Refactor dead code.

This commit is contained in:
Nicolas Patry 2024-07-02 11:13:51 +00:00
parent 245d3de948
commit b28946d695
No known key found for this signature in database
GPG Key ID: E939E8CC91A1C674
3 changed files with 109 additions and 146 deletions

View File

@ -56,8 +56,12 @@ try:
from text_generation_server.models.flash_rw import FlashRWSharded
from text_generation_server.models.flash_gpt2 import FlashGPT2
from text_generation_server.models.flash_neox import FlashNeoXSharded
from text_generation_server.models.flash_llama import (
FlashLlama,
# from text_generation_server.models.flash_llama import (
# FlashLlama,
# )
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
from text_generation_server.models.flash_qwen2 import (
FlashQwen2,
@ -81,7 +85,9 @@ try:
from text_generation_server.models.llava_next import LlavaNext
from text_generation_server.models.idefics2 import Idefics2
from text_generation_server.models.flash_mistral import FlashMistral
from text_generation_server.models.flash_mixtral import FlashMixtral
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM,
)
from text_generation_server.models.flash_phi import FlashPhi
from text_generation_server.models.flash_starcoder2 import FlashStarcoder2
from text_generation_server.models.flash_dbrx import FlashDbrx
@ -97,7 +103,7 @@ if FLASH_ATTENTION:
__all__.append(FlashNeoXSharded)
__all__.append(FlashRWSharded)
__all__.append(FlashSantacoderSharded)
__all__.append(FlashLlama)
# __all__.append(FlashLlama)
__all__.append(IDEFICSSharded)
__all__.append(FlashMistral)
__all__.append(FlashMixtral)
@ -599,9 +605,10 @@ def get_model(
elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
if FLASH_ATTENTION:
return FlashLlama(
model_id,
revision,
return FlashCausalLM(
model_id=model_id,
model_class=FlashLlamaForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
@ -743,12 +750,14 @@ def get_model(
if model_type == MISTRAL:
if FLASH_ATTENTION:
return FlashMistral(
model_id,
revision,
model_id=model_id,
model_class=FlashMistralForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
elif sharded:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))

View File

@ -10,7 +10,12 @@ import numpy as np
from loguru import logger
from dataclasses import dataclass
from opentelemetry import trace
from transformers import PreTrainedTokenizerBase
from transformers import (
PreTrainedTokenizerBase,
AutoConfig,
AutoTokenizer,
GenerationConfig,
)
from typing import Iterable, Optional, Tuple, List, Type, Dict
from text_generation_server.adapters import AdapterBatchData, AdapterBatchMetadata
@ -21,6 +26,12 @@ from text_generation_server.models import Model
from text_generation_server.utils.tokens import batch_top_tokens
from text_generation_server.utils.dist import RANK
from text_generation_server.utils.speculate import get_speculate
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
hub,
)
from text_generation_server.models.types import (
Batch,
Tokens,
@ -803,25 +814,88 @@ class FlashCausalLM(Model):
def __init__(
self,
model_id: str,
model: torch.nn.Module,
tokenizer: PreTrainedTokenizerBase,
num_layers: int,
num_kv_heads: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
rank: int = 0,
world_size: int = 1,
sliding_window: Optional[int] = None,
model_class,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
lora_adapter_ids: Optional[list] = [],
tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer,
default_dtype=torch.float16,
# self,
# model_id: str,
# model_class,
# tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer,
# num_layers: int,
# num_kv_heads: int,
# head_size: int,
# dtype: torch.dtype,
# device: torch.device,
# rank: int = 0,
# world_size: int = 1,
# sliding_window: Optional[int] = None,
):
self.num_layers = num_layers
self.num_kv_heads = num_kv_heads
self.head_size = head_size
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = default_dtype if dtype is None else dtype
elif SYSTEM == "ipex":
if hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device(f"xpu:{rank}")
dtype = default_dtype if dtype is None else dtype
else:
device = torch.device("cpu")
# Float16 doesn't exist on target.
dtype = torch.bfloat16 if dtype is None else dtype
else:
raise NotImplementedError(f"{model_class} is only available on GPU")
tokenizer = tokenizer_class.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
try:
generation_config = GenerationConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
if isinstance(generation_config.eos_token_id, (list, set)):
# TODO Huge hack
tokenizer._eos_token_ids = set(generation_config.eos_token_id)
except Exception:
pass
config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.speculator = speculator
if getattr(config, "sliding_window", None) is not None:
set_sliding_window(config.sliding_window)
else:
config.sliding_window = None
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(filenames, device, dtype, process_group=self.process_group)
if config.quantize in ["awq", "exl2", "gptq", "marlin"]:
weights._set_gptq_params(model_id, revision)
prefix = ""
model = model_class(prefix, config, weights)
torch.distributed.barrier(group=self.process_group)
self.num_layers = config.num_hidden_layers
self.num_kv_heads = config.num_key_value_heads
self.head_size = config.hidden_size // config.num_attention_heads
self.cuda_graphs = {}
self.kv_cache = []
super(FlashCausalLM, self).__init__(
super().__init__(
model_id=model_id,
model=model,
tokenizer=tokenizer,
@ -830,7 +904,7 @@ class FlashCausalLM(Model):
device=device,
rank=rank,
world_size=world_size,
sliding_window=sliding_window,
sliding_window=config.sliding_window,
)
@property

View File

@ -1,24 +1,7 @@
import torch
import torch.distributed
from opentelemetry import trace
from transformers import AutoTokenizer, AutoConfig
from typing import Optional, Tuple, Dict, List
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.flash_causal_lm import set_sliding_window
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM,
MistralConfig,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
from text_generation_server.utils.import_utils import SYSTEM
tracer = trace.get_tracer(__name__)
ADAPTER_LAYERS = [
@ -33,88 +16,7 @@ ADAPTER_LAYERS = [
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}
class BaseFlashMistral(FlashCausalLM):
def __init__(
self,
model_cls,
model_id: str,
config_cls=AutoConfig,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
tokenizer_class=AutoTokenizer,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
elif SYSTEM == "ipex":
if hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device(f"xpu:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.bfloat16 if dtype is None else dtype
else:
raise NotImplementedError("FlashMistral is only available on GPU")
tokenizer = tokenizer_class.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = config_cls.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.speculator = speculator
# Set context windows
if getattr(config, "sliding_window", None) is not None:
set_sliding_window(config.sliding_window)
else:
config.sliding_window = None
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(filenames, device, dtype, process_group=self.process_group)
if config.quantize in ["gptq", "awq", "marlin"]:
weights._set_gptq_params(model_id, revision)
prefix = ""
model = model_cls(prefix, config, weights)
self.cuda_graphs = {}
torch.distributed.barrier(group=self.process_group)
num_layers, num_kv_heads, head_size = self.get_layer_config(model)
super().__init__(
model_id=model_id,
model=model,
tokenizer=tokenizer,
num_layers=num_layers,
num_kv_heads=num_kv_heads,
head_size=head_size,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
sliding_window=config.sliding_window,
)
def get_layer_config(self, model) -> Tuple[int, int, int]:
return (
len(model.model.layers),
model.model.num_key_value_heads,
model.model.head_size,
)
class FlashMistral(FlashCausalLM):
@property
def supports_adapter_loading(self) -> bool:
return True
@ -183,25 +85,3 @@ class BaseFlashMistral(FlashCausalLM):
def is_row_parallel(self, layer_type: str) -> bool:
return layer_type in ROW_PARALLEL
class FlashMistral(BaseFlashMistral):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
super(FlashMistral, self).__init__(
config_cls=MistralConfig,
model_cls=FlashMistralForCausalLM,
model_id=model_id,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
trust_remote_code=trust_remote_code,
)