mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 19:34:53 +00:00
feat(server): pre-allocate max attention mask
This commit is contained in:
parent
17bc841b1b
commit
a8446a5a31
@ -65,8 +65,8 @@ def test_batch_from_pb(default_pb_batch, default_bloom_batch):
|
|||||||
assert batch.input_ids[0][-1] == 10264
|
assert batch.input_ids[0][-1] == 10264
|
||||||
assert torch.all(batch.input_ids[0][:-1] == 3)
|
assert torch.all(batch.input_ids[0][:-1] == 3)
|
||||||
|
|
||||||
assert batch.attention_mask[0][-1] == 1
|
assert batch.attention_mask[0][0] == 1
|
||||||
assert torch.all(batch.attention_mask[0][:-1] == 0)
|
assert torch.all(batch.attention_mask[0][1:] == 0)
|
||||||
|
|
||||||
assert batch.past_key_values is None
|
assert batch.past_key_values is None
|
||||||
|
|
||||||
@ -98,16 +98,13 @@ def test_causal_lm_generate_token(default_bloom, default_bloom_batch):
|
|||||||
assert not next_batch.keys_head_dim_last
|
assert not next_batch.keys_head_dim_last
|
||||||
|
|
||||||
assert len(next_batch.all_input_ids) == next_batch.size
|
assert len(next_batch.all_input_ids) == next_batch.size
|
||||||
assert (
|
assert len(next_batch.all_input_ids[0]) == sequence_length + 1
|
||||||
len(next_batch.all_input_ids[0])
|
assert len(next_batch.attention_mask[0]) == 11
|
||||||
== len(next_batch.attention_mask[0])
|
|
||||||
== sequence_length + 1
|
|
||||||
)
|
|
||||||
assert torch.all(next_batch.all_input_ids[0][-2:] == 10264)
|
assert torch.all(next_batch.all_input_ids[0][-2:] == 10264)
|
||||||
assert torch.all(next_batch.all_input_ids[0][:-2] == 3)
|
assert torch.all(next_batch.all_input_ids[0][:-2] == 3)
|
||||||
|
|
||||||
assert torch.all(next_batch.attention_mask[0][-2:] == 1)
|
assert torch.all(next_batch.attention_mask[0][:2] == 1)
|
||||||
assert torch.all(next_batch.attention_mask[0][:-2] == 0)
|
assert torch.all(next_batch.attention_mask[0][2:] == 0)
|
||||||
|
|
||||||
assert next_batch.input_ids.shape == (next_batch.size, 1)
|
assert next_batch.input_ids.shape == (next_batch.size, 1)
|
||||||
assert next_batch.input_ids[0, 0] == 10264
|
assert next_batch.input_ids[0, 0] == 10264
|
||||||
@ -213,9 +210,13 @@ def test_batch_concatenate(
|
|||||||
assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0])
|
assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0])
|
||||||
assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1])
|
assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1])
|
||||||
|
|
||||||
assert torch.all(next_batch.attention_mask[0] == 1)
|
assert torch.all(
|
||||||
assert torch.all(next_batch.attention_mask[1:, -2:] == 1)
|
next_batch.attention_mask[0, : -next_batch.padding_right_offset] == 1
|
||||||
assert torch.all(next_batch.attention_mask[1:, :-2] == 0)
|
)
|
||||||
|
assert torch.all(
|
||||||
|
next_batch.attention_mask[1:, 1 : -next_batch.padding_right_offset] == 1
|
||||||
|
)
|
||||||
|
assert torch.all(next_batch.attention_mask[1:, 3:] == 0)
|
||||||
|
|
||||||
assert next_batch.batch_id == 0
|
assert next_batch.batch_id == 0
|
||||||
assert torch.all(next_batch.input_ids == 10264)
|
assert torch.all(next_batch.input_ids == 10264)
|
||||||
|
@ -62,8 +62,8 @@ def test_batch_from_pb(default_pb_batch, default_causal_lm_batch):
|
|||||||
assert batch.input_ids[0][-1] == 14402
|
assert batch.input_ids[0][-1] == 14402
|
||||||
assert torch.all(batch.input_ids[0][:-1] == 50256)
|
assert torch.all(batch.input_ids[0][:-1] == 50256)
|
||||||
|
|
||||||
assert batch.attention_mask[0][-1] == 1
|
assert batch.attention_mask[0, 0] == 1
|
||||||
assert torch.all(batch.attention_mask[0][:-1] == 0)
|
assert torch.all(batch.attention_mask[0, 1:] == 0)
|
||||||
|
|
||||||
assert batch.past_key_values is None
|
assert batch.past_key_values is None
|
||||||
|
|
||||||
@ -94,17 +94,14 @@ def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch):
|
|||||||
assert isinstance(next_batch, CausalLMBatch)
|
assert isinstance(next_batch, CausalLMBatch)
|
||||||
|
|
||||||
assert len(next_batch.all_input_ids) == next_batch.size
|
assert len(next_batch.all_input_ids) == next_batch.size
|
||||||
assert (
|
assert len(next_batch.all_input_ids[0]) == sequence_length + 1
|
||||||
len(next_batch.all_input_ids[0])
|
assert len(next_batch.attention_mask[0]) == 11
|
||||||
== len(next_batch.attention_mask[0])
|
|
||||||
== sequence_length + 1
|
|
||||||
)
|
|
||||||
assert next_batch.all_input_ids[0][-1] == 13
|
assert next_batch.all_input_ids[0][-1] == 13
|
||||||
assert next_batch.all_input_ids[0][-2] == 14402
|
assert next_batch.all_input_ids[0][-2] == 14402
|
||||||
assert torch.all(next_batch.all_input_ids[0][:-2] == 50256)
|
assert torch.all(next_batch.all_input_ids[0][:-2] == 50256)
|
||||||
|
|
||||||
assert torch.all(next_batch.attention_mask[0][-2:] == 1)
|
assert torch.all(next_batch.attention_mask[0][0:2] == 1)
|
||||||
assert torch.all(next_batch.attention_mask[0][:-2] == 0)
|
assert torch.all(next_batch.attention_mask[0][2:] == 0)
|
||||||
|
|
||||||
assert next_batch.input_ids.shape == (next_batch.size, 1)
|
assert next_batch.input_ids.shape == (next_batch.size, 1)
|
||||||
assert next_batch.input_ids[0, 0] == 13
|
assert next_batch.input_ids[0, 0] == 13
|
||||||
@ -210,9 +207,13 @@ def test_batch_concatenate(
|
|||||||
assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0])
|
assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0])
|
||||||
assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1])
|
assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1])
|
||||||
|
|
||||||
assert torch.all(next_batch.attention_mask[0] == 1)
|
assert torch.all(
|
||||||
assert torch.all(next_batch.attention_mask[1:, -2:] == 1)
|
next_batch.attention_mask[0, : -next_batch.padding_right_offset] == 1
|
||||||
assert torch.all(next_batch.attention_mask[1:, :-2] == 0)
|
)
|
||||||
|
assert torch.all(
|
||||||
|
next_batch.attention_mask[1:, 1 : -next_batch.padding_right_offset] == 1
|
||||||
|
)
|
||||||
|
assert torch.all(next_batch.attention_mask[1:, 3:] == 0)
|
||||||
|
|
||||||
assert next_batch.batch_id == 0
|
assert next_batch.batch_id == 0
|
||||||
assert next_batch.input_ids[0, 0] == 12355
|
assert next_batch.input_ids[0, 0] == 12355
|
||||||
|
@ -106,7 +106,7 @@ def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch)
|
|||||||
assert len(generations) == len(next_batch)
|
assert len(generations) == len(next_batch)
|
||||||
assert isinstance(next_batch, Seq2SeqLMBatch)
|
assert isinstance(next_batch, Seq2SeqLMBatch)
|
||||||
|
|
||||||
assert torch.equal(next_batch.input_ids, default_seq2seq_lm_batch.input_ids)
|
assert next_batch.input_ids is None
|
||||||
assert torch.equal(
|
assert torch.equal(
|
||||||
next_batch.attention_mask, default_seq2seq_lm_batch.attention_mask
|
next_batch.attention_mask, default_seq2seq_lm_batch.attention_mask
|
||||||
)
|
)
|
||||||
@ -220,11 +220,6 @@ def test_batch_concatenate(
|
|||||||
|
|
||||||
assert next_batch.batch_id == 0
|
assert next_batch.batch_id == 0
|
||||||
|
|
||||||
assert torch.all(next_batch.input_ids[:, 0] == 4268)
|
|
||||||
assert torch.all(next_batch.input_ids[:, 1] == 1)
|
|
||||||
|
|
||||||
assert torch.all(next_batch.attention_mask == 1)
|
|
||||||
|
|
||||||
assert torch.equal(
|
assert torch.equal(
|
||||||
next_batch.decoder_input_ids[0], next_batch_0.decoder_input_ids[0]
|
next_batch.decoder_input_ids[0], next_batch_0.decoder_input_ids[0]
|
||||||
)
|
)
|
||||||
@ -233,9 +228,10 @@ def test_batch_concatenate(
|
|||||||
next_batch.decoder_input_ids[1:, -2:], next_batch_1.decoder_input_ids
|
next_batch.decoder_input_ids[1:, -2:], next_batch_1.decoder_input_ids
|
||||||
)
|
)
|
||||||
|
|
||||||
assert torch.all(next_batch.decoder_attention_mask[0] == 1)
|
assert torch.all(next_batch.decoder_attention_mask[0, :3] == 1)
|
||||||
|
assert torch.all(next_batch.decoder_attention_mask[0, 3:] == 0)
|
||||||
assert torch.all(next_batch.decoder_attention_mask[1:, 0] == 0)
|
assert torch.all(next_batch.decoder_attention_mask[1:, 0] == 0)
|
||||||
assert torch.all(next_batch.decoder_attention_mask[1:, -2:] == 1)
|
assert torch.all(next_batch.decoder_attention_mask[1:, 1:3] == 1)
|
||||||
|
|
||||||
assert torch.equal(
|
assert torch.equal(
|
||||||
next_batch.encoder_last_hidden_state[0],
|
next_batch.encoder_last_hidden_state[0],
|
||||||
|
@ -37,6 +37,8 @@ class CausalLMBatch(Batch):
|
|||||||
# Metadata used for padding
|
# Metadata used for padding
|
||||||
size: int
|
size: int
|
||||||
max_sequence_length: int
|
max_sequence_length: int
|
||||||
|
max_potential_length: int
|
||||||
|
padding_right_offset: int
|
||||||
|
|
||||||
# Past metadata
|
# Past metadata
|
||||||
keys_head_dim_last: bool = True
|
keys_head_dim_last: bool = True
|
||||||
@ -61,22 +63,36 @@ class CausalLMBatch(Batch):
|
|||||||
input_lengths = []
|
input_lengths = []
|
||||||
|
|
||||||
# Parse batch
|
# Parse batch
|
||||||
|
max_sequence_length = 0
|
||||||
|
max_potential_length = 0
|
||||||
|
padding_right_offset = 0
|
||||||
for r in pb.requests:
|
for r in pb.requests:
|
||||||
inputs.append(r.inputs)
|
inputs.append(r.inputs)
|
||||||
input_lengths.append(r.input_length)
|
input_lengths.append(r.input_length)
|
||||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||||
stopping_criterias.append(
|
stopping_criteria = StoppingCriteria.from_pb(
|
||||||
StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
|
r.stopping_parameters, tokenizer
|
||||||
)
|
)
|
||||||
|
stopping_criterias.append(stopping_criteria)
|
||||||
|
max_sequence_length = max(max_sequence_length, r.input_length)
|
||||||
|
potential_length = r.input_length + stopping_criteria.max_new_tokens
|
||||||
|
if max_potential_length < potential_length:
|
||||||
|
max_potential_length = potential_length
|
||||||
|
padding_right_offset = stopping_criteria.max_new_tokens
|
||||||
|
|
||||||
pad_to_multiple_of = 8 if device.type == "cuda" else None
|
|
||||||
tokenized_inputs = tokenizer(
|
tokenized_inputs = tokenizer(
|
||||||
inputs,
|
inputs,
|
||||||
return_tensors="pt",
|
return_tensors="pt",
|
||||||
padding=True,
|
padding=True,
|
||||||
pad_to_multiple_of=pad_to_multiple_of,
|
|
||||||
return_token_type_ids=False,
|
return_token_type_ids=False,
|
||||||
).to(device)
|
).to(device)
|
||||||
|
|
||||||
|
input_ids = tokenized_inputs["input_ids"]
|
||||||
|
# Allocate maximum attention_mask
|
||||||
|
attention_mask = input_ids.new_zeros((pb.size, max_potential_length))
|
||||||
|
# Copy tokenizer attention_mask into fully allocated attention_mask
|
||||||
|
attention_mask[:, :max_sequence_length] = tokenized_inputs["attention_mask"]
|
||||||
|
|
||||||
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
||||||
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
||||||
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
|
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
|
||||||
@ -84,8 +100,8 @@ class CausalLMBatch(Batch):
|
|||||||
return cls(
|
return cls(
|
||||||
batch_id=pb.id,
|
batch_id=pb.id,
|
||||||
requests=pb.requests,
|
requests=pb.requests,
|
||||||
input_ids=tokenized_inputs["input_ids"],
|
input_ids=input_ids,
|
||||||
attention_mask=tokenized_inputs["attention_mask"],
|
attention_mask=attention_mask,
|
||||||
position_ids=position_ids,
|
position_ids=position_ids,
|
||||||
past_key_values=None,
|
past_key_values=None,
|
||||||
all_input_ids=all_input_ids,
|
all_input_ids=all_input_ids,
|
||||||
@ -93,15 +109,25 @@ class CausalLMBatch(Batch):
|
|||||||
next_token_choosers=next_token_choosers,
|
next_token_choosers=next_token_choosers,
|
||||||
stopping_criterias=stopping_criterias,
|
stopping_criterias=stopping_criterias,
|
||||||
size=pb.size,
|
size=pb.size,
|
||||||
max_sequence_length=max(input_lengths),
|
max_sequence_length=max_sequence_length,
|
||||||
|
max_potential_length=max_potential_length,
|
||||||
|
padding_right_offset=padding_right_offset,
|
||||||
)
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@tracer.start_as_current_span("concatenate")
|
@tracer.start_as_current_span("concatenate")
|
||||||
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
||||||
# Used for padding
|
# Used for padding
|
||||||
total_batch_size = sum(batch.size for batch in batches)
|
total_batch_size = 0
|
||||||
max_sequence_length = max(batch.max_sequence_length for batch in batches)
|
max_sequence_length = 0
|
||||||
|
max_potential_length = 0
|
||||||
|
padding_right_offset = 0
|
||||||
|
for batch in batches:
|
||||||
|
total_batch_size += batch.size
|
||||||
|
max_sequence_length = max(max_sequence_length, batch.max_sequence_length)
|
||||||
|
if max_potential_length < batch.max_potential_length:
|
||||||
|
max_potential_length = batch.max_potential_length
|
||||||
|
padding_right_offset = batch.padding_right_offset
|
||||||
|
|
||||||
# Batch attributes
|
# Batch attributes
|
||||||
requests = []
|
requests = []
|
||||||
@ -144,13 +170,22 @@ class CausalLMBatch(Batch):
|
|||||||
# Create padded tensor
|
# Create padded tensor
|
||||||
if attention_mask is None:
|
if attention_mask is None:
|
||||||
attention_mask = batch.attention_mask.new_zeros(
|
attention_mask = batch.attention_mask.new_zeros(
|
||||||
(total_batch_size, max_sequence_length),
|
(total_batch_size, max_potential_length),
|
||||||
)
|
)
|
||||||
|
|
||||||
# We need to slice the attention mask to remove padding from previous steps
|
# We need to slice the attention mask to remove padding from previous steps
|
||||||
|
# and to remove unused allocated space
|
||||||
attention_mask[
|
attention_mask[
|
||||||
start_index:end_index, -batch.max_sequence_length :
|
start_index:end_index,
|
||||||
] = batch.attention_mask[:, -batch.max_sequence_length :]
|
-(
|
||||||
|
batch.max_sequence_length + padding_right_offset
|
||||||
|
) : -padding_right_offset,
|
||||||
|
] = batch.attention_mask[
|
||||||
|
:,
|
||||||
|
-(
|
||||||
|
batch.max_sequence_length + batch.padding_right_offset
|
||||||
|
) : -batch.padding_right_offset,
|
||||||
|
]
|
||||||
|
|
||||||
# Create empty tensor
|
# Create empty tensor
|
||||||
# position_ids is always of shape [batch_size, 1]
|
# position_ids is always of shape [batch_size, 1]
|
||||||
@ -228,6 +263,8 @@ class CausalLMBatch(Batch):
|
|||||||
stopping_criterias=stopping_criterias,
|
stopping_criterias=stopping_criterias,
|
||||||
size=total_batch_size,
|
size=total_batch_size,
|
||||||
max_sequence_length=max_sequence_length,
|
max_sequence_length=max_sequence_length,
|
||||||
|
max_potential_length=max_potential_length,
|
||||||
|
padding_right_offset=padding_right_offset,
|
||||||
keys_head_dim_last=batches[0].keys_head_dim_last,
|
keys_head_dim_last=batches[0].keys_head_dim_last,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -294,9 +331,15 @@ class CausalLM(Model):
|
|||||||
def generate_token(
|
def generate_token(
|
||||||
self, batch: CausalLMBatch
|
self, batch: CausalLMBatch
|
||||||
) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
|
) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
|
||||||
|
# slice the attention mask to the correct shape
|
||||||
|
if batch.padding_right_offset != 0:
|
||||||
|
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
|
||||||
|
else:
|
||||||
|
attention_mask = batch.attention_mask
|
||||||
|
|
||||||
logits, past = self.forward(
|
logits, past = self.forward(
|
||||||
batch.input_ids,
|
batch.input_ids,
|
||||||
batch.attention_mask,
|
attention_mask,
|
||||||
batch.position_ids,
|
batch.position_ids,
|
||||||
batch.past_key_values,
|
batch.past_key_values,
|
||||||
)
|
)
|
||||||
@ -312,6 +355,7 @@ class CausalLM(Model):
|
|||||||
# Metadata
|
# Metadata
|
||||||
next_batch_size = 0
|
next_batch_size = 0
|
||||||
next_batch_max_sequence_length = 0
|
next_batch_max_sequence_length = 0
|
||||||
|
next_batch_max_potential_length = 0
|
||||||
|
|
||||||
# Results
|
# Results
|
||||||
generations: List[Generation] = []
|
generations: List[Generation] = []
|
||||||
@ -384,6 +428,13 @@ class CausalLM(Model):
|
|||||||
next_batch_max_sequence_length = max(
|
next_batch_max_sequence_length = max(
|
||||||
next_batch_max_sequence_length, new_input_length
|
next_batch_max_sequence_length, new_input_length
|
||||||
)
|
)
|
||||||
|
# potential length is input_length + max_new_tokens but we need to remove generated tokens
|
||||||
|
next_batch_max_potential_length = max(
|
||||||
|
next_batch_max_potential_length,
|
||||||
|
new_input_length
|
||||||
|
+ stopping_criteria.max_new_tokens
|
||||||
|
- stopping_criteria.current_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
# Prefill
|
# Prefill
|
||||||
if stopping_criteria.current_tokens == 1:
|
if stopping_criteria.current_tokens == 1:
|
||||||
@ -448,14 +499,8 @@ class CausalLM(Model):
|
|||||||
next_batch_next_token_choosers = batch.next_token_choosers
|
next_batch_next_token_choosers = batch.next_token_choosers
|
||||||
next_batch_stopping_criterias = batch.stopping_criterias
|
next_batch_stopping_criterias = batch.stopping_criterias
|
||||||
|
|
||||||
# Update attention_mask with padding as we added a new token to input_ids
|
# Update attention_mask as we added a new token to input_ids
|
||||||
next_batch_attention_mask = torch.cat(
|
next_batch_attention_mask[:, -batch.padding_right_offset] = 1
|
||||||
[
|
|
||||||
next_batch_attention_mask,
|
|
||||||
next_batch_attention_mask.new_ones(next_batch_size, 1),
|
|
||||||
],
|
|
||||||
dim=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Update position_ids
|
# Update position_ids
|
||||||
next_batch_position_ids = next_batch_position_ids[:, -1:] + 1
|
next_batch_position_ids = next_batch_position_ids[:, -1:] + 1
|
||||||
@ -473,6 +518,8 @@ class CausalLM(Model):
|
|||||||
stopping_criterias=next_batch_stopping_criterias,
|
stopping_criterias=next_batch_stopping_criterias,
|
||||||
size=next_batch_size,
|
size=next_batch_size,
|
||||||
max_sequence_length=next_batch_max_sequence_length,
|
max_sequence_length=next_batch_max_sequence_length,
|
||||||
|
max_potential_length=next_batch_max_potential_length,
|
||||||
|
padding_right_offset=batch.padding_right_offset - 1,
|
||||||
keys_head_dim_last=batch.keys_head_dim_last,
|
keys_head_dim_last=batch.keys_head_dim_last,
|
||||||
)
|
)
|
||||||
return generations, next_batch
|
return generations, next_batch
|
||||||
|
@ -42,6 +42,8 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
size: int
|
size: int
|
||||||
max_input_length: int
|
max_input_length: int
|
||||||
max_decoder_input_length: int
|
max_decoder_input_length: int
|
||||||
|
max_potential_length: int
|
||||||
|
padding_right_offset: int
|
||||||
|
|
||||||
def to_pb(self) -> generate_pb2.Batch:
|
def to_pb(self) -> generate_pb2.Batch:
|
||||||
"""Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
|
"""Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
|
||||||
@ -68,6 +70,9 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
decoder_input_lengths = []
|
decoder_input_lengths = []
|
||||||
|
|
||||||
# Parse batch
|
# Parse batch
|
||||||
|
max_input_length = 0
|
||||||
|
max_potential_length = 0
|
||||||
|
padding_right_offset = 0
|
||||||
for r in pb.requests:
|
for r in pb.requests:
|
||||||
inputs.append(r.inputs)
|
inputs.append(r.inputs)
|
||||||
input_lengths.append(r.input_length)
|
input_lengths.append(r.input_length)
|
||||||
@ -75,9 +80,15 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
decoder_input_ids.append(tokenizer.bos_token_id)
|
decoder_input_ids.append(tokenizer.bos_token_id)
|
||||||
decoder_input_lengths.append(1)
|
decoder_input_lengths.append(1)
|
||||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||||
stopping_criterias.append(
|
stopping_criteria = StoppingCriteria.from_pb(
|
||||||
StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
|
r.stopping_parameters, tokenizer
|
||||||
)
|
)
|
||||||
|
stopping_criterias.append(stopping_criteria)
|
||||||
|
max_input_length = max(max_input_length, r.input_length)
|
||||||
|
if max_potential_length < stopping_criteria.max_new_tokens + 1:
|
||||||
|
# +1 because we have the bos token
|
||||||
|
max_potential_length = stopping_criteria.max_new_tokens + 1
|
||||||
|
padding_right_offset = stopping_criteria.max_new_tokens
|
||||||
|
|
||||||
# Tokenize batch
|
# Tokenize batch
|
||||||
pad_to_multiple_of = 8 if device.type == "cuda" else None
|
pad_to_multiple_of = 8 if device.type == "cuda" else None
|
||||||
@ -107,6 +118,8 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
size=len(pb.requests),
|
size=len(pb.requests),
|
||||||
max_input_length=max(input_lengths),
|
max_input_length=max(input_lengths),
|
||||||
max_decoder_input_length=1,
|
max_decoder_input_length=1,
|
||||||
|
max_potential_length=max_potential_length,
|
||||||
|
padding_right_offset=padding_right_offset,
|
||||||
)
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -115,11 +128,20 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
"""Concatenate multiple batches together by padding internal torch tensors"""
|
"""Concatenate multiple batches together by padding internal torch tensors"""
|
||||||
|
|
||||||
# Used for padding
|
# Used for padding
|
||||||
total_batch_size = sum(batch.size for batch in batches)
|
total_batch_size = 0
|
||||||
max_input_length = max(batch.max_input_length for batch in batches)
|
max_input_length = 0
|
||||||
max_decoder_input_length = max(
|
max_decoder_input_length = 0
|
||||||
batch.max_decoder_input_length for batch in batches
|
max_potential_length = 0
|
||||||
)
|
padding_right_offset = 0
|
||||||
|
for batch in batches:
|
||||||
|
total_batch_size += batch.size
|
||||||
|
max_input_length = max(max_input_length, batch.max_input_length)
|
||||||
|
max_decoder_input_length = max(
|
||||||
|
max_decoder_input_length, batch.max_decoder_input_length
|
||||||
|
)
|
||||||
|
if max_potential_length < batch.max_potential_length:
|
||||||
|
max_potential_length = batch.max_potential_length
|
||||||
|
padding_right_offset = batch.padding_right_offset
|
||||||
|
|
||||||
# Batch attributes
|
# Batch attributes
|
||||||
requests = []
|
requests = []
|
||||||
@ -129,7 +151,6 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
stopping_criterias = []
|
stopping_criterias = []
|
||||||
|
|
||||||
# Batch tensors
|
# Batch tensors
|
||||||
input_ids = None
|
|
||||||
attention_mask = None
|
attention_mask = None
|
||||||
decoder_input_ids = None
|
decoder_input_ids = None
|
||||||
decoder_attention_mask = None
|
decoder_attention_mask = None
|
||||||
@ -155,16 +176,6 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
if batch.encoder_last_hidden_state is None:
|
if batch.encoder_last_hidden_state is None:
|
||||||
raise ValueError("Batch encoder_last_hidden_state cannot be None")
|
raise ValueError("Batch encoder_last_hidden_state cannot be None")
|
||||||
|
|
||||||
# Create padded tensor
|
|
||||||
if input_ids is None:
|
|
||||||
input_ids = batch.input_ids.new_zeros(
|
|
||||||
(total_batch_size, max_input_length),
|
|
||||||
)
|
|
||||||
# Copy to correct indices
|
|
||||||
input_ids[
|
|
||||||
start_index:end_index, -batch.max_input_length :
|
|
||||||
] = batch.input_ids[:, -batch.max_input_length :]
|
|
||||||
|
|
||||||
# Create padded tensor
|
# Create padded tensor
|
||||||
if attention_mask is None:
|
if attention_mask is None:
|
||||||
attention_mask = batch.attention_mask.new_zeros(
|
attention_mask = batch.attention_mask.new_zeros(
|
||||||
@ -189,19 +200,30 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
if decoder_attention_mask is None:
|
if decoder_attention_mask is None:
|
||||||
# As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
|
# As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
|
||||||
decoder_attention_mask = batch.attention_mask.new_zeros(
|
decoder_attention_mask = batch.attention_mask.new_zeros(
|
||||||
(total_batch_size, max_decoder_input_length),
|
(total_batch_size, max_potential_length),
|
||||||
)
|
)
|
||||||
# If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
|
# If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
|
||||||
# this batch. All generations are of length `batch.max_decoder_input_length`.
|
# this batch. All generations are of length `batch.max_decoder_input_length`.
|
||||||
if batch.decoder_attention_mask is None:
|
if batch.decoder_attention_mask is None:
|
||||||
decoder_attention_mask[
|
decoder_attention_mask[
|
||||||
start_index:end_index, -batch.max_decoder_input_length :
|
start_index:end_index,
|
||||||
|
-(
|
||||||
|
batch.max_decoder_input_length + padding_right_offset
|
||||||
|
) : -padding_right_offset,
|
||||||
] = 1
|
] = 1
|
||||||
# If it exists, we need to index
|
# If it exists, we need to index
|
||||||
else:
|
else:
|
||||||
decoder_attention_mask[
|
decoder_attention_mask[
|
||||||
start_index:end_index, -batch.max_decoder_input_length :
|
start_index:end_index,
|
||||||
] = batch.decoder_attention_mask[:, -batch.max_decoder_input_length :]
|
-(
|
||||||
|
batch.max_decoder_input_length + padding_right_offset
|
||||||
|
) : -padding_right_offset,
|
||||||
|
] = batch.decoder_attention_mask[
|
||||||
|
:,
|
||||||
|
-(
|
||||||
|
batch.max_decoder_input_length + batch.padding_right_offset
|
||||||
|
) : -batch.padding_right_offset,
|
||||||
|
]
|
||||||
|
|
||||||
# Create padded tensor
|
# Create padded tensor
|
||||||
if encoder_last_hidden_state is None:
|
if encoder_last_hidden_state is None:
|
||||||
@ -273,7 +295,7 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
return cls(
|
return cls(
|
||||||
batch_id=batches[0].batch_id,
|
batch_id=batches[0].batch_id,
|
||||||
requests=requests,
|
requests=requests,
|
||||||
input_ids=input_ids,
|
input_ids=None,
|
||||||
attention_mask=attention_mask,
|
attention_mask=attention_mask,
|
||||||
decoder_input_ids=decoder_input_ids,
|
decoder_input_ids=decoder_input_ids,
|
||||||
decoder_attention_mask=decoder_attention_mask,
|
decoder_attention_mask=decoder_attention_mask,
|
||||||
@ -286,6 +308,8 @@ class Seq2SeqLMBatch(Batch):
|
|||||||
size=total_batch_size,
|
size=total_batch_size,
|
||||||
max_input_length=max_input_length,
|
max_input_length=max_input_length,
|
||||||
max_decoder_input_length=max_decoder_input_length,
|
max_decoder_input_length=max_decoder_input_length,
|
||||||
|
max_potential_length=max_potential_length,
|
||||||
|
padding_right_offset=padding_right_offset,
|
||||||
)
|
)
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
@ -342,14 +366,6 @@ class Seq2SeqLM(Model):
|
|||||||
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
|
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
|
||||||
]:
|
]:
|
||||||
# Model Forward
|
# Model Forward
|
||||||
if past_key_values is not None:
|
|
||||||
decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)
|
|
||||||
|
|
||||||
# Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
|
|
||||||
# internally...
|
|
||||||
if encoder_last_hidden_state is not None:
|
|
||||||
encoder_last_hidden_state = [encoder_last_hidden_state]
|
|
||||||
|
|
||||||
outputs = self.model.forward(
|
outputs = self.model.forward(
|
||||||
input_ids=input_ids,
|
input_ids=input_ids,
|
||||||
attention_mask=attention_mask,
|
attention_mask=attention_mask,
|
||||||
@ -369,12 +385,37 @@ class Seq2SeqLM(Model):
|
|||||||
def generate_token(
|
def generate_token(
|
||||||
self, batch: Seq2SeqLMBatch
|
self, batch: Seq2SeqLMBatch
|
||||||
) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch]]:
|
) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch]]:
|
||||||
|
if batch.decoder_attention_mask is not None:
|
||||||
|
# slice to the correct shape
|
||||||
|
if batch.padding_right_offset != 0:
|
||||||
|
decoder_attention_mask = batch.decoder_attention_mask[
|
||||||
|
:, : -batch.padding_right_offset
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
decoder_attention_mask = batch.decoder_attention_mask
|
||||||
|
else:
|
||||||
|
decoder_attention_mask = None
|
||||||
|
|
||||||
|
# check if first forward or not
|
||||||
|
if batch.past_key_values is not None:
|
||||||
|
# Only take the last token
|
||||||
|
decoder_input_ids = batch.decoder_input_ids[:, -1].unsqueeze(-1)
|
||||||
|
else:
|
||||||
|
decoder_input_ids = batch.decoder_input_ids
|
||||||
|
|
||||||
|
# Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
|
||||||
|
# internally...
|
||||||
|
if batch.encoder_last_hidden_state is not None:
|
||||||
|
encoder_last_hidden_state = [batch.encoder_last_hidden_state]
|
||||||
|
else:
|
||||||
|
encoder_last_hidden_state = batch.encoder_last_hidden_state
|
||||||
|
|
||||||
logits, encoder_last_hidden_state, past = self.forward(
|
logits, encoder_last_hidden_state, past = self.forward(
|
||||||
batch.input_ids,
|
batch.input_ids,
|
||||||
batch.attention_mask,
|
batch.attention_mask,
|
||||||
batch.decoder_input_ids,
|
decoder_input_ids,
|
||||||
batch.decoder_attention_mask,
|
decoder_attention_mask,
|
||||||
batch.encoder_last_hidden_state,
|
encoder_last_hidden_state,
|
||||||
batch.past_key_values,
|
batch.past_key_values,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -390,6 +431,7 @@ class Seq2SeqLM(Model):
|
|||||||
next_batch_size = 0
|
next_batch_size = 0
|
||||||
next_batch_max_input_length = 0
|
next_batch_max_input_length = 0
|
||||||
next_batch_max_decoder_input_length = 0
|
next_batch_max_decoder_input_length = 0
|
||||||
|
next_batch_max_potential_length = 0
|
||||||
|
|
||||||
# Finished requests
|
# Finished requests
|
||||||
generations: List[Generation] = []
|
generations: List[Generation] = []
|
||||||
@ -402,7 +444,6 @@ class Seq2SeqLM(Model):
|
|||||||
logits,
|
logits,
|
||||||
batch.next_token_choosers,
|
batch.next_token_choosers,
|
||||||
batch.stopping_criterias,
|
batch.stopping_criterias,
|
||||||
batch.input_ids,
|
|
||||||
batch.decoder_input_ids,
|
batch.decoder_input_ids,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -414,7 +455,6 @@ class Seq2SeqLM(Model):
|
|||||||
logits,
|
logits,
|
||||||
next_token_chooser,
|
next_token_chooser,
|
||||||
stopping_criteria,
|
stopping_criteria,
|
||||||
input_tokens,
|
|
||||||
decoder_input_ids,
|
decoder_input_ids,
|
||||||
) in enumerate(iterator):
|
) in enumerate(iterator):
|
||||||
# Select next token
|
# Select next token
|
||||||
@ -466,6 +506,11 @@ class Seq2SeqLM(Model):
|
|||||||
next_batch_max_decoder_input_length = max(
|
next_batch_max_decoder_input_length = max(
|
||||||
next_batch_max_decoder_input_length, new_decoder_input_length
|
next_batch_max_decoder_input_length, new_decoder_input_length
|
||||||
)
|
)
|
||||||
|
# +1 because of the bos token
|
||||||
|
next_batch_max_potential_length = max(
|
||||||
|
next_batch_max_potential_length,
|
||||||
|
stopping_criteria.max_new_tokens + 1,
|
||||||
|
)
|
||||||
|
|
||||||
# Prefill
|
# Prefill
|
||||||
if stopping_criteria.current_tokens == 1:
|
if stopping_criteria.current_tokens == 1:
|
||||||
@ -500,10 +545,8 @@ class Seq2SeqLM(Model):
|
|||||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||||
# from the values of the next batch
|
# from the values of the next batch
|
||||||
if len(next_batch_keep_indices) != len(batch):
|
if len(next_batch_keep_indices) != len(batch):
|
||||||
# Apply indices to attention mask, past key values and other items that need to be cached
|
# Apply indices to decoder_attention mask, past key values and other items that need to be cached
|
||||||
next_batch_input_ids = batch.input_ids[next_batch_keep_indices]
|
|
||||||
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
|
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
|
||||||
|
|
||||||
if batch.decoder_attention_mask is not None:
|
if batch.decoder_attention_mask is not None:
|
||||||
next_batch_decoder_attention_mask = batch.decoder_attention_mask[
|
next_batch_decoder_attention_mask = batch.decoder_attention_mask[
|
||||||
next_batch_keep_indices
|
next_batch_keep_indices
|
||||||
@ -526,7 +569,6 @@ class Seq2SeqLM(Model):
|
|||||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||||
]
|
]
|
||||||
else:
|
else:
|
||||||
next_batch_input_ids = batch.input_ids
|
|
||||||
next_batch_attention_mask = batch.attention_mask
|
next_batch_attention_mask = batch.attention_mask
|
||||||
next_batch_decoder_attention_mask = batch.decoder_attention_mask
|
next_batch_decoder_attention_mask = batch.decoder_attention_mask
|
||||||
next_batch_encoder_last_hidden_state = encoder_last_hidden_state
|
next_batch_encoder_last_hidden_state = encoder_last_hidden_state
|
||||||
@ -536,20 +578,14 @@ class Seq2SeqLM(Model):
|
|||||||
next_batch_next_token_choosers = batch.next_token_choosers
|
next_batch_next_token_choosers = batch.next_token_choosers
|
||||||
next_batch_stopping_criterias = batch.stopping_criterias
|
next_batch_stopping_criterias = batch.stopping_criterias
|
||||||
|
|
||||||
# Update decoder_attention_mask with padding as we added a new token to input_ids
|
# Update decoder_attention_mask as we added a new token to input_ids
|
||||||
if next_batch_decoder_attention_mask is not None:
|
if next_batch_decoder_attention_mask is not None:
|
||||||
next_batch_decoder_attention_mask = torch.cat(
|
next_batch_decoder_attention_mask[:, -batch.padding_right_offset] = 1
|
||||||
[
|
|
||||||
next_batch_decoder_attention_mask,
|
|
||||||
next_batch_decoder_attention_mask.new_ones(next_batch_size, 1),
|
|
||||||
],
|
|
||||||
dim=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
next_batch = Seq2SeqLMBatch(
|
next_batch = Seq2SeqLMBatch(
|
||||||
batch_id=batch.batch_id,
|
batch_id=batch.batch_id,
|
||||||
requests=next_batch_requests,
|
requests=next_batch_requests,
|
||||||
input_ids=next_batch_input_ids,
|
input_ids=None,
|
||||||
attention_mask=next_batch_attention_mask,
|
attention_mask=next_batch_attention_mask,
|
||||||
decoder_input_ids=next_batch_decoder_input_ids,
|
decoder_input_ids=next_batch_decoder_input_ids,
|
||||||
decoder_attention_mask=next_batch_decoder_attention_mask,
|
decoder_attention_mask=next_batch_decoder_attention_mask,
|
||||||
@ -562,5 +598,7 @@ class Seq2SeqLM(Model):
|
|||||||
size=next_batch_size,
|
size=next_batch_size,
|
||||||
max_input_length=next_batch_max_input_length,
|
max_input_length=next_batch_max_input_length,
|
||||||
max_decoder_input_length=next_batch_max_decoder_input_length,
|
max_decoder_input_length=next_batch_max_decoder_input_length,
|
||||||
|
max_potential_length=next_batch_max_potential_length,
|
||||||
|
padding_right_offset=batch.padding_right_offset - 1,
|
||||||
)
|
)
|
||||||
return generations, next_batch
|
return generations, next_batch
|
||||||
|
@ -221,14 +221,6 @@ class T5Sharded(Seq2SeqLM):
|
|||||||
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
|
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
|
||||||
]:
|
]:
|
||||||
# Model Forward
|
# Model Forward
|
||||||
if past_key_values is not None:
|
|
||||||
decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)
|
|
||||||
|
|
||||||
# Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
|
|
||||||
# internally...
|
|
||||||
if encoder_last_hidden_state is not None:
|
|
||||||
encoder_last_hidden_state = [encoder_last_hidden_state]
|
|
||||||
|
|
||||||
outputs = self.model.forward(
|
outputs = self.model.forward(
|
||||||
input_ids=input_ids,
|
input_ids=input_ids,
|
||||||
attention_mask=attention_mask,
|
attention_mask=attention_mask,
|
||||||
|
Loading…
Reference in New Issue
Block a user