mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 03:14:53 +00:00
refactor doc
This commit is contained in:
parent
5de40eb078
commit
a7d15c38e8
10
Dockerfile
10
Dockerfile
@ -26,21 +26,18 @@ FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
|
||||
ENV LANG=C.UTF-8 \
|
||||
LC_ALL=C.UTF-8 \
|
||||
DEBIAN_FRONTEND=noninteractive \
|
||||
MODEL_BASE_PATH=/data \
|
||||
HUGGINGFACE_HUB_CACHE=/data \
|
||||
MODEL_ID=bigscience/bloom-560m \
|
||||
QUANTIZE=false \
|
||||
NUM_GPUS=1 \
|
||||
NUM_SHARD=1 \
|
||||
SAFETENSORS_FAST_GPU=1 \
|
||||
PORT=80 \
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
|
||||
NCCL_ASYNC_ERROR_HANDLING=1 \
|
||||
CUDA_HOME=/usr/local/cuda \
|
||||
LD_LIBRARY_PATH="/opt/miniconda/envs/text-generation/lib:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH" \
|
||||
CONDA_DEFAULT_ENV=text-generation \
|
||||
PATH=$PATH:/opt/miniconda/envs/text-generation/bin:/opt/miniconda/bin:/usr/local/cuda/bin
|
||||
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
RUN apt-get update && apt-get install -y unzip curl libssl-dev && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN cd ~ && \
|
||||
@ -71,4 +68,5 @@ COPY --from=router-builder /usr/local/cargo/bin/text-generation-router /usr/loca
|
||||
# Install launcher
|
||||
COPY --from=launcher-builder /usr/local/cargo/bin/text-generation-launcher /usr/local/bin/text-generation-launcher
|
||||
|
||||
CMD HUGGINGFACE_HUB_CACHE=$MODEL_BASE_PATH text-generation-launcher --num-shard $NUM_GPUS --model-name $MODEL_ID --json-output
|
||||
ENTRYPOINT ["text-generation-launcher"]
|
||||
CMD ["--json-output"]
|
8
Makefile
8
Makefile
@ -16,16 +16,16 @@ router-dev:
|
||||
cd router && cargo run
|
||||
|
||||
run-bloom-560m:
|
||||
text-generation-launcher --model-name bigscience/bloom-560m --num-shard 2
|
||||
text-generation-launcher --model-id bigscience/bloom-560m --num-shard 2
|
||||
|
||||
run-bloom-560m-quantize:
|
||||
text-generation-launcher --model-name bigscience/bloom-560m --num-shard 2 --quantize
|
||||
text-generation-launcher --model-id bigscience/bloom-560m --num-shard 2 --quantize
|
||||
|
||||
download-bloom:
|
||||
text-generation-server download-weights bigscience/bloom
|
||||
|
||||
run-bloom:
|
||||
text-generation-launcher --model-name bigscience/bloom --num-shard 8
|
||||
text-generation-launcher --model-id bigscience/bloom --num-shard 8
|
||||
|
||||
run-bloom-quantize:
|
||||
text-generation-launcher --model-name bigscience/bloom --num-shard 8 --quantize
|
||||
text-generation-launcher --model-id bigscience/bloom --num-shard 8 --quantize
|
105
README.md
105
README.md
@ -1,16 +1,42 @@
|
||||
<div align="center">
|
||||
|
||||
# Text Generation Inference
|
||||
|
||||
<div align="center">
|
||||
<a href="https://github.com/huggingface/text-generation-inference">
|
||||
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
|
||||
<img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
|
||||
</a>
|
||||
<a href="https://huggingface.github.io/text-generation-inference">
|
||||
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
|
||||
</a>
|
||||
|
||||

|
||||
|
||||
</div>
|
||||
|
||||
A Rust and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
||||
to power Bloom, BloomZ and MT0-XXL api-inference widgets.
|
||||
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
||||
to power LLMs api-inference widgets.
|
||||
|
||||
## Table of contents
|
||||
|
||||
- [Features](#features)
|
||||
- [Officially Supported Models](#officially-supported-models)
|
||||
- [Get Started](#get-started)
|
||||
- [Docker](#docker)
|
||||
- [Local Install](#local-install)
|
||||
- [OpenAPI](#api-documentation)
|
||||
- [CUDA Kernels](#cuda-kernels)
|
||||
- [Run BLOOM](#run-bloom)
|
||||
- [Download](#download)
|
||||
- [Run](#run)
|
||||
- [Quantization](#quantization)
|
||||
- [Develop](#develop)
|
||||
|
||||
## Features
|
||||
|
||||
- Token streaming using Server Side Events (SSE)
|
||||
- [Dynamic batching of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput
|
||||
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
||||
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
||||
@ -36,30 +62,63 @@ or
|
||||
|
||||
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
|
||||
|
||||
## Load Tests for BLOOM
|
||||
## Get started
|
||||
|
||||
See `k6/load_test.js`
|
||||
### Docker
|
||||
|
||||
| | avg | min | med | max | p(90) | p(95) | RPS |
|
||||
|--------------------------------------------------------------|-----------|--------------|-----------|------------|-----------|-----------|----------|
|
||||
| [Original code](https://github.com/huggingface/transformers_bloom_parallel) | 8.9s | 1s | 9.12s | 16.69s | 13.7s | 14.26s | 5.9 |
|
||||
| New batching logic | **5.44s** | **959.53ms** | **5.28s** | **13.12s** | **7.78s** | **8.92s** | **9.08** |
|
||||
|
||||
## Install
|
||||
The easiest way of getting started is using the official Docker container:
|
||||
|
||||
```shell
|
||||
make install
|
||||
model=bigscience/bloom-560m
|
||||
num_shard=2
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --num-shard $num_shard
|
||||
```
|
||||
|
||||
## Run
|
||||
|
||||
### BLOOM 560-m
|
||||
You can then query the model using either the `/generate` or `/generate_stream` routes:
|
||||
|
||||
```shell
|
||||
curl 127.0.0.1:8080/generate \
|
||||
-X POST \
|
||||
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
```shell
|
||||
curl 127.0.0.1:8080/generate_stream \
|
||||
-X POST \
|
||||
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
To use GPUs, you will need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html).
|
||||
|
||||
### API documentation
|
||||
|
||||
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
|
||||
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
|
||||
|
||||
### Local install
|
||||
|
||||
You can also opt to install `text-generation-inference` locally. You will need to have cargo and Python installed on your
|
||||
machine
|
||||
|
||||
```shell
|
||||
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
|
||||
make run-bloom-560m
|
||||
```
|
||||
|
||||
### BLOOM
|
||||
### CUDA Kernels
|
||||
|
||||
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
|
||||
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.
|
||||
|
||||
Be aware that the official Docker image has them enabled by default.
|
||||
|
||||
## Run BLOOM
|
||||
|
||||
### Download
|
||||
|
||||
First you need to download the weights:
|
||||
|
||||
@ -67,26 +126,20 @@ First you need to download the weights:
|
||||
make download-bloom
|
||||
```
|
||||
|
||||
### Run
|
||||
|
||||
```shell
|
||||
make run-bloom # Requires 8xA100 80GB
|
||||
```
|
||||
|
||||
### Quantization
|
||||
|
||||
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
|
||||
|
||||
```shell
|
||||
make run-bloom-quantize # Requires 8xA100 40GB
|
||||
```
|
||||
|
||||
## Test
|
||||
|
||||
```shell
|
||||
curl 127.0.0.1:3000/generate \
|
||||
-v \
|
||||
-X POST \
|
||||
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
## Develop
|
||||
|
||||
```shell
|
||||
|
@ -4,9 +4,9 @@ endpoint_name: bloom-inference
|
||||
model: azureml:bloom:1
|
||||
model_mount_path: /var/azureml-model
|
||||
environment_variables:
|
||||
MODEL_BASE_PATH: /var/azureml-model/bloom
|
||||
HUGGINGFACE_HUB_CACHE: /var/azureml-model/bloom
|
||||
MODEL_ID: bigscience/bloom
|
||||
NUM_GPUS: 8
|
||||
NUM_SHARD: 8
|
||||
environment:
|
||||
image: db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference:0.3.1
|
||||
inference_config:
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 334 KiB |
@ -3,7 +3,7 @@
|
||||
<!-- Load the latest Swagger UI code and style from npm using unpkg.com -->
|
||||
<script src="https://unpkg.com/swagger-ui-dist@3/swagger-ui-bundle.js"></script>
|
||||
<link rel="stylesheet" type="text/css" href="https://unpkg.com/swagger-ui-dist@3/swagger-ui.css"/>
|
||||
<title>My New API</title>
|
||||
<title>Text Generation Inference API</title>
|
||||
</head>
|
||||
<body>
|
||||
<div id="swagger-ui"></div> <!-- Div to hold the UI component -->
|
||||
|
@ -19,7 +19,7 @@ use subprocess::{Popen, PopenConfig, PopenError, Redirection};
|
||||
#[clap(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
#[clap(default_value = "bigscience/bloom-560m", long, env)]
|
||||
model_name: String,
|
||||
model_id: String,
|
||||
#[clap(long, env)]
|
||||
revision: Option<String>,
|
||||
#[clap(long, env)]
|
||||
@ -49,7 +49,7 @@ struct Args {
|
||||
fn main() -> ExitCode {
|
||||
// Pattern match configuration
|
||||
let Args {
|
||||
model_name,
|
||||
model_id,
|
||||
revision,
|
||||
num_shard,
|
||||
quantize,
|
||||
@ -92,7 +92,7 @@ fn main() -> ExitCode {
|
||||
|
||||
// Start shard processes
|
||||
for rank in 0..num_shard {
|
||||
let model_name = model_name.clone();
|
||||
let model_id = model_id.clone();
|
||||
let revision = revision.clone();
|
||||
let uds_path = shard_uds_path.clone();
|
||||
let master_addr = master_addr.clone();
|
||||
@ -101,7 +101,7 @@ fn main() -> ExitCode {
|
||||
let shutdown_sender = shutdown_sender.clone();
|
||||
thread::spawn(move || {
|
||||
shard_manager(
|
||||
model_name,
|
||||
model_id,
|
||||
revision,
|
||||
quantize,
|
||||
uds_path,
|
||||
@ -167,7 +167,7 @@ fn main() -> ExitCode {
|
||||
"--master-shard-uds-path".to_string(),
|
||||
format!("{}-0", shard_uds_path),
|
||||
"--tokenizer-name".to_string(),
|
||||
model_name,
|
||||
model_id,
|
||||
];
|
||||
|
||||
if json_output {
|
||||
@ -256,7 +256,7 @@ enum ShardStatus {
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn shard_manager(
|
||||
model_name: String,
|
||||
model_id: String,
|
||||
revision: Option<String>,
|
||||
quantize: bool,
|
||||
uds_path: String,
|
||||
@ -278,7 +278,7 @@ fn shard_manager(
|
||||
let mut shard_argv = vec![
|
||||
"text-generation-server".to_string(),
|
||||
"serve".to_string(),
|
||||
model_name,
|
||||
model_id,
|
||||
"--uds-path".to_string(),
|
||||
uds_path,
|
||||
"--logger-level".to_string(),
|
||||
|
@ -29,11 +29,11 @@ struct GeneratedText {
|
||||
details: Details,
|
||||
}
|
||||
|
||||
fn start_launcher(model_name: String, num_shard: usize, port: usize, master_port: usize) -> Popen {
|
||||
fn start_launcher(model_id: String, num_shard: usize, port: usize, master_port: usize) -> Popen {
|
||||
let argv = vec![
|
||||
"text-generation-launcher".to_string(),
|
||||
"--model-name".to_string(),
|
||||
model_name.clone(),
|
||||
"--model-id".to_string(),
|
||||
model_id.clone(),
|
||||
"--num-shard".to_string(),
|
||||
num_shard.to_string(),
|
||||
"--port".to_string(),
|
||||
@ -75,16 +75,16 @@ fn start_launcher(model_name: String, num_shard: usize, port: usize, master_port
|
||||
|
||||
launcher.terminate().unwrap();
|
||||
launcher.wait().unwrap();
|
||||
panic!("failed to launch {}", model_name)
|
||||
panic!("failed to launch {}", model_id)
|
||||
}
|
||||
|
||||
fn test_model(
|
||||
model_name: String,
|
||||
model_id: String,
|
||||
num_shard: usize,
|
||||
port: usize,
|
||||
master_port: usize,
|
||||
) -> GeneratedText {
|
||||
let mut launcher = start_launcher(model_name, num_shard, port, master_port);
|
||||
let mut launcher = start_launcher(model_id, num_shard, port, master_port);
|
||||
|
||||
let data = r#"
|
||||
{
|
||||
|
@ -13,7 +13,7 @@ app = typer.Typer()
|
||||
|
||||
@app.command()
|
||||
def serve(
|
||||
model_name: str,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
sharded: bool = False,
|
||||
quantize: bool = False,
|
||||
@ -46,16 +46,16 @@ def serve(
|
||||
os.getenv("MASTER_PORT", None) is not None
|
||||
), "MASTER_PORT must be set when sharded is True"
|
||||
|
||||
server.serve(model_name, revision, sharded, quantize, uds_path)
|
||||
server.serve(model_id, revision, sharded, quantize, uds_path)
|
||||
|
||||
|
||||
@app.command()
|
||||
def download_weights(
|
||||
model_name: str,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
extension: str = ".safetensors",
|
||||
):
|
||||
utils.download_weights(model_name, revision, extension)
|
||||
utils.download_weights(model_id, revision, extension)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -30,31 +30,31 @@ torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
|
||||
def get_model(
|
||||
model_name: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
) -> Model:
|
||||
config = AutoConfig.from_pretrained(model_name, revision=revision)
|
||||
config = AutoConfig.from_pretrained(model_id, revision=revision)
|
||||
|
||||
if config.model_type == "bloom":
|
||||
if sharded:
|
||||
return BLOOMSharded(model_name, revision, quantize=quantize)
|
||||
return BLOOMSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return BLOOM(model_name, revision, quantize=quantize)
|
||||
return BLOOM(model_id, revision, quantize=quantize)
|
||||
elif config.model_type == "gpt_neox":
|
||||
if sharded:
|
||||
return GPTNeoxSharded(model_name, revision, quantize=quantize)
|
||||
return GPTNeoxSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return GPTNeox(model_name, revision, quantize=quantize)
|
||||
elif model_name.startswith("facebook/galactica"):
|
||||
return GPTNeox(model_id, revision, quantize=quantize)
|
||||
elif model_id.startswith("facebook/galactica"):
|
||||
if sharded:
|
||||
return GalacticaSharded(model_name, revision, quantize=quantize)
|
||||
return GalacticaSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Galactica(model_name, revision, quantize=quantize)
|
||||
elif "santacoder" in model_name:
|
||||
return SantaCoder(model_name, revision, quantize)
|
||||
return Galactica(model_id, revision, quantize=quantize)
|
||||
elif "santacoder" in model_id:
|
||||
return SantaCoder(model_id, revision, quantize)
|
||||
else:
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
try:
|
||||
return CausalLM(model_name, revision, quantize=quantize)
|
||||
return CausalLM(model_id, revision, quantize=quantize)
|
||||
except Exception:
|
||||
return Seq2SeqLM(model_name, revision, quantize=quantize)
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
||||
|
@ -57,10 +57,10 @@ class BLOOM(CausalLM):
|
||||
|
||||
class BLOOMSharded(BLOOM):
|
||||
def __init__(
|
||||
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
if not model_name.startswith("bigscience/bloom"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
if not model_id.startswith("bigscience/bloom"):
|
||||
raise ValueError(f"Model {model_id} is not supported")
|
||||
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
@ -72,22 +72,20 @@ class BLOOMSharded(BLOOM):
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, revision=revision, slow_but_exact=False, tp_parallel=True
|
||||
model_id, revision=revision, slow_but_exact=False, tp_parallel=True
|
||||
)
|
||||
config.pad_token_id = 3
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master and model_name == "bigscience/bloom-560m":
|
||||
download_weights(model_name, revision=revision, extension=".safetensors")
|
||||
if self.master and model_id == "bigscience/bloom-560m":
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(
|
||||
model_name, revision=revision, extension=".safetensors"
|
||||
)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
|
@ -232,7 +232,7 @@ class CausalLMBatch(Batch):
|
||||
|
||||
|
||||
class CausalLM(Model):
|
||||
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
@ -244,10 +244,10 @@ class CausalLM(Model):
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto" if torch.cuda.is_available() else None,
|
||||
|
@ -149,10 +149,10 @@ class Galactica(CausalLM):
|
||||
|
||||
class GalacticaSharded(Galactica):
|
||||
def __init__(
|
||||
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
if not model_name.startswith("facebook/galactica"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
if not model_id.startswith("facebook/galactica"):
|
||||
raise ValueError(f"Model {model_id} is not supported")
|
||||
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
@ -164,22 +164,20 @@ class GalacticaSharded(Galactica):
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, revision=revision, tp_parallel=True
|
||||
model_id, revision=revision, tp_parallel=True
|
||||
)
|
||||
tokenizer.pad_token_id = config.pad_token_id
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master and model_name == "facebook/galactica-125m":
|
||||
download_weights(model_name, revision=revision, extension=".safetensors")
|
||||
if self.master and model_id == "facebook/galactica-125m":
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(
|
||||
model_name, revision=revision, extension=".safetensors"
|
||||
)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
|
@ -49,7 +49,7 @@ class GPTNeox(CausalLM):
|
||||
|
||||
class GPTNeoxSharded(GPTNeox):
|
||||
def __init__(
|
||||
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
@ -61,22 +61,20 @@ class GPTNeoxSharded(GPTNeox):
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, revision=revision, tp_parallel=True
|
||||
model_id, revision=revision, tp_parallel=True
|
||||
)
|
||||
|
||||
# Only master download weights
|
||||
if self.master:
|
||||
download_weights(model_name, revision=revision, extension=".safetensors")
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(
|
||||
model_name, revision=revision, extension=".safetensors"
|
||||
)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
|
@ -14,7 +14,7 @@ EOD = "<|endoftext|>"
|
||||
|
||||
|
||||
class SantaCoder(CausalLM):
|
||||
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
@ -26,7 +26,7 @@ class SantaCoder(CausalLM):
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
tokenizer.add_special_tokens(
|
||||
{
|
||||
@ -43,7 +43,7 @@ class SantaCoder(CausalLM):
|
||||
|
||||
self.model = (
|
||||
AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
load_in_8bit=quantize,
|
||||
|
@ -289,7 +289,7 @@ class Seq2SeqLMBatch(Batch):
|
||||
|
||||
|
||||
class Seq2SeqLM(Model):
|
||||
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
@ -301,14 +301,14 @@ class Seq2SeqLM(Model):
|
||||
dtype = torch.float32
|
||||
|
||||
self.model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_name,
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
device_map="auto" if torch.cuda.is_available() else None,
|
||||
load_in_8bit=quantize,
|
||||
).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
tokenizer.bos_token_id = self.model.config.decoder_start_token_id
|
||||
|
||||
|
@ -66,14 +66,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||
|
||||
|
||||
def serve(
|
||||
model_name: str,
|
||||
model_id: str,
|
||||
revision: Optional[str],
|
||||
sharded: bool,
|
||||
quantize: bool,
|
||||
uds_path: Path,
|
||||
):
|
||||
async def serve_inner(
|
||||
model_name: str,
|
||||
model_id: str,
|
||||
revision: Optional[str],
|
||||
sharded: bool = False,
|
||||
quantize: bool = False,
|
||||
@ -89,7 +89,7 @@ def serve(
|
||||
local_url = unix_socket_template.format(uds_path, 0)
|
||||
server_urls = [local_url]
|
||||
|
||||
model = get_model(model_name, revision, sharded, quantize)
|
||||
model = get_model(model_id, revision, sharded, quantize)
|
||||
|
||||
server = aio.server(interceptors=[ExceptionInterceptor()])
|
||||
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
|
||||
@ -109,4 +109,4 @@ def serve(
|
||||
logger.info("Signal received. Shutting down")
|
||||
await server.stop(0)
|
||||
|
||||
asyncio.run(serve_inner(model_name, revision, sharded, quantize))
|
||||
asyncio.run(serve_inner(model_id, revision, sharded, quantize))
|
||||
|
@ -182,20 +182,20 @@ def initialize_torch_distributed():
|
||||
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
|
||||
|
||||
|
||||
def weight_hub_files(model_name, revision=None, extension=".safetensors"):
|
||||
def weight_hub_files(model_id, revision=None, extension=".safetensors"):
|
||||
"""Get the safetensors filenames on the hub"""
|
||||
api = HfApi()
|
||||
info = api.model_info(model_name, revision=revision)
|
||||
info = api.model_info(model_id, revision=revision)
|
||||
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
|
||||
return filenames
|
||||
|
||||
|
||||
def try_to_load_from_cache(model_name, revision, filename):
|
||||
def try_to_load_from_cache(model_id, revision, filename):
|
||||
"""Try to load a file from the Hugging Face cache"""
|
||||
if revision is None:
|
||||
revision = "main"
|
||||
|
||||
object_id = model_name.replace("/", "--")
|
||||
object_id = model_id.replace("/", "--")
|
||||
repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"
|
||||
|
||||
if not repo_cache.is_dir():
|
||||
@ -230,38 +230,38 @@ def try_to_load_from_cache(model_name, revision, filename):
|
||||
return str(cached_file) if cached_file.is_file() else None
|
||||
|
||||
|
||||
def weight_files(model_name, revision=None, extension=".safetensors"):
|
||||
def weight_files(model_id, revision=None, extension=".safetensors"):
|
||||
"""Get the local safetensors filenames"""
|
||||
if WEIGHTS_CACHE_OVERRIDE is not None:
|
||||
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
|
||||
|
||||
filenames = weight_hub_files(model_name, revision, extension)
|
||||
filenames = weight_hub_files(model_id, revision, extension)
|
||||
files = []
|
||||
for filename in filenames:
|
||||
cache_file = try_to_load_from_cache(
|
||||
model_name, revision=revision, filename=filename
|
||||
model_id, revision=revision, filename=filename
|
||||
)
|
||||
if cache_file is None:
|
||||
raise LocalEntryNotFoundError(
|
||||
f"File {filename} of model {model_name} not found in "
|
||||
f"File {filename} of model {model_id} not found in "
|
||||
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
|
||||
f"Please run `text-generation-server download-weights {model_name}` first."
|
||||
f"Please run `text-generation-server download-weights {model_id}` first."
|
||||
)
|
||||
files.append(cache_file)
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def download_weights(model_name, revision=None, extension=".safetensors"):
|
||||
def download_weights(model_id, revision=None, extension=".safetensors"):
|
||||
"""Download the safetensors files from the hub"""
|
||||
if WEIGHTS_CACHE_OVERRIDE is not None:
|
||||
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
|
||||
|
||||
filenames = weight_hub_files(model_name, revision, extension)
|
||||
filenames = weight_hub_files(model_id, revision, extension)
|
||||
|
||||
download_function = partial(
|
||||
hf_hub_download,
|
||||
repo_id=model_name,
|
||||
repo_id=model_id,
|
||||
local_files_only=False,
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user