||
slots.extend(request_slots)
|
||||
prefix_lens.append(prefix_len)
|
||||
num_blocks += len(request_blocks)
|
||||
start_slots.append(cumulative_max_length)
|
||||
start_slots.append(cumulative_slot_tokens)
|
||||
|
||||
request_slot_indices = torch.arange(
|
||||
cumulative_max_length,
|
||||
cumulative_max_length + input_length,
|
||||
cumulative_slot_tokens,
|
||||
cumulative_slot_tokens + input_length,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
slot_indices.append(request_slot_indices)
|
||||
@ -348,7 +382,7 @@ class FlashCausalLMBatch(Batch):
|
||||
|
||||
# Update
|
||||
cumulative_length += input_length
|
||||
cumulative_max_length += total_tokens
|
||||
cumulative_slot_tokens += slot_tokens
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
max_blocks = max(max_blocks, len(request_blocks))
|
||||
max_length = max(
|
||||
@ -425,12 +459,14 @@ class FlashCausalLMBatch(Batch):
|
||||
)
|
||||
|
||||
slots = torch.tensor(slots, dtype=torch.int64, device=device)
|
||||
|
||||
block_tables_tensor = torch.zeros(
|
||||
(len(block_tables), max_blocks), dtype=torch.int32, device="cpu"
|
||||
)
|
||||
for i, request_blocks in enumerate(block_tables):
|
||||
block_tables_tensor[i, : len(request_blocks)] = torch.tensor(request_blocks)
|
||||
block_tables_tensor = block_tables_tensor.to(device)
|
||||
prefix_lens_tensor = torch.tensor(prefix_lens, dtype=torch.int32, device=device)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
@ -445,6 +481,8 @@ class FlashCausalLMBatch(Batch):
|
||||
block_tables=block_tables,
|
||||
block_tables_tensor=block_tables_tensor,
|
||||
slots=slots,
|
||||
prefix_lens=prefix_lens,
|
||||
prefix_lens_tensor=prefix_lens_tensor,
|
||||
max_seqlen=max_seqlen,
|
||||
prefill_head_indices=prefill_head_indices,
|
||||
prefill_next_token_indices=prefill_next_token_indices,
|
||||
@ -455,6 +493,7 @@ class FlashCausalLMBatch(Batch):
|
||||
read_offsets=read_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
prefix_ids=prefix_ids,
|
||||
next_token_chooser=next_token_chooser,
|
||||
stopping_criterias=stopping_criterias,
|
||||
top_n_tokens=top_n_tokens,
|
||||
@ -510,8 +549,10 @@ class FlashCausalLMBatch(Batch):
|
||||
start_slots = []
|
||||
block_tables = []
|
||||
all_input_ids = []
|
||||
prefix_ids = []
|
||||
|
||||
input_lengths = []
|
||||
prefix_lens = []
|
||||
prefix_offsets = []
|
||||
read_offsets = []
|
||||
|
||||
@ -533,11 +574,14 @@ class FlashCausalLMBatch(Batch):
|
||||
|
||||
# Get length
|
||||
request_input_length = self.input_lengths[idx]
|
||||
prefix_len = self.prefix_lens[idx]
|
||||
max_seqlen = max(max_seqlen, request_input_length)
|
||||
|
||||
all_input_ids.append(self.all_input_ids[idx])
|
||||
prefix_ids.append(self.prefix_ids[idx])
|
||||
|
||||
input_lengths.append(request_input_length)
|
||||
prefix_lens.append(prefix_len)
|
||||
prefix_offsets.append(self.prefix_offsets[idx])
|
||||
read_offsets.append(self.read_offsets[idx])
|
||||
|
||||
@ -582,6 +626,7 @@ class FlashCausalLMBatch(Batch):
|
||||
block_tables_tensor = self.block_tables_tensor[indices]
|
||||
input_lengths_tensor = self.input_lengths_tensor[indices]
|
||||
slots = self.slots[slot_filtering_indices]
|
||||
prefix_lens_tensor = self.prefix_lens_tensor[indices]
|
||||
next_token_chooser = self.next_token_chooser.filter(indices)
|
||||
top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
|
||||
speculative_ids = (
|
||||
@ -617,10 +662,13 @@ class FlashCausalLMBatch(Batch):
|
||||
prefill_cu_outlens=None,
|
||||
input_lengths=input_lengths,
|
||||
input_lengths_tensor=input_lengths_tensor,
|
||||
prefix_lens=prefix_lens,
|
||||
prefix_lens_tensor=prefix_lens_tensor,
|
||||
prefix_offsets=prefix_offsets,
|
||||
read_offsets=read_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
prefix_ids=prefix_ids,
|
||||
next_token_chooser=next_token_chooser,
|
||||
stopping_criterias=stopping_criterias,
|
||||
top_n_tokens=top_n_tokens,
|
||||
@ -681,6 +729,7 @@ class FlashCausalLMBatch(Batch):
|
||||
block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
|
||||
(total_batch_size, max_blocks)
|
||||
)
|
||||
prefix_lens_tensor = batches[0].prefix_lens_tensor.new_empty(total_batch_size)
|
||||
all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
|
||||
(total_batch_size, max_length)
|
||||
)
|
||||
@ -698,7 +747,9 @@ class FlashCausalLMBatch(Batch):
|
||||
|
||||
start_slots = []
|
||||
block_tables = []
|
||||
prefix_lens = []
|
||||
all_input_ids = []
|
||||
prefix_ids = []
|
||||
|
||||
input_lengths = []
|
||||
prefix_offsets = []
|
||||
@ -760,10 +811,14 @@ class FlashCausalLMBatch(Batch):
|
||||
start_index:end_index, : batch.block_tables_tensor.shape[1]
|
||||
] = batch.block_tables_tensor[:, :max_blocks]
|
||||
|
||||
prefix_lens_tensor[start_index:end_index] = batch.prefix_lens_tensor
|
||||
|
||||
start_slots.append(batch.start_slots + cumulative_slots)
|
||||
|
||||
block_tables.extend(batch.block_tables)
|
||||
prefix_lens.extend(batch.prefix_lens)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
prefix_ids.extend(batch.prefix_ids)
|
||||
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
prefix_offsets.extend(batch.prefix_offsets)
|
||||
@ -809,6 +864,8 @@ class FlashCausalLMBatch(Batch):
|
||||
slot_indices=slot_indices,
|
||||
block_tables=block_tables,
|
||||
block_tables_tensor=block_tables_tensor,
|
||||
prefix_lens=prefix_lens,
|
||||
prefix_lens_tensor=prefix_lens_tensor,
|
||||
slots=slots,
|
||||
max_seqlen=max_seqlen,
|
||||
prefill_head_indices=None,
|
||||
@ -820,6 +877,7 @@ class FlashCausalLMBatch(Batch):
|
||||
read_offsets=read_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
prefix_ids=prefix_ids,
|
||||
next_token_chooser=next_token_chooser,
|
||||
stopping_criterias=stopping_criterias,
|
||||
top_n_tokens=top_n_tokens,
|
||||
@ -970,14 +1028,17 @@ class FlashCausalLM(Model):
|
||||
self.kv_cache = []
|
||||
|
||||
if ATTENTION == "flashinfer":
|
||||
from text_generation_server.layers.attention.flash_infer import (
|
||||
from text_generation_server.layers.attention.flashinfer import (
|
||||
create_prefill_state,
|
||||
create_decode_state,
|
||||
create_prefill_with_paged_kv_state,
|
||||
)
|
||||
|
||||
self.prefill_state = create_prefill_state(device=device)
|
||||
self.prefill_with_paged_kv_state = create_prefill_with_paged_kv_state(
|
||||
device=device
|
||||
)
|
||||
|
||||
if not CUDA_GRAPHS:
|
||||
self.decode_state = create_decode_state(
|
||||
device=device,
|
||||
num_heads=self.num_heads,
|
||||
@ -1074,11 +1135,22 @@ class FlashCausalLM(Model):
|
||||
input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
|
||||
position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
|
||||
slots = torch.arange(bs, dtype=torch.int64, device=self.device)
|
||||
input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
|
||||
block_tables = (
|
||||
torch.arange(max_bt, dtype=torch.int32, device=self.device)
|
||||
.repeat(bs)
|
||||
.reshape((bs, max_bt))
|
||||
input_lengths = [max_s] * bs
|
||||
prefix_lengths = [0] * bs
|
||||
input_lengths_tensor = (
|
||||
torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
|
||||
)
|
||||
prefix_lengths_tensor = torch.zeros(bs, dtype=torch.int32, device=self.device)
|
||||
block_tables = torch.arange(
|
||||
max_bt, dtype=torch.int32, device=self.device
|
||||
).repeat(bs)
|
||||
block_tables = block_tables.reshape((bs, max_bt))
|
||||
|
||||
if ATTENTION == "flashinfer":
|
||||
block_tables = block_tables_to_ragged(
|
||||
block_tables=block_tables,
|
||||
input_lengths=input_lengths,
|
||||
prefix_lens=prefix_lengths,
|
||||
)
|
||||
|
||||
self.cuda_graphs[bs] = {
|
||||
@ -1087,14 +1159,14 @@ class FlashCausalLM(Model):
|
||||
"kv_cache": self.kv_cache,
|
||||
"block_tables": block_tables,
|
||||
"slots": slots,
|
||||
"input_lengths": input_lengths,
|
||||
"input_lengths": input_lengths_tensor,
|
||||
}
|
||||
input_lengths_ = Seqlen(input_lengths=input_lengths)
|
||||
input_lengths_ = Seqlen(input_lengths=input_lengths_tensor)
|
||||
graph = torch.cuda.CUDAGraph()
|
||||
self.cuda_graphs[bs]["graph"] = graph
|
||||
|
||||
if ATTENTION == "flashinfer":
|
||||
from text_generation_server.layers.attention.flash_infer import (
|
||||
from text_generation_server.layers.attention.flashinfer import (
|
||||
create_decode_state_cuda_graphs,
|
||||
)
|
||||
|
||||
@ -1104,7 +1176,7 @@ class FlashCausalLM(Model):
|
||||
last_page_len = torch.ones(bs, dtype=torch.int32, device=self.device)
|
||||
state = create_decode_state_cuda_graphs(
|
||||
device=input_ids.device,
|
||||
block_tables=block_tables.view(-1),
|
||||
block_tables=block_tables,
|
||||
block_tables_ptr=block_tables_ptr,
|
||||
last_page_len=last_page_len,
|
||||
num_heads=self.num_heads,
|
||||
@ -1120,7 +1192,10 @@ class FlashCausalLM(Model):
|
||||
block_tables=block_tables,
|
||||
cu_seqlen_prefill=None,
|
||||
input_lengths=input_lengths,
|
||||
input_lengths_tensor=input_lengths_tensor,
|
||||
state=state,
|
||||
prefix_lens=prefix_lengths,
|
||||
prefix_lens_tensor=prefix_lengths_tensor,
|
||||
):
|
||||
self.model.forward(
|
||||
input_ids=input_ids,
|
||||
@ -1138,7 +1213,7 @@ class FlashCausalLM(Model):
|
||||
torch.cuda.synchronize()
|
||||
|
||||
with torch.cuda.graph(graph, pool=MEM_POOL):
|
||||
input_lengths = Seqlen(input_lengths=input_lengths)
|
||||
input_lengths_tensor = Seqlen(input_lengths=input_lengths_tensor)
|
||||
logits, speculative_logits = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
@ -1146,7 +1221,7 @@ class FlashCausalLM(Model):
|
||||
kv_cache=self.kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
input_lengths=input_lengths,
|
||||
input_lengths=input_lengths_tensor,
|
||||
max_s=max_s,
|
||||
prefill_cache_indices=None,
|
||||
lm_head_indices=None,
|
||||
@ -1334,6 +1409,9 @@ class FlashCausalLM(Model):
|
||||
input_lengths = (
|
||||
input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
|
||||
).view(-1)
|
||||
prefix_lens_tensor = (
|
||||
batch.prefix_lens_tensor.unsqueeze(-1).expand(B, new_length)
|
||||
).reshape(-1)
|
||||
|
||||
# Add Copy the block tables for all members
|
||||
block_tables = (
|
||||
@ -1354,6 +1432,7 @@ class FlashCausalLM(Model):
|
||||
block_tables = batch.block_tables_tensor
|
||||
slots = batch.slots[batch.slot_indices]
|
||||
input_lengths = batch.input_lengths_tensor
|
||||
prefix_lens_tensor = batch.prefix_lens_tensor
|
||||
max_s = batch.max_seqlen
|
||||
lm_head_indices = batch.prefill_head_indices
|
||||
|
||||
@ -1372,10 +1451,20 @@ class FlashCausalLM(Model):
|
||||
cuda_graph = None
|
||||
|
||||
if cu_seqlen_prefill is not None or cuda_graph is None:
|
||||
input_lengths = input_lengths + prefix_lens_tensor
|
||||
if PREFIX_CACHING:
|
||||
block_tables = block_tables_to_ragged(
|
||||
block_tables=block_tables,
|
||||
input_lengths=batch.input_lengths,
|
||||
prefix_lens=batch.prefix_lens,
|
||||
)
|
||||
with self._forward_context(
|
||||
block_tables=block_tables,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
input_lengths=input_lengths,
|
||||
input_lengths=batch.input_lengths,
|
||||
input_lengths_tensor=input_lengths,
|
||||
prefix_lens=batch.prefix_lens,
|
||||
prefix_lens_tensor=prefix_lens_tensor,
|
||||
):
|
||||
input_lengths = Seqlen(input_lengths=input_lengths)
|
||||
logits, speculative_logits = self.model.forward(
|
||||
@ -1399,20 +1488,32 @@ class FlashCausalLM(Model):
|
||||
# Static inputs are potentially padded
|
||||
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
|
||||
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
|
||||
if ATTENTION == "flashinfer":
|
||||
block_tables = block_tables_to_ragged(
|
||||
block_tables=block_tables,
|
||||
input_lengths=batch.input_lengths,
|
||||
prefix_lens=batch.prefix_lens,
|
||||
)
|
||||
cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables
|
||||
else:
|
||||
cuda_graph["block_tables"][
|
||||
: block_tables.shape[0], : block_tables.shape[1]
|
||||
] = block_tables
|
||||
cuda_graph["slots"].fill_(-1)
|
||||
cuda_graph["slots"][: slots.shape[0]] = slots
|
||||
cuda_graph["input_lengths"].zero_()
|
||||
cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
|
||||
cuda_graph["input_lengths"][: input_lengths.shape[0]] = (
|
||||
input_lengths + prefix_lens_tensor
|
||||
)
|
||||
|
||||
state = cuda_graph.get("state")
|
||||
with self._forward_context(
|
||||
block_tables=block_tables,
|
||||
block_tables=cuda_graph["block_tables"],
|
||||
cu_seqlen_prefill=None,
|
||||
input_lengths=input_lengths,
|
||||
state=state,
|
||||
input_lengths=batch.input_lengths,
|
||||
input_lengths_tensor=cuda_graph["input_lengths"],
|
||||
prefix_lens=batch.prefix_lens,
|
||||
prefix_lens_tensor=prefix_lens_tensor,
|
||||
state=cuda_graph.get("state"),
|
||||
):
|
||||
# Replay the graph
|
||||
cuda_graph["graph"].replay()
|
||||
@ -1610,6 +1711,7 @@ class FlashCausalLM(Model):
|
||||
batch.read_offsets,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
batch.prefix_ids,
|
||||
batch.next_token_chooser.do_sample,
|
||||
batch.next_token_chooser.seeds,
|
||||
batch.top_n_tokens,
|
||||
@ -1627,6 +1729,7 @@ class FlashCausalLM(Model):
|
||||
read_offset,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
prefix_ids,
|
||||
do_sample,
|
||||
seed,
|
||||
top_n_tokens,
|
||||
@ -1701,18 +1804,18 @@ class FlashCausalLM(Model):
|
||||
out_end_index = batch.prefill_cu_outlens[i + 1]
|
||||
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
request_prefill_logprobs = [float("nan")] + prefill_logprobs[
|
||||
out_start_index : out_end_index - 1
|
||||
]
|
||||
request_prefill_logprobs = (
|
||||
[float("nan")] * (len(prefix_ids) + 1)
|
||||
) + prefill_logprobs[out_start_index : out_end_index - 1]
|
||||
prefill_token_ids = all_input_ids[:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
prefix_ids + prefill_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
|
||||
prefill_tokens = Tokens(
|
||||
prefill_token_ids,
|
||||
prefix_ids + prefill_token_ids,
|
||||
request_prefill_logprobs,
|
||||
prefill_texts,
|
||||
is_special=[],
|
||||
@ -1794,33 +1897,68 @@ class FlashCausalLM(Model):
|
||||
*,
|
||||
block_tables: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
input_lengths: torch.Tensor,
|
||||
input_lengths: List[int],
|
||||
input_lengths_tensor: torch.Tensor,
|
||||
prefix_lens: List[int],
|
||||
prefix_lens_tensor: torch.Tensor,
|
||||
state: Optional[Any] = None,
|
||||
) -> ContextManager:
|
||||
if ATTENTION != "flashinfer":
|
||||
return nullcontext()
|
||||
|
||||
from text_generation_server.layers.attention.flash_infer import (
|
||||
from text_generation_server.layers.attention.flashinfer import (
|
||||
use_decode_state,
|
||||
use_prefill_state,
|
||||
use_prefill_with_paged_kv_state,
|
||||
)
|
||||
|
||||
# has_prefix_lens = any(prefix_len > 0 for prefix_len in prefix_lens)
|
||||
|
||||
if cu_seqlen_prefill is not None:
|
||||
return use_prefill_state(
|
||||
state=state if state is not None else self.prefill_state,
|
||||
return use_prefill_with_paged_kv_state(
|
||||
state=(
|
||||
state if state is not None else self.prefill_with_paged_kv_state
|
||||
),
|
||||
# block_tables=block_tables_to_ragged(
|
||||
# block_tables=block_tables,
|
||||
# input_lengths=input_lengths,
|
||||
# prefix_lens=prefix_lens,
|
||||
# ),
|
||||
block_tables=block_tables,
|
||||
cu_seqlens=cu_seqlen_prefill,
|
||||
num_heads=self.num_heads,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
head_size=self.head_size,
|
||||
)
|
||||
else:
|
||||
assert input_lengths is not None
|
||||
return use_decode_state(
|
||||
state=state if state is not None else self.decode_state,
|
||||
input_lengths=input_lengths,
|
||||
block_tables=block_tables.view(-1),
|
||||
input_lengths=input_lengths_tensor,
|
||||
num_heads=self.num_heads,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
head_size=self.head_size,
|
||||
page_size=BLOCK_SIZE,
|
||||
)
|
||||
else:
|
||||
assert input_lengths_tensor is not None
|
||||
return use_decode_state(
|
||||
state=state if state is not None else self.decode_state,
|
||||
input_lengths=input_lengths_tensor,
|
||||
block_tables=block_tables,
|
||||
num_heads=self.num_heads,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
head_size=self.head_size,
|
||||
page_size=BLOCK_SIZE,
|
||||
)
|
||||
|
||||
|
||||
def block_tables_to_ragged(
|
||||
*, block_tables: torch.Tensor, input_lengths: List[int], prefix_lens: List[int]
|
||||
) -> torch.Tensor:
|
||||
"""Convert block table to ragged format compatible with FlashInfer."""
|
||||
assert len(input_lengths) == len(prefix_lens)
|
||||
|
||||
total_len = sum(input_lengths) + sum(prefix_lens)
|
||||
block_tables_ragged = torch.empty(
|
||||
total_len, dtype=torch.int32, device=block_tables.device
|
||||
)
|
||||
|
||||
offset = 0
|
||||
for i, (input_length, prefix_len) in enumerate(zip(input_lengths, prefix_lens)):
|
||||
seq_len = prefix_len + input_length
|
||||
block_tables_ragged[offset : offset + seq_len] = block_tables[i][:seq_len]
|
||||
offset += seq_len
|
||||
|
||||
return block_tables_ragged
|
||||
|
@ -5,9 +5,8 @@ from typing import Dict, Optional
|
||||
|
||||
from text_generation_server.utils.log import log_master
|
||||
|
||||
PREFIX_CACHING = os.getenv("USE_PREFIX_CACHING", False)
|
||||
log_master(logger.info, f"Using Attention = {PREFIX_CACHING}")
|
||||
|
||||
PREFIX_CACHING = os.getenv("USE_PREFIX_CACHING", "0").lower() in {"1", "true"}
|
||||
log_master(logger.info, f"Using prefix caching = {PREFIX_CACHING}")
|
||||
ATTENTION = os.getenv("ATTENTION", "flashinfer" if PREFIX_CACHING else "paged")
|
||||
_expected = {"paged", "flashdecoding", "flashinfer"}
|
||||
assert (
|
||||
@ -29,7 +28,6 @@ elif ATTENTION == "flashinfer":
|
||||
else:
|
||||
BLOCK_SIZE = 16
|
||||
|
||||
|
||||
cuda_graphs = os.getenv("CUDA_GRAPHS")
|
||||
if cuda_graphs is not None:
|
||||
try:
|
||||
|
@ -11,7 +11,9 @@ from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.flash_causal_lm import (
|
||||
FlashCausalLMBatch,
|
||||
FlashCausalLM,
|
||||
block_tables_to_ragged,
|
||||
)
|
||||
from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION
|
||||
from text_generation_server.utils.log import log_master
|
||||
from transformers import AutoProcessor
|
||||
from text_generation_server.layers.attention import Seqlen
|
||||
@ -254,6 +256,8 @@ class VlmCausalLM(FlashCausalLM):
|
||||
trust_remote_code: bool,
|
||||
**kwargs,
|
||||
):
|
||||
if PREFIX_CACHING:
|
||||
raise NotImplementedError("Vlm do not work with prefix caching yet")
|
||||
if processor_kwargs is None:
|
||||
processor_kwargs = {}
|
||||
self.processor = processor_class.from_pretrained(
|
||||
@ -310,6 +314,9 @@ class VlmCausalLM(FlashCausalLM):
|
||||
input_lengths = (
|
||||
input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
|
||||
).view(-1)
|
||||
prefix_lens_tensor = (
|
||||
batch.prefix_lens_tensor.unsqueeze(-1).expand(B, new_length)
|
||||
).reshape(-1)
|
||||
|
||||
# Add Copy the block tables for all members
|
||||
block_tables = (
|
||||
@ -330,6 +337,7 @@ class VlmCausalLM(FlashCausalLM):
|
||||
block_tables = batch.block_tables_tensor
|
||||
slots = batch.slots[batch.slot_indices]
|
||||
input_lengths = batch.input_lengths_tensor
|
||||
prefix_lens_tensor = batch.prefix_lens_tensor
|
||||
max_s = batch.max_seqlen
|
||||
lm_head_indices = batch.prefill_head_indices
|
||||
|
||||
@ -349,6 +357,21 @@ class VlmCausalLM(FlashCausalLM):
|
||||
else:
|
||||
cuda_graph = None
|
||||
if cu_seqlen_prefill is not None or cuda_graph is None:
|
||||
input_lengths = input_lengths + prefix_lens_tensor
|
||||
if PREFIX_CACHING:
|
||||
block_tables = block_tables_to_ragged(
|
||||
block_tables=block_tables,
|
||||
input_lengths=batch.input_lengths,
|
||||
prefix_lens=batch.prefix_lens,
|
||||
)
|
||||
with self._forward_context(
|
||||
block_tables=block_tables,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
input_lengths=batch.input_lengths,
|
||||
input_lengths_tensor=input_lengths,
|
||||
prefix_lens=batch.prefix_lens,
|
||||
prefix_lens_tensor=prefix_lens_tensor,
|
||||
):
|
||||
input_lengths = Seqlen(input_lengths=input_lengths)
|
||||
logits, speculative_logits = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
@ -379,13 +402,23 @@ class VlmCausalLM(FlashCausalLM):
|
||||
# Static inputs are potentially padded
|
||||
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
|
||||
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
|
||||
if ATTENTION == "flashinfer":
|
||||
block_tables = block_tables_to_ragged(
|
||||
block_tables=block_tables,
|
||||
input_lengths=batch.input_lengths,
|
||||
prefix_lens=batch.prefix_lens,
|
||||
)
|
||||
cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables
|
||||
else:
|
||||
cuda_graph["block_tables"][
|
||||
: block_tables.shape[0], : block_tables.shape[1]
|
||||
] = block_tables
|
||||
cuda_graph["slots"].fill_(-1)
|
||||
cuda_graph["slots"][: slots.shape[0]] = slots
|
||||
cuda_graph["input_lengths"].zero_()
|
||||
cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
|
||||
cuda_graph["input_lengths"][: input_lengths.shape[0]] = (
|
||||
input_lengths + prefix_lens_tensor
|
||||
)
|
||||
|
||||
# Replay the graph
|
||||
cuda_graph["graph"].replay()
|
||||
|
Loading…
Reference in New Issue
Block a user