refactor doc

This commit is contained in:
OlivierDehaene 2023-02-03 12:03:50 +01:00
parent 5de40eb078
commit a7d15c38e8
18 changed files with 166 additions and 121 deletions

View File

@ -26,21 +26,18 @@ FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
ENV LANG=C.UTF-8 \ ENV LANG=C.UTF-8 \
LC_ALL=C.UTF-8 \ LC_ALL=C.UTF-8 \
DEBIAN_FRONTEND=noninteractive \ DEBIAN_FRONTEND=noninteractive \
MODEL_BASE_PATH=/data \ HUGGINGFACE_HUB_CACHE=/data \
MODEL_ID=bigscience/bloom-560m \ MODEL_ID=bigscience/bloom-560m \
QUANTIZE=false \ QUANTIZE=false \
NUM_GPUS=1 \ NUM_SHARD=1 \
SAFETENSORS_FAST_GPU=1 \ SAFETENSORS_FAST_GPU=1 \
PORT=80 \ PORT=80 \
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
NCCL_ASYNC_ERROR_HANDLING=1 \ NCCL_ASYNC_ERROR_HANDLING=1 \
CUDA_HOME=/usr/local/cuda \ CUDA_HOME=/usr/local/cuda \
LD_LIBRARY_PATH="/opt/miniconda/envs/text-generation/lib:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH" \ LD_LIBRARY_PATH="/opt/miniconda/envs/text-generation/lib:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH" \
CONDA_DEFAULT_ENV=text-generation \ CONDA_DEFAULT_ENV=text-generation \
PATH=$PATH:/opt/miniconda/envs/text-generation/bin:/opt/miniconda/bin:/usr/local/cuda/bin PATH=$PATH:/opt/miniconda/envs/text-generation/bin:/opt/miniconda/bin:/usr/local/cuda/bin
SHELL ["/bin/bash", "-c"]
RUN apt-get update && apt-get install -y unzip curl libssl-dev && rm -rf /var/lib/apt/lists/* RUN apt-get update && apt-get install -y unzip curl libssl-dev && rm -rf /var/lib/apt/lists/*
RUN cd ~ && \ RUN cd ~ && \
@ -71,4 +68,5 @@ COPY --from=router-builder /usr/local/cargo/bin/text-generation-router /usr/loca
# Install launcher # Install launcher
COPY --from=launcher-builder /usr/local/cargo/bin/text-generation-launcher /usr/local/bin/text-generation-launcher COPY --from=launcher-builder /usr/local/cargo/bin/text-generation-launcher /usr/local/bin/text-generation-launcher
CMD HUGGINGFACE_HUB_CACHE=$MODEL_BASE_PATH text-generation-launcher --num-shard $NUM_GPUS --model-name $MODEL_ID --json-output ENTRYPOINT ["text-generation-launcher"]
CMD ["--json-output"]

View File

@ -16,16 +16,16 @@ router-dev:
cd router && cargo run cd router && cargo run
run-bloom-560m: run-bloom-560m:
text-generation-launcher --model-name bigscience/bloom-560m --num-shard 2 text-generation-launcher --model-id bigscience/bloom-560m --num-shard 2
run-bloom-560m-quantize: run-bloom-560m-quantize:
text-generation-launcher --model-name bigscience/bloom-560m --num-shard 2 --quantize text-generation-launcher --model-id bigscience/bloom-560m --num-shard 2 --quantize
download-bloom: download-bloom:
text-generation-server download-weights bigscience/bloom text-generation-server download-weights bigscience/bloom
run-bloom: run-bloom:
text-generation-launcher --model-name bigscience/bloom --num-shard 8 text-generation-launcher --model-id bigscience/bloom --num-shard 8
run-bloom-quantize: run-bloom-quantize:
text-generation-launcher --model-name bigscience/bloom --num-shard 8 --quantize text-generation-launcher --model-id bigscience/bloom --num-shard 8 --quantize

105
README.md
View File

@ -1,16 +1,42 @@
<div align="center">
# Text Generation Inference # Text Generation Inference
<div align="center"> <a href="https://github.com/huggingface/text-generation-inference">
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
<img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
![architecture](assets/architecture.jpg) ![architecture](assets/architecture.jpg)
</div> </div>
A Rust and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
to power Bloom, BloomZ and MT0-XXL api-inference widgets. to power LLMs api-inference widgets.
## Table of contents
- [Features](#features)
- [Officially Supported Models](#officially-supported-models)
- [Get Started](#get-started)
- [Docker](#docker)
- [Local Install](#local-install)
- [OpenAPI](#api-documentation)
- [CUDA Kernels](#cuda-kernels)
- [Run BLOOM](#run-bloom)
- [Download](#download)
- [Run](#run)
- [Quantization](#quantization)
- [Develop](#develop)
## Features ## Features
- Token streaming using Server Side Events (SSE)
- [Dynamic batching of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput - [Dynamic batching of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) - Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
- [Safetensors](https://github.com/huggingface/safetensors) weight loading - [Safetensors](https://github.com/huggingface/safetensors) weight loading
@ -36,30 +62,63 @@ or
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")` `AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
## Load Tests for BLOOM ## Get started
See `k6/load_test.js` ### Docker
| | avg | min | med | max | p(90) | p(95) | RPS | The easiest way of getting started is using the official Docker container:
|--------------------------------------------------------------|-----------|--------------|-----------|------------|-----------|-----------|----------|
| [Original code](https://github.com/huggingface/transformers_bloom_parallel) | 8.9s | 1s | 9.12s | 16.69s | 13.7s | 14.26s | 5.9 |
| New batching logic | **5.44s** | **959.53ms** | **5.28s** | **13.12s** | **7.78s** | **8.92s** | **9.08** |
## Install
```shell ```shell
make install model=bigscience/bloom-560m
num_shard=2
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --num-shard $num_shard
``` ```
## Run You can then query the model using either the `/generate` or `/generate_stream` routes:
### BLOOM 560-m
```shell ```shell
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
-H 'Content-Type: application/json'
```
```shell
curl 127.0.0.1:8080/generate_stream \
-X POST \
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
-H 'Content-Type: application/json'
```
To use GPUs, you will need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html).
### API documentation
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
### Local install
You can also opt to install `text-generation-inference` locally. You will need to have cargo and Python installed on your
machine
```shell
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
make run-bloom-560m make run-bloom-560m
``` ```
### BLOOM ### CUDA Kernels
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.
Be aware that the official Docker image has them enabled by default.
## Run BLOOM
### Download
First you need to download the weights: First you need to download the weights:
@ -67,26 +126,20 @@ First you need to download the weights:
make download-bloom make download-bloom
``` ```
### Run
```shell ```shell
make run-bloom # Requires 8xA100 80GB make run-bloom # Requires 8xA100 80GB
``` ```
### Quantization
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement: You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
```shell ```shell
make run-bloom-quantize # Requires 8xA100 40GB make run-bloom-quantize # Requires 8xA100 40GB
``` ```
## Test
```shell
curl 127.0.0.1:3000/generate \
-v \
-X POST \
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
-H 'Content-Type: application/json'
```
## Develop ## Develop
```shell ```shell

View File

@ -4,9 +4,9 @@ endpoint_name: bloom-inference
model: azureml:bloom:1 model: azureml:bloom:1
model_mount_path: /var/azureml-model model_mount_path: /var/azureml-model
environment_variables: environment_variables:
MODEL_BASE_PATH: /var/azureml-model/bloom HUGGINGFACE_HUB_CACHE: /var/azureml-model/bloom
MODEL_ID: bigscience/bloom MODEL_ID: bigscience/bloom
NUM_GPUS: 8 NUM_SHARD: 8
environment: environment:
image: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference:0.3.1 image: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference:0.3.1
inference_config: inference_config:

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

After

Width:  |  Height:  |  Size: 334 KiB

View File

@ -3,7 +3,7 @@
<!-- Load the latest Swagger UI code and style from npm using unpkg.com --> <!-- Load the latest Swagger UI code and style from npm using unpkg.com -->
<script src="https://unpkg.com/swagger-ui-dist@3/swagger-ui-bundle.js"></script> <script src="https://unpkg.com/swagger-ui-dist@3/swagger-ui-bundle.js"></script>
<link rel="stylesheet" type="text/css" href="https://unpkg.com/swagger-ui-dist@3/swagger-ui.css"/> <link rel="stylesheet" type="text/css" href="https://unpkg.com/swagger-ui-dist@3/swagger-ui.css"/>
<title>My New API</title> <title>Text Generation Inference API</title>
</head> </head>
<body> <body>
<div id="swagger-ui"></div> <!-- Div to hold the UI component --> <div id="swagger-ui"></div> <!-- Div to hold the UI component -->

View File

@ -19,7 +19,7 @@ use subprocess::{Popen, PopenConfig, PopenError, Redirection};
#[clap(author, version, about, long_about = None)] #[clap(author, version, about, long_about = None)]
struct Args { struct Args {
#[clap(default_value = "bigscience/bloom-560m", long, env)] #[clap(default_value = "bigscience/bloom-560m", long, env)]
model_name: String, model_id: String,
#[clap(long, env)] #[clap(long, env)]
revision: Option<String>, revision: Option<String>,
#[clap(long, env)] #[clap(long, env)]
@ -49,7 +49,7 @@ struct Args {
fn main() -> ExitCode { fn main() -> ExitCode {
// Pattern match configuration // Pattern match configuration
let Args { let Args {
model_name, model_id,
revision, revision,
num_shard, num_shard,
quantize, quantize,
@ -92,7 +92,7 @@ fn main() -> ExitCode {
// Start shard processes // Start shard processes
for rank in 0..num_shard { for rank in 0..num_shard {
let model_name = model_name.clone(); let model_id = model_id.clone();
let revision = revision.clone(); let revision = revision.clone();
let uds_path = shard_uds_path.clone(); let uds_path = shard_uds_path.clone();
let master_addr = master_addr.clone(); let master_addr = master_addr.clone();
@ -101,7 +101,7 @@ fn main() -> ExitCode {
let shutdown_sender = shutdown_sender.clone(); let shutdown_sender = shutdown_sender.clone();
thread::spawn(move || { thread::spawn(move || {
shard_manager( shard_manager(
model_name, model_id,
revision, revision,
quantize, quantize,
uds_path, uds_path,
@ -167,7 +167,7 @@ fn main() -> ExitCode {
"--master-shard-uds-path".to_string(), "--master-shard-uds-path".to_string(),
format!("{}-0", shard_uds_path), format!("{}-0", shard_uds_path),
"--tokenizer-name".to_string(), "--tokenizer-name".to_string(),
model_name, model_id,
]; ];
if json_output { if json_output {
@ -256,7 +256,7 @@ enum ShardStatus {
#[allow(clippy::too_many_arguments)] #[allow(clippy::too_many_arguments)]
fn shard_manager( fn shard_manager(
model_name: String, model_id: String,
revision: Option<String>, revision: Option<String>,
quantize: bool, quantize: bool,
uds_path: String, uds_path: String,
@ -278,7 +278,7 @@ fn shard_manager(
let mut shard_argv = vec![ let mut shard_argv = vec![
"text-generation-server".to_string(), "text-generation-server".to_string(),
"serve".to_string(), "serve".to_string(),
model_name, model_id,
"--uds-path".to_string(), "--uds-path".to_string(),
uds_path, uds_path,
"--logger-level".to_string(), "--logger-level".to_string(),

View File

@ -29,11 +29,11 @@ struct GeneratedText {
details: Details, details: Details,
} }
fn start_launcher(model_name: String, num_shard: usize, port: usize, master_port: usize) -> Popen { fn start_launcher(model_id: String, num_shard: usize, port: usize, master_port: usize) -> Popen {
let argv = vec![ let argv = vec![
"text-generation-launcher".to_string(), "text-generation-launcher".to_string(),
"--model-name".to_string(), "--model-id".to_string(),
model_name.clone(), model_id.clone(),
"--num-shard".to_string(), "--num-shard".to_string(),
num_shard.to_string(), num_shard.to_string(),
"--port".to_string(), "--port".to_string(),
@ -75,16 +75,16 @@ fn start_launcher(model_name: String, num_shard: usize, port: usize, master_port
launcher.terminate().unwrap(); launcher.terminate().unwrap();
launcher.wait().unwrap(); launcher.wait().unwrap();
panic!("failed to launch {}", model_name) panic!("failed to launch {}", model_id)
} }
fn test_model( fn test_model(
model_name: String, model_id: String,
num_shard: usize, num_shard: usize,
port: usize, port: usize,
master_port: usize, master_port: usize,
) -> GeneratedText { ) -> GeneratedText {
let mut launcher = start_launcher(model_name, num_shard, port, master_port); let mut launcher = start_launcher(model_id, num_shard, port, master_port);
let data = r#" let data = r#"
{ {

View File

@ -13,7 +13,7 @@ app = typer.Typer()
@app.command() @app.command()
def serve( def serve(
model_name: str, model_id: str,
revision: Optional[str] = None, revision: Optional[str] = None,
sharded: bool = False, sharded: bool = False,
quantize: bool = False, quantize: bool = False,
@ -46,16 +46,16 @@ def serve(
os.getenv("MASTER_PORT", None) is not None os.getenv("MASTER_PORT", None) is not None
), "MASTER_PORT must be set when sharded is True" ), "MASTER_PORT must be set when sharded is True"
server.serve(model_name, revision, sharded, quantize, uds_path) server.serve(model_id, revision, sharded, quantize, uds_path)
@app.command() @app.command()
def download_weights( def download_weights(
model_name: str, model_id: str,
revision: Optional[str] = None, revision: Optional[str] = None,
extension: str = ".safetensors", extension: str = ".safetensors",
): ):
utils.download_weights(model_name, revision, extension) utils.download_weights(model_id, revision, extension)
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -30,31 +30,31 @@ torch.backends.cudnn.allow_tf32 = True
def get_model( def get_model(
model_name: str, revision: Optional[str], sharded: bool, quantize: bool model_id: str, revision: Optional[str], sharded: bool, quantize: bool
) -> Model: ) -> Model:
config = AutoConfig.from_pretrained(model_name, revision=revision) config = AutoConfig.from_pretrained(model_id, revision=revision)
if config.model_type == "bloom": if config.model_type == "bloom":
if sharded: if sharded:
return BLOOMSharded(model_name, revision, quantize=quantize) return BLOOMSharded(model_id, revision, quantize=quantize)
else: else:
return BLOOM(model_name, revision, quantize=quantize) return BLOOM(model_id, revision, quantize=quantize)
elif config.model_type == "gpt_neox": elif config.model_type == "gpt_neox":
if sharded: if sharded:
return GPTNeoxSharded(model_name, revision, quantize=quantize) return GPTNeoxSharded(model_id, revision, quantize=quantize)
else: else:
return GPTNeox(model_name, revision, quantize=quantize) return GPTNeox(model_id, revision, quantize=quantize)
elif model_name.startswith("facebook/galactica"): elif model_id.startswith("facebook/galactica"):
if sharded: if sharded:
return GalacticaSharded(model_name, revision, quantize=quantize) return GalacticaSharded(model_id, revision, quantize=quantize)
else: else:
return Galactica(model_name, revision, quantize=quantize) return Galactica(model_id, revision, quantize=quantize)
elif "santacoder" in model_name: elif "santacoder" in model_id:
return SantaCoder(model_name, revision, quantize) return SantaCoder(model_id, revision, quantize)
else: else:
if sharded: if sharded:
raise ValueError("sharded is not supported for AutoModel") raise ValueError("sharded is not supported for AutoModel")
try: try:
return CausalLM(model_name, revision, quantize=quantize) return CausalLM(model_id, revision, quantize=quantize)
except Exception: except Exception:
return Seq2SeqLM(model_name, revision, quantize=quantize) return Seq2SeqLM(model_id, revision, quantize=quantize)

View File

@ -57,10 +57,10 @@ class BLOOM(CausalLM):
class BLOOMSharded(BLOOM): class BLOOMSharded(BLOOM):
def __init__( def __init__(
self, model_name: str, revision: Optional[str] = None, quantize: bool = False self, model_id: str, revision: Optional[str] = None, quantize: bool = False
): ):
if not model_name.startswith("bigscience/bloom"): if not model_id.startswith("bigscience/bloom"):
raise ValueError(f"Model {model_name} is not supported") raise ValueError(f"Model {model_id} is not supported")
self.process_group, self.rank, self.world_size = initialize_torch_distributed() self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0 self.master = self.rank == 0
@ -72,22 +72,20 @@ class BLOOMSharded(BLOOM):
dtype = torch.float32 dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left" model_id, revision=revision, padding_side="left"
) )
config = AutoConfig.from_pretrained( config = AutoConfig.from_pretrained(
model_name, revision=revision, slow_but_exact=False, tp_parallel=True model_id, revision=revision, slow_but_exact=False, tp_parallel=True
) )
config.pad_token_id = 3 config.pad_token_id = 3
# Only download weights for small models # Only download weights for small models
if self.master and model_name == "bigscience/bloom-560m": if self.master and model_id == "bigscience/bloom-560m":
download_weights(model_name, revision=revision, extension=".safetensors") download_weights(model_id, revision=revision, extension=".safetensors")
torch.distributed.barrier(group=self.process_group) torch.distributed.barrier(group=self.process_group)
filenames = weight_files( filenames = weight_files(model_id, revision=revision, extension=".safetensors")
model_name, revision=revision, extension=".safetensors"
)
if not filenames: if not filenames:
raise ValueError("No safetensors weights found") raise ValueError("No safetensors weights found")

View File

@ -232,7 +232,7 @@ class CausalLMBatch(Batch):
class CausalLM(Model): class CausalLM(Model):
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False): def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available(): if torch.cuda.is_available():
device = torch.device("cuda") device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
@ -244,10 +244,10 @@ class CausalLM(Model):
dtype = torch.float32 dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left" model_id, revision=revision, padding_side="left"
) )
self.model = AutoModelForCausalLM.from_pretrained( self.model = AutoModelForCausalLM.from_pretrained(
model_name, model_id,
revision=revision, revision=revision,
torch_dtype=dtype, torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None, device_map="auto" if torch.cuda.is_available() else None,

View File

@ -149,10 +149,10 @@ class Galactica(CausalLM):
class GalacticaSharded(Galactica): class GalacticaSharded(Galactica):
def __init__( def __init__(
self, model_name: str, revision: Optional[str] = None, quantize: bool = False self, model_id: str, revision: Optional[str] = None, quantize: bool = False
): ):
if not model_name.startswith("facebook/galactica"): if not model_id.startswith("facebook/galactica"):
raise ValueError(f"Model {model_name} is not supported") raise ValueError(f"Model {model_id} is not supported")
self.process_group, self.rank, self.world_size = initialize_torch_distributed() self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0 self.master = self.rank == 0
@ -164,22 +164,20 @@ class GalacticaSharded(Galactica):
dtype = torch.float32 dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left" model_id, revision=revision, padding_side="left"
) )
config = AutoConfig.from_pretrained( config = AutoConfig.from_pretrained(
model_name, revision=revision, tp_parallel=True model_id, revision=revision, tp_parallel=True
) )
tokenizer.pad_token_id = config.pad_token_id tokenizer.pad_token_id = config.pad_token_id
# Only download weights for small models # Only download weights for small models
if self.master and model_name == "facebook/galactica-125m": if self.master and model_id == "facebook/galactica-125m":
download_weights(model_name, revision=revision, extension=".safetensors") download_weights(model_id, revision=revision, extension=".safetensors")
torch.distributed.barrier(group=self.process_group) torch.distributed.barrier(group=self.process_group)
filenames = weight_files( filenames = weight_files(model_id, revision=revision, extension=".safetensors")
model_name, revision=revision, extension=".safetensors"
)
if not filenames: if not filenames:
raise ValueError("No safetensors weights found") raise ValueError("No safetensors weights found")

View File

@ -49,7 +49,7 @@ class GPTNeox(CausalLM):
class GPTNeoxSharded(GPTNeox): class GPTNeoxSharded(GPTNeox):
def __init__( def __init__(
self, model_name: str, revision: Optional[str] = None, quantize: bool = False self, model_id: str, revision: Optional[str] = None, quantize: bool = False
): ):
self.process_group, self.rank, self.world_size = initialize_torch_distributed() self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0 self.master = self.rank == 0
@ -61,22 +61,20 @@ class GPTNeoxSharded(GPTNeox):
dtype = torch.float32 dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left" model_id, revision=revision, padding_side="left"
) )
tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token = tokenizer.eos_token
config = AutoConfig.from_pretrained( config = AutoConfig.from_pretrained(
model_name, revision=revision, tp_parallel=True model_id, revision=revision, tp_parallel=True
) )
# Only master download weights # Only master download weights
if self.master: if self.master:
download_weights(model_name, revision=revision, extension=".safetensors") download_weights(model_id, revision=revision, extension=".safetensors")
torch.distributed.barrier(group=self.process_group) torch.distributed.barrier(group=self.process_group)
filenames = weight_files( filenames = weight_files(model_id, revision=revision, extension=".safetensors")
model_name, revision=revision, extension=".safetensors"
)
if not filenames: if not filenames:
raise ValueError("No safetensors weights found") raise ValueError("No safetensors weights found")

View File

@ -14,7 +14,7 @@ EOD = "<|endoftext|>"
class SantaCoder(CausalLM): class SantaCoder(CausalLM):
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False): def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available(): if torch.cuda.is_available():
device = torch.device("cuda") device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
@ -26,7 +26,7 @@ class SantaCoder(CausalLM):
dtype = torch.float32 dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left" model_id, revision=revision, padding_side="left"
) )
tokenizer.add_special_tokens( tokenizer.add_special_tokens(
{ {
@ -43,7 +43,7 @@ class SantaCoder(CausalLM):
self.model = ( self.model = (
AutoModelForCausalLM.from_pretrained( AutoModelForCausalLM.from_pretrained(
model_name, model_id,
revision=revision, revision=revision,
torch_dtype=dtype, torch_dtype=dtype,
load_in_8bit=quantize, load_in_8bit=quantize,

View File

@ -289,7 +289,7 @@ class Seq2SeqLMBatch(Batch):
class Seq2SeqLM(Model): class Seq2SeqLM(Model):
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False): def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available(): if torch.cuda.is_available():
device = torch.device("cuda") device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
@ -301,14 +301,14 @@ class Seq2SeqLM(Model):
dtype = torch.float32 dtype = torch.float32
self.model = AutoModelForSeq2SeqLM.from_pretrained( self.model = AutoModelForSeq2SeqLM.from_pretrained(
model_name, model_id,
revision=revision, revision=revision,
torch_dtype=dtype, torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None, device_map="auto" if torch.cuda.is_available() else None,
load_in_8bit=quantize, load_in_8bit=quantize,
).eval() ).eval()
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left" model_id, revision=revision, padding_side="left"
) )
tokenizer.bos_token_id = self.model.config.decoder_start_token_id tokenizer.bos_token_id = self.model.config.decoder_start_token_id

View File

@ -66,14 +66,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def serve( def serve(
model_name: str, model_id: str,
revision: Optional[str], revision: Optional[str],
sharded: bool, sharded: bool,
quantize: bool, quantize: bool,
uds_path: Path, uds_path: Path,
): ):
async def serve_inner( async def serve_inner(
model_name: str, model_id: str,
revision: Optional[str], revision: Optional[str],
sharded: bool = False, sharded: bool = False,
quantize: bool = False, quantize: bool = False,
@ -89,7 +89,7 @@ def serve(
local_url = unix_socket_template.format(uds_path, 0) local_url = unix_socket_template.format(uds_path, 0)
server_urls = [local_url] server_urls = [local_url]
model = get_model(model_name, revision, sharded, quantize) model = get_model(model_id, revision, sharded, quantize)
server = aio.server(interceptors=[ExceptionInterceptor()]) server = aio.server(interceptors=[ExceptionInterceptor()])
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server( generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
@ -109,4 +109,4 @@ def serve(
logger.info("Signal received. Shutting down") logger.info("Signal received. Shutting down")
await server.stop(0) await server.stop(0)
asyncio.run(serve_inner(model_name, revision, sharded, quantize)) asyncio.run(serve_inner(model_id, revision, sharded, quantize))

View File

@ -182,20 +182,20 @@ def initialize_torch_distributed():
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
def weight_hub_files(model_name, revision=None, extension=".safetensors"): def weight_hub_files(model_id, revision=None, extension=".safetensors"):
"""Get the safetensors filenames on the hub""" """Get the safetensors filenames on the hub"""
api = HfApi() api = HfApi()
info = api.model_info(model_name, revision=revision) info = api.model_info(model_id, revision=revision)
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)] filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
return filenames return filenames
def try_to_load_from_cache(model_name, revision, filename): def try_to_load_from_cache(model_id, revision, filename):
"""Try to load a file from the Hugging Face cache""" """Try to load a file from the Hugging Face cache"""
if revision is None: if revision is None:
revision = "main" revision = "main"
object_id = model_name.replace("/", "--") object_id = model_id.replace("/", "--")
repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}" repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"
if not repo_cache.is_dir(): if not repo_cache.is_dir():
@ -230,38 +230,38 @@ def try_to_load_from_cache(model_name, revision, filename):
return str(cached_file) if cached_file.is_file() else None return str(cached_file) if cached_file.is_file() else None
def weight_files(model_name, revision=None, extension=".safetensors"): def weight_files(model_id, revision=None, extension=".safetensors"):
"""Get the local safetensors filenames""" """Get the local safetensors filenames"""
if WEIGHTS_CACHE_OVERRIDE is not None: if WEIGHTS_CACHE_OVERRIDE is not None:
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}")) return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
filenames = weight_hub_files(model_name, revision, extension) filenames = weight_hub_files(model_id, revision, extension)
files = [] files = []
for filename in filenames: for filename in filenames:
cache_file = try_to_load_from_cache( cache_file = try_to_load_from_cache(
model_name, revision=revision, filename=filename model_id, revision=revision, filename=filename
) )
if cache_file is None: if cache_file is None:
raise LocalEntryNotFoundError( raise LocalEntryNotFoundError(
f"File {filename} of model {model_name} not found in " f"File {filename} of model {model_id} not found in "
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. " f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
f"Please run `text-generation-server download-weights {model_name}` first." f"Please run `text-generation-server download-weights {model_id}` first."
) )
files.append(cache_file) files.append(cache_file)
return files return files
def download_weights(model_name, revision=None, extension=".safetensors"): def download_weights(model_id, revision=None, extension=".safetensors"):
"""Download the safetensors files from the hub""" """Download the safetensors files from the hub"""
if WEIGHTS_CACHE_OVERRIDE is not None: if WEIGHTS_CACHE_OVERRIDE is not None:
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}")) return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
filenames = weight_hub_files(model_name, revision, extension) filenames = weight_hub_files(model_id, revision, extension)
download_function = partial( download_function = partial(
hf_hub_download, hf_hub_download,
repo_id=model_name, repo_id=model_id,
local_files_only=False, local_files_only=False,
) )