Fixes and format

This commit is contained in:
Joel Lamy-Poirier 2023-05-25 15:08:52 -04:00
parent 0921fe6a2a
commit a515fbde4c
No known key found for this signature in database
GPG Key ID: 82EE2141E842DFCF
6 changed files with 683 additions and 283 deletions

View File

@ -13,14 +13,13 @@
# limitations under the License.
"""PyTorch GPTBigCode model."""
import math
from typing import Optional, Tuple, Any, Union, List
from enum import IntEnum
from typing import Optional, Tuple, Any, List
import torch
import torch.utils.checkpoint
from torch import nn
from dropout_layer_norm import dropout_layer_norm
from dropout_layer_norm import dropout_add_ln_fwd
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
@ -30,10 +29,11 @@ from transformers.models.gpt_bigcode.configuration_gpt_bigcode import (
GPTBigCodeConfig,
)
class FastLayerNorm(nn.LayerNorm):
# TODO: Validate dimension
def forward(self, hidden_states, residual=None):
return dropout_layer_norm.dropout_add_ln_fwd(
out, residual, *_ = dropout_add_ln_fwd(
hidden_states,
residual,
self.weight,
@ -50,18 +50,24 @@ class FastLayerNorm(nn.LayerNorm):
False,
False,
)
if residual is None:
residual = hidden_states
return out, residual
class FastLinear(nn.Linear):
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.addmm(self.bias, input, self.weight)
class FastLinearNoBias(nn.Linear):
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.mm(input, self.weight)
logger = logging.get_logger(__name__)
@torch.jit.script
def upcast_masked_softmax(
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float
@ -72,38 +78,53 @@ def upcast_masked_softmax(
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
return x
@torch.jit.script
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
x = torch.where(mask, x, mask_value)
x = torch.nn.functional.softmax(x, dim=-1)
return x
class GPTBigCodeAttention(nn.Module):
def __init__(self, config:GPTBigCodeConfig, layer_idx:int, dtype:torch.dtype):
mask_value: torch.Tensor
def __init__(self, config: GPTBigCodeConfig, layer_idx: int, dtype: torch.dtype):
super().__init__()
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.layer_idx = layer_idx
# Note: Does not support module dtype conversion.
self.register_buffer("mask_value", torch.empty((), dtype=torch.float32, device="meta"))
self.c_attn = FastLinear(self.embed_dim, self.embed_dim + 2 * self.head_dim, dtype=dtype, device="meta")
self.c_proj = FastLinear(self.embed_dim, self.embed_dim, dtype=dtype, device="meta")
self.c_attn = FastLinear(
self.embed_dim,
self.embed_dim + 2 * self.head_dim,
dtype=dtype,
device="meta",
)
self.c_proj = FastLinear(
self.embed_dim, self.embed_dim, dtype=dtype, device="meta"
)
def prefill(
self,
hidden_states: torch.Tensor,
sequence_lengths,
key_length:int,
key_length: int,
) -> Tuple[torch.Tensor, Any]:
hidden_shape = hidden_states.shape
query, key_value = self.c_attn.forward(hidden_states).split((self.embed_dim, 2 * self.head_dim), dim=-1)
query, key_value = self.c_attn.forward(hidden_states).split(
(self.embed_dim, 2 * self.head_dim), dim=-1
)
query = query.view(hidden_shape[0], self.num_heads, self.head_dim)
key, value = key_value.unsqueeze(1).expand(hidden_shape[0], self.num_heads, 2*self.head_dim).split((self.head_dim, self.head_dim), dim=-1)
key, value = (
key_value.unsqueeze(1)
.expand(hidden_shape[0], self.num_heads, 2 * self.head_dim)
.split((self.head_dim, self.head_dim), dim=-1)
)
# attn_output: (sum_seq_len, num_heads * head_dim)
attn_output = flash_attn_unpadded_func(
hidden_states = flash_attn_unpadded_func(
query,
key,
value,
@ -116,23 +137,25 @@ class GPTBigCodeAttention(nn.Module):
causal=True,
).view(hidden_shape)
attn_output = self.c_proj.forward(attn_output)
hidden_states = self.c_proj.forward(hidden_states)
return attn_output, key_value
return hidden_states, key_value
def decode(
self,
hidden_states: torch.Tensor,
layer_past: torch.Tensor,
attention_mask: torch.Tensor,
batch_size:int,
key_length:int,
batch_size: int,
key_length: int,
) -> Tuple[torch.Tensor, Any]:
query, key_value = self.c_attn.forward(hidden_states).split((self.embed_dim, 2 * self.head_dim), dim=-1)
query, key_value = self.c_attn.forward(hidden_states).split(
(self.embed_dim, 2 * self.head_dim), dim=-1
)
# Calculate dimensions and recover layer_past
padded_key_length = attention_mask.size(-1)
allocated_key_length=layer_past.size(-2)
allocated_key_length = layer_past.size(-2)
# TODO: Allow pre-allocation with size > padded_key_length
if padded_key_length > allocated_key_length:
@ -142,37 +165,45 @@ class GPTBigCodeAttention(nn.Module):
dtype=key_value.dtype,
device=key_value.device,
)
allocated_kv_cache[:, :key_length-1].copy_(layer_past[:, :key_length-1])
allocated_kv_cache[:, : key_length - 1].copy_(
layer_past[:, : key_length - 1]
)
# Nans in `value` can propagate through the matrix multiplication,
# so we set the remaining values to zero. (`last_key_length:key_length` is set below.)
allocated_kv_cache[:, allocated_key_length:, self.head_dim :].zero_()
layer_past=allocated_kv_cache
layer_past = allocated_kv_cache
# Copy the new values.
layer_past[:, key_length-1:key_length].copy_(key_value)
layer_past[:, key_length - 1].copy_(key_value)
key, value = layer_past.split((self.head_dim, self.head_dim), dim=-1)
# TODO: Upcasting needed for bf16?
upcast = query.dtype != torch.float32
unscale = self.layer_idx + 1 if upcast else 1
scale_factor = unscale ** -1 / self.head_dim ** 0.5
scale_factor = unscale**-1 / self.head_dim**0.5
# TODO: No need to unsqueeze?
hidden_states = torch.baddbmm(
torch.empty((batch_size, self.num_heads, padded_key_length), device=query.device, dtype=query.dtype),
torch.empty(
(batch_size, self.num_heads, padded_key_length),
device=query.device,
dtype=query.dtype,
),
query.view(batch_size, self.num_heads, self.head_dim),
key.transpose(-1, -2),
beta=0,
alpha=scale_factor
alpha=scale_factor,
).unsqueeze_(1)
if self.mask_value is None or self.mask_value.device != hidden_states.device:
self.mask_value = torch.full([], torch.finfo(torch.float32).min, dtype=torch.float32, device=hidden_states.device)
if upcast:
hidden_states = upcast_masked_softmax(hidden_states, attention_mask, self.mask_value, unscale)
hidden_states = upcast_masked_softmax(
hidden_states, attention_mask, self.mask_value, unscale
)
else:
hidden_states = masked_softmax(hidden_states, attention_mask, self.mask_value)
hidden_states = masked_softmax(
hidden_states, attention_mask, self.mask_value
)
hidden_states = torch.bmm(hidden_states.squeeze_(1), value).view(query.shape)
@ -180,21 +211,33 @@ class GPTBigCodeAttention(nn.Module):
return hidden_states, layer_past
class GPTBigCodeMLP(nn.Module):
# TODO: Merge into GPTBigCodeBlock (needs renaming in state dict)
def __init__(self, config:GPTBigCodeConfig, dtype:torch.dtype):
def __init__(self, config: GPTBigCodeConfig, dtype: torch.dtype):
super().__init__()
embed_dim = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * embed_dim
self.c_fc = FastLinear(embed_dim, inner_dim, dtype=dtype, device="meta")
self.c_proj = FastLinear(inner_dim, embed_dim, dtype=dtype, device="meta")
class GPTBigCodeBlock(nn.Module):
def __init__(self, config:GPTBigCodeConfig, layer_idx:int, dtype:torch.dtype):
def __init__(self, config: GPTBigCodeConfig, layer_idx: int, dtype: torch.dtype):
super().__init__()
self.ln_1 = FastLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon, dtype=dtype, device="meta")
self.ln_1 = FastLayerNorm(
config.hidden_size,
eps=config.layer_norm_epsilon,
dtype=dtype,
device="meta",
)
self.attn = GPTBigCodeAttention(config, layer_idx=layer_idx, dtype=dtype)
self.ln_2 = FastLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon, dtype=dtype, device="meta")
self.ln_2 = FastLayerNorm(
config.hidden_size,
eps=config.layer_norm_epsilon,
dtype=dtype,
device="meta",
)
self.mlp = GPTBigCodeMLP(config, dtype=dtype)
def prefill(
@ -202,7 +245,7 @@ class GPTBigCodeBlock(nn.Module):
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
sequence_lengths,
key_length:int,
key_length: int,
) -> Tuple[torch.Tensor, torch.Tensor, Any]:
hidden_states, residual, *_ = self.ln_1.forward(hidden_states, residual)
hidden_states, present = self.attn.prefill(
@ -211,7 +254,9 @@ class GPTBigCodeBlock(nn.Module):
key_length=key_length,
)
hidden_states, residual, *_ = self.ln_2.forward(hidden_states, residual)
hidden_states = self.mlp.c_proj.forward(nn.functional.gelu(self.mlp.c_fc.forward(hidden_states), approximate="tanh"))
hidden_states = self.mlp.c_proj.forward(
nn.functional.gelu(self.mlp.c_fc.forward(hidden_states), approximate="tanh")
)
return hidden_states, residual, present
def decode(
@ -220,8 +265,8 @@ class GPTBigCodeBlock(nn.Module):
residual: Optional[torch.Tensor],
layer_past: torch.Tensor,
attention_mask: torch.Tensor,
batch_size:int,
key_length:int,
batch_size: int,
key_length: int,
) -> Tuple[torch.Tensor, torch.Tensor, Any]:
hidden_states, residual, *_ = self.ln_1.forward(hidden_states, residual)
hidden_states, present = self.attn.decode(
@ -232,7 +277,9 @@ class GPTBigCodeBlock(nn.Module):
key_length=key_length,
)
hidden_states, residual, *_ = self.ln_2.forward(hidden_states, residual)
hidden_states = self.mlp.c_proj.forward(nn.functional.gelu(self.mlp.c_fc.forward(hidden_states), approximate="tanh"))
hidden_states = self.mlp.c_proj.forward(
nn.functional.gelu(self.mlp.c_fc.forward(hidden_states), approximate="tanh")
)
return hidden_states, residual, present
@ -252,11 +299,7 @@ class GPTBigCodePreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, GPTBigCodeModel):
module.bias.fill_(True).tril_()
elif isinstance(module, (GPTBigCodeBlock, GPTBigCodeAttention)):
if isinstance(module, GPTBigCodeAttention):
module.mask_value.fill_(torch.finfo(torch.float32).min)
if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)):
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
@ -264,7 +307,10 @@ class GPTBigCodePreTrainedModel(PreTrainedModel):
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
module.c_proj.weight.data.normal_(
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
mean=0.0,
std=(
self.config.initializer_range / math.sqrt(2 * self.config.n_layer)
),
)
module.c_proj._is_hf_initialized = True
elif isinstance(module, nn.Linear):
@ -284,62 +330,86 @@ class GPTBigCodePreTrainedModel(PreTrainedModel):
class GPTBigCodeModel(GPTBigCodePreTrainedModel):
# TODO: Merge into GPTBigCodeForCausalLM (needs renaming in state dict)
def __init__(self, config:GPTBigCodeConfig, dtype:torch.dtype):
def __init__(self, config: GPTBigCodeConfig, dtype: torch.dtype):
super().__init__(config)
self.wte = nn.Embedding(config.vocab_size, config.hidden_size, dtype=dtype, device="meta")
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size, dtype=dtype, device="meta")
self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i, dtype=dtype) for i in range(config.num_hidden_layers)])
self.ln_f = FastLayerNorm(config.hidden_size, dtype=dtype, device="meta", eps=config.layer_norm_epsilon)
# Causal mask
self.register_buffer(
"causal_mask", torch.empty((config.max_position_embeddings, config.max_position_embeddings), dtype=torch.bool, device="meta")
self.wte = nn.Embedding(
config.vocab_size, config.hidden_size, dtype=dtype, device="meta"
)
self.wpe = nn.Embedding(
config.max_position_embeddings,
config.hidden_size,
dtype=dtype,
device="meta",
)
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
pad_key_length_to_multiple=8
self.h = nn.ModuleList(
[
GPTBigCodeBlock(config, layer_idx=i, dtype=dtype)
for i in range(config.num_hidden_layers)
]
)
self.ln_f = FastLayerNorm(
config.hidden_size,
dtype=dtype,
device="meta",
eps=config.layer_norm_epsilon,
)
def __init__(self, config, dtype:torch.dtype, device:torch.device=torch.device("cuda")):
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
def __init__(
self, config, dtype: torch.dtype, device: torch.device = torch.device("cuda")
):
super().__init__(config)
if device.type!="cuda":
if device.type != "cuda":
raise NotImplementedError(f"Device {device} not supported")
self.transformer = GPTBigCodeModel(config, dtype=dtype)
self.lm_head = FastLinearNoBias(config.n_embd, config.vocab_size, bias=False, dtype=dtype, device="meta")
self.lm_head = FastLinearNoBias(
config.n_embd, config.vocab_size, bias=False, dtype=dtype, device="meta"
)
# Causal mask
self.causal_mask = torch.ones(
(config.max_position_embeddings, config.max_position_embeddings),
dtype=torch.bool,
device=device,
).tril_()
self.mask_value = torch.full(
(), torch.finfo(torch.float32).min, dtype=torch.float32, device=device
)
self.to_empty(device=device)
self._apply=self._apply_not_allowed
# Initialize weights and apply final processing
# TODO: Skip?
self.post_init()
def _apply_not_allowed(self):
# Dtype or device conversion would break the model.
raise NotImplementedError("Device or dtype conversion not supported!")
def prefill(
self,
*,
input_ids: torch.Tensor,
attention_mask: torch.Tensor = None,
position_ids: torch.Tensor,
predict_all_tokens: bool=True,
predict_all_tokens: bool = True,
) -> Tuple:
batch_size, query_length = input_ids.shape
hidden_states = self.transformer.wte.forward(input_ids) + self.transformer.wpe.forward(position_ids)
hidden_states = self.transformer.wte.forward(
input_ids
) + self.transformer.wpe.forward(position_ids)
# Prefill (flash attn)
# TODO: Unpad earlier (input ids)?
hidden_states, padding_index, sequence_lengths, key_length = unpad_input(hidden_states, attention_mask)
assert key_length==query_length
hidden_states, padding_index, sequence_lengths, key_length = unpad_input(
hidden_states, attention_mask
)
assert key_length == query_length
residual = None
past_key_values = []
block:GPTBigCodeBlock
block: GPTBigCodeBlock
for block in self.transformer.h:
hidden_states, residual, key_value = block.prefill(
hidden_states,
@ -347,23 +417,39 @@ class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
sequence_lengths=sequence_lengths,
key_length=query_length,
)
past_key_values.append(pad_input(key_value, padding_index, batch_size, query_length))
past_key_values.append(
pad_input(key_value, padding_index, batch_size, query_length)
)
hidden_states = self.transformer.ln_f.forward(hidden_states, residual)
hidden_states, *_ = self.transformer.ln_f.forward(hidden_states, residual)
# Next bit is the memory bottleneck with predict_all_tokens so we free as much memory as possible.
del residual
if predict_all_tokens:
hidden_states = self.lm_head.forward(hidden_states)
hidden_states = pad_input(hidden_states, padding_index, batch_size, query_length)
hidden_states = pad_input(
hidden_states, padding_index, batch_size, query_length
)
else:
# TODO: Index directly instead
hidden_states = pad_input(hidden_states, padding_index, batch_size, query_length)[:, -1]
hidden_states = pad_input(
hidden_states, padding_index, batch_size, query_length
)[:, -1]
hidden_states = self.lm_head.forward(hidden_states).unsqueeze_(1)
return hidden_states, past_key_values
def post_load_weights(self):
layer: GPTBigCodeBlock
for layer in self.transformer.h:
layer.attn.mask_value = self.mask_value
layer.attn.c_attn.weight.t_()
layer.attn.c_proj.weight.t_()
layer.mlp.c_fc.weight.t_()
layer.mlp.c_proj.weight.t_()
self.lm_head.weight.t_()
def decode(
self,
*,
@ -371,26 +457,30 @@ class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
past_key_values: List[torch.Tensor],
attention_mask: [torch.Tensor],
position_ids: torch.Tensor,
key_length:int,
key_length: int,
) -> Tuple:
batch_size, query_length = input_ids.shape
assert query_length == 1
hidden_states = self.transformer.wte.forward(input_ids) + self.transformer.wpe.forward(position_ids)
hidden_states = self.transformer.wte.forward(
input_ids
) + self.transformer.wpe.forward(position_ids)
# Standardize shape to (batch_size, hidden_size)
hidden_states.squeeze_(1)
# Self-attention mask (padding + causal).
# TODO: Avoid unsqueeze
attention_mask = self.transformer.causal_mask[None, key_length - 1: key_length,
:key_length] * attention_mask.unsqueeze(1)
attention_mask = self.causal_mask[
None, key_length - 1 : key_length, : attention_mask.size(-1)
] * attention_mask.unsqueeze(1)
attention_mask.unsqueeze_(2)
residual = None
block:GPTBigCodeBlock
for i, (block, layer_past) in enumerate(zip(self.transformer.h, past_key_values)):
block: GPTBigCodeBlock
for i, (block, layer_past) in enumerate(
zip(self.transformer.h, past_key_values)
):
hidden_states, residual, past_key_values[i] = block.decode(
hidden_states,
residual=residual,
@ -400,7 +490,7 @@ class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
key_length=key_length,
)
hidden_states = self.transformer.ln_f.forward(hidden_states, residual)
hidden_states, *_ = self.transformer.ln_f.forward(hidden_states, residual)
hidden_states = self.lm_head.forward(hidden_states).unsqueeze_(1)
return hidden_states, past_key_values

View File

@ -26,6 +26,7 @@ from transformers.models.gpt_bigcode.configuration_gpt_bigcode import (
GPTBigCodeConfig,
)
class InferenceRunnerType(IntEnum):
NO_RUNNER = 0
# Use the inference runner without cuda graphs.
@ -38,6 +39,7 @@ class InferenceRunnerType(IntEnum):
# Crashes with jit on A100 but seems to work without jit (PYTORCH_JIT=0) and on V100.
FULL_GRAPH = 3
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
@ -52,7 +54,11 @@ logger = logging.get_logger(__name__)
@torch.jit.script
def upcast_masked_softmax(
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
x: torch.Tensor,
mask: torch.Tensor,
mask_value: torch.Tensor,
scale: float,
softmax_dtype: torch.dtype,
):
input_dtype = x.dtype
x = x.to(softmax_dtype) * scale
@ -91,7 +97,7 @@ def softmax_function(
and scaling, but only work well when the key length is a multiple of 8. For other key lengths, it is extremely
inefficient.
"""
#assert x.size(-1) % 8 == 0
# assert x.size(-1) % 8 == 0
if upcast:
if mask is None:
return upcast_softmax(x, scale, softmax_dtype)
@ -105,7 +111,13 @@ def softmax_function(
class GPTBigCodeAttention(nn.Module):
def __init__(self, config, layer_idx=None, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
layer_idx=None,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__()
self.mask_value = None
self.embed_dim = config.hidden_size
@ -115,14 +127,27 @@ class GPTBigCodeAttention(nn.Module):
# KV caching and padding
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.head_dim, dtype=dtype, device=device)
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, dtype=dtype, device=device)
self.c_attn = nn.Linear(
self.embed_dim,
self.embed_dim + 2 * self.head_dim,
dtype=dtype,
device=device,
)
self.c_proj = nn.Linear(
self.embed_dim, self.embed_dim, dtype=dtype, device=device
)
@torch.profiler.record_function("GPTBigCodeAttention._get_mask_value")
def _get_mask_value(self, device, dtype):
# torch.where expects a tensor. We use a cache to avoid recreating it every time.
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
if (
self.mask_value is None
or self.mask_value.dtype != dtype
or self.mask_value.device != device
):
self.mask_value = torch.full(
[], torch.finfo(dtype).min, dtype=dtype, device=device
)
return self.mask_value
@torch.profiler.record_function("GPTBigCodeAttention._attn")
@ -156,12 +181,16 @@ class GPTBigCodeAttention(nn.Module):
beta = 1
else:
beta = 0
attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)
attn_weights = torch.baddbmm(
attn_weights, query, key, beta=beta, alpha=scale_factor
).view(attn_shape)
attn_weights = softmax_function(
attn_weights,
attention_mask,
None if attention_mask is None else self._get_mask_value(attn_weights.device, softmax_dtype),
None
if attention_mask is None
else self._get_mask_value(attn_weights.device, softmax_dtype),
unscale,
softmax_dtype,
upcast,
@ -172,7 +201,6 @@ class GPTBigCodeAttention(nn.Module):
@torch.profiler.record_function("GPTBigCodeAttention._attn_flash")
def _attn_flash(self, query, key, value, flash_params):
query_shape = query.shape
attn_shape = query_shape[0], self.num_heads, self.head_dim
query = query.view(attn_shape)
@ -199,11 +227,12 @@ class GPTBigCodeAttention(nn.Module):
@torch.profiler.record_function("GPTBigCodeAttention._merge_kv_caches")
def _merge_kv_caches(self, key_value, layer_past, attention_mask, flash_params):
# Convert to standard KV cache format.
if flash_params is not None:
_, padding_index, batch_size, max_sequence_length = flash_params
current_kv_cache = pad_input(key_value, padding_index, batch_size, max_sequence_length)
current_kv_cache = pad_input(
key_value, padding_index, batch_size, max_sequence_length
)
return key_value, (current_kv_cache, max_sequence_length)
current_kv_cache = key_value
@ -257,19 +286,23 @@ class GPTBigCodeAttention(nn.Module):
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
flash_params: Optional[Tuple] = None
flash_params: Optional[Tuple] = None,
) -> Tuple[torch.Tensor, Any]:
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.head_dim), dim=-1)
query, key_value = self.c_attn(hidden_states).split(
(self.embed_dim, 2 * self.head_dim), dim=-1
)
# present = (allocated_kv_cache, key_length)
key_value, present = self._merge_kv_caches(key_value, layer_past, attention_mask, flash_params)
key_value, present = self._merge_kv_caches(
key_value, layer_past, attention_mask, flash_params
)
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
if flash_params is None:
attn_output=self._attn(query, key, value, attention_mask)
attn_output = self._attn(query, key, value, attention_mask)
else:
attn_output=self._attn_flash(query, key, value, flash_params)
attn_output = self._attn_flash(query, key, value, flash_params)
attn_output = self.c_proj(attn_output)
@ -287,15 +320,35 @@ class GPTBigCodeMLP(nn.Module):
@torch.profiler.record_function("GPTBigCodeMLP.forward")
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
return self.c_proj(nn.functional.gelu(self.c_fc(hidden_states), approximate="tanh"))
return self.c_proj(
nn.functional.gelu(self.c_fc(hidden_states), approximate="tanh")
)
class GPTBigCodeBlock(nn.Module):
def __init__(self, config, layer_idx=None, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
layer_idx=None,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__()
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon, dtype=dtype, device=device)
self.attn = GPTBigCodeAttention(config, layer_idx=layer_idx, dtype=dtype, device=device)
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon, dtype=dtype, device=device)
self.ln_1 = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_epsilon,
dtype=dtype,
device=device,
)
self.attn = GPTBigCodeAttention(
config, layer_idx=layer_idx, dtype=dtype, device=device
)
self.ln_2 = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_epsilon,
dtype=dtype,
device=device,
)
self.mlp = GPTBigCodeMLP(config)
@torch.profiler.record_function("GPTBigCodeBlock.forward")
@ -304,10 +357,10 @@ class GPTBigCodeBlock(nn.Module):
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
flash_params: Optional[Tuple] = None
flash_params: Optional[Tuple] = None,
) -> Tuple[torch.Tensor, Any]:
with torch.profiler.record_function("GPTBigCodeAttention.ln"):
ai=self.ln_1(hidden_states)
ai = self.ln_1(hidden_states)
attn_output, present = self.attn(
ai,
layer_past=layer_past,
@ -320,14 +373,13 @@ class GPTBigCodeBlock(nn.Module):
with torch.profiler.record_function("GPTBigCodeAttention.dummy"):
pass
with torch.profiler.record_function("GPTBigCodeAttention.ln"):
ai=self.ln_2(hidden_states)
ai=self.mlp(ai)
ai = self.ln_2(hidden_states)
ai = self.mlp(ai)
with torch.profiler.record_function("GPTBigCodeAttention.residual"):
hidden_states.add_(ai)
return hidden_states, present
class GPTBigCodePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
@ -354,7 +406,10 @@ class GPTBigCodePreTrainedModel(PreTrainedModel):
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
module.c_proj.weight.data.normal_(
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
mean=0.0,
std=(
self.config.initializer_range / math.sqrt(2 * self.config.n_layer)
),
)
module.c_proj._is_hf_initialized = True
elif isinstance(module, nn.Linear):
@ -373,18 +428,42 @@ class GPTBigCodePreTrainedModel(PreTrainedModel):
class GPTBigCodeModel(GPTBigCodePreTrainedModel):
def __init__(self, config, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__(config)
self.wte = nn.Embedding(config.vocab_size, config.hidden_size, dtype=dtype, device=device)
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size, dtype=dtype, device=device)
self.wte = nn.Embedding(
config.vocab_size, config.hidden_size, dtype=dtype, device=device
)
self.wpe = nn.Embedding(
config.max_position_embeddings,
config.hidden_size,
dtype=dtype,
device=device,
)
self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i, dtype=dtype, device=device) for i in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(config.hidden_size, dtype=dtype, device=device, eps=config.layer_norm_epsilon)
self.h = nn.ModuleList(
[
GPTBigCodeBlock(config, layer_idx=i, dtype=dtype, device=device)
for i in range(config.num_hidden_layers)
]
)
self.ln_f = nn.LayerNorm(
config.hidden_size,
dtype=dtype,
device=device,
eps=config.layer_norm_epsilon,
)
self.inference_runner_type = InferenceRunnerType.NO_RUNNER #InferenceRunnerType(config.inference_runner)
self.inference_runner_type = (
InferenceRunnerType.NO_RUNNER
) # InferenceRunnerType(config.inference_runner)
self.flash_attention = True #config.flash_attention
self.flash_attention = True # config.flash_attention
if self.flash_attention:
if flash_attn_unpadded_func is None:
@ -402,13 +481,20 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
# Causal mask
self.register_buffer(
"bias", torch.empty((config.max_position_embeddings, config.max_position_embeddings), dtype=torch.bool, device=device)
"bias",
torch.empty(
(config.max_position_embeddings, config.max_position_embeddings),
dtype=torch.bool,
device=device,
),
)
#@torch.profiler.record_function("GPTBigCodeModel._get_causal_mask")
# @torch.profiler.record_function("GPTBigCodeModel._get_causal_mask")
def _get_causal_mask(self, padding_mask, query_length, key_length):
# Self-attention mask.
attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
attention_mask = self.bias[
None, key_length - query_length : key_length, :key_length
]
if padding_mask is not None:
attention_mask = attention_mask * padding_mask.unsqueeze(1).to(
@ -416,12 +502,14 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
)
pad = -key_length % 8
if pad > 0:
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad), mode="constant", value=False)
attention_mask = torch.nn.functional.pad(
attention_mask, (0, pad), mode="constant", value=False
)
# (batch_size, query_length, n_heads, key_length)
return attention_mask.unsqueeze(2)
#@torch.profiler.record_function("GPTBigCodeModel.forward")
# @torch.profiler.record_function("GPTBigCodeModel.forward")
def forward(
self,
*,
@ -433,7 +521,9 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
if self.inference_runner is not None and past_key_values is not None:
if self.config.validate_runner_input:
assert past_key_values is not None
return self.inference_runner.forward(input_ids, attention_mask, position_ids, past_key_values)
return self.inference_runner.forward(
input_ids, attention_mask, position_ids, past_key_values
)
batch_size, query_length = input_ids.shape
@ -444,30 +534,38 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
else:
past_length = past_key_values[0][1]
hidden_states = self.wte(input_ids) + self.wpe(position_ids)
# TODO: Unpad earlier (input ids), support unpadded input?
if flash_attention:
hidden_states, padding_index, sequence_lengths, max_sequence_length = unpad_input(
hidden_states, attention_mask
(
hidden_states,
padding_index,
sequence_lengths,
max_sequence_length,
) = unpad_input(hidden_states, attention_mask)
flash_params = (
sequence_lengths,
padding_index,
batch_size,
max_sequence_length,
)
flash_params = (sequence_lengths, padding_index, batch_size, max_sequence_length)
attention_mask=None
attention_mask = None
else:
key_length = past_length + query_length
# Self-attention mask (padding + causal).
attention_mask = self._get_causal_mask(attention_mask, query_length, key_length)
flash_params=None
attention_mask = self._get_causal_mask(
attention_mask, query_length, key_length
)
flash_params = None
presents = []
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
flash_params=flash_params
flash_params=flash_params,
)
hidden_states = outputs[0]
@ -476,24 +574,33 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
hidden_states = self.ln_f(hidden_states)
if flash_attention:
hidden_states = pad_input(hidden_states, padding_index, batch_size, query_length)
hidden_states = pad_input(
hidden_states, padding_index, batch_size, query_length
)
return hidden_states, presents
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
def __init__(self, config, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__(config)
meta=torch.device("meta")
meta = torch.device("meta")
self.transformer = GPTBigCodeModel(config, dtype=dtype, device=meta)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False, dtype=dtype, device=meta)
self.lm_head = nn.Linear(
config.n_embd, config.vocab_size, bias=False, dtype=dtype, device=meta
)
self.to_empty(device=device)
# Initialize weights and apply final processing
self.post_init()
#@torch.profiler.record_function("GPTBigCodeForCausalLM.forward")
# @torch.profiler.record_function("GPTBigCodeForCausalLM.forward")
def forward(
self,
*,
@ -501,16 +608,15 @@ class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
past_key_values: Optional[Union[List[torch.Tensor], int]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: torch.Tensor,
predict_all_tokens: bool=True,
predict_all_tokens: bool = True,
) -> Tuple:
hidden_states, presents=self.transformer(
hidden_states, presents = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids
position_ids=position_ids,
)
#with torch.profiler.record_function("GPTBigCodeForCausalLM.head"):
# with torch.profiler.record_function("GPTBigCodeForCausalLM.head"):
if not predict_all_tokens:
# We only care about the last token.
hidden_states = hidden_states[:, -1:]

View File

@ -20,14 +20,13 @@ import torch
import torch.utils.checkpoint
from torch import nn
import dropout_layer_norm
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.models.gpt_bigcode.configuration_gpt_bigcode import (
GPTBigCodeConfig,
)
class InferenceRunnerType(IntEnum):
NO_RUNNER = 0
# Use the inference runner without cuda graphs.
@ -41,7 +40,6 @@ class InferenceRunnerType(IntEnum):
FULL_GRAPH = 3
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
@ -56,7 +54,11 @@ logger = logging.get_logger(__name__)
@torch.jit.script
def upcast_masked_softmax(
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
x: torch.Tensor,
mask: torch.Tensor,
mask_value: torch.Tensor,
scale: float,
softmax_dtype: torch.dtype,
):
input_dtype = x.dtype
x = x.to(softmax_dtype) * scale
@ -94,7 +96,7 @@ def softmax_function(
and scaling, but only work well when the key length is a multiple of 8. For other key lengths, it is extremely
inefficient.
"""
#assert x.size(-1) % 8 == 0
# assert x.size(-1) % 8 == 0
if upcast:
if mask is None:
return upcast_softmax(x, scale, softmax_dtype)
@ -108,7 +110,13 @@ def softmax_function(
class GPTBigCodeAttention(nn.Module):
def __init__(self, config, layer_idx=None, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
layer_idx=None,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__()
self.mask_value = None
self.embed_dim = config.hidden_size
@ -118,13 +126,26 @@ class GPTBigCodeAttention(nn.Module):
# KV caching and padding
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.head_dim, dtype=dtype, device=device)
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, dtype=dtype, device=device)
self.c_attn = nn.Linear(
self.embed_dim,
self.embed_dim + 2 * self.head_dim,
dtype=dtype,
device=device,
)
self.c_proj = nn.Linear(
self.embed_dim, self.embed_dim, dtype=dtype, device=device
)
def _get_mask_value(self, device, dtype):
# torch.where expects a tensor. We use a cache to avoid recreating it every time.
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
if (
self.mask_value is None
or self.mask_value.dtype != dtype
or self.mask_value.device != device
):
self.mask_value = torch.full(
[], torch.finfo(dtype).min, dtype=dtype, device=device
)
return self.mask_value
def _attn(self, query, key, value, attention_mask):
@ -157,12 +178,16 @@ class GPTBigCodeAttention(nn.Module):
beta = 1
else:
beta = 0
attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)
attn_weights = torch.baddbmm(
attn_weights, query, key, beta=beta, alpha=scale_factor
).view(attn_shape)
attn_weights = softmax_function(
attn_weights,
attention_mask,
None if attention_mask is None else self._get_mask_value(attn_weights.device, softmax_dtype),
None
if attention_mask is None
else self._get_mask_value(attn_weights.device, softmax_dtype),
unscale,
softmax_dtype,
upcast,
@ -172,7 +197,6 @@ class GPTBigCodeAttention(nn.Module):
return attn_output
def _attn_flash(self, query, key, value, flash_params):
query_shape = query.shape
attn_shape = query_shape[0], self.num_heads, self.head_dim
query = query.view(attn_shape)
@ -198,11 +222,12 @@ class GPTBigCodeAttention(nn.Module):
return attn_output
def _merge_kv_caches(self, key_value, layer_past, attention_mask, flash_params):
# Convert to standard KV cache format.
if flash_params is not None:
_, padding_index, batch_size, max_sequence_length = flash_params
current_kv_cache = pad_input(key_value, padding_index, batch_size, max_sequence_length)
current_kv_cache = pad_input(
key_value, padding_index, batch_size, max_sequence_length
)
return key_value, (current_kv_cache, max_sequence_length)
current_kv_cache = key_value
@ -255,19 +280,23 @@ class GPTBigCodeAttention(nn.Module):
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
flash_params: Optional[Tuple] = None
flash_params: Optional[Tuple] = None,
) -> Tuple[torch.Tensor, Any]:
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.head_dim), dim=-1)
query, key_value = self.c_attn(hidden_states).split(
(self.embed_dim, 2 * self.head_dim), dim=-1
)
# present = (allocated_kv_cache, key_length)
key_value, present = self._merge_kv_caches(key_value, layer_past, attention_mask, flash_params)
key_value, present = self._merge_kv_caches(
key_value, layer_past, attention_mask, flash_params
)
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
if flash_params is None:
attn_output=self._attn(query, key, value, attention_mask)
attn_output = self._attn(query, key, value, attention_mask)
else:
attn_output=self._attn_flash(query, key, value, flash_params)
attn_output = self._attn_flash(query, key, value, flash_params)
attn_output = self.c_proj(attn_output)
@ -284,15 +313,35 @@ class GPTBigCodeMLP(nn.Module):
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
return self.c_proj(nn.functional.gelu(self.c_fc(hidden_states), approximate="tanh"))
return self.c_proj(
nn.functional.gelu(self.c_fc(hidden_states), approximate="tanh")
)
class GPTBigCodeBlock(nn.Module):
def __init__(self, config, layer_idx=None, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
layer_idx=None,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__()
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon, dtype=dtype, device=device)
self.attn = GPTBigCodeAttention(config, layer_idx=layer_idx, dtype=dtype, device=device)
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon, dtype=dtype, device=device)
self.ln_1 = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_epsilon,
dtype=dtype,
device=device,
)
self.attn = GPTBigCodeAttention(
config, layer_idx=layer_idx, dtype=dtype, device=device
)
self.ln_2 = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_epsilon,
dtype=dtype,
device=device,
)
self.mlp = GPTBigCodeMLP(config)
def forward(
@ -300,7 +349,7 @@ class GPTBigCodeBlock(nn.Module):
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
flash_params: Optional[Tuple] = None
flash_params: Optional[Tuple] = None,
) -> Tuple[torch.Tensor, Any]:
attn_output, present = self.attn(
self.ln_1(hidden_states),
@ -313,7 +362,6 @@ class GPTBigCodeBlock(nn.Module):
return hidden_states, present
class GPTBigCodePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
@ -340,7 +388,10 @@ class GPTBigCodePreTrainedModel(PreTrainedModel):
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
module.c_proj.weight.data.normal_(
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
mean=0.0,
std=(
self.config.initializer_range / math.sqrt(2 * self.config.n_layer)
),
)
module.c_proj._is_hf_initialized = True
elif isinstance(module, nn.Linear):
@ -359,18 +410,42 @@ class GPTBigCodePreTrainedModel(PreTrainedModel):
class GPTBigCodeModel(GPTBigCodePreTrainedModel):
def __init__(self, config, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__(config)
self.wte = nn.Embedding(config.vocab_size, config.hidden_size, dtype=dtype, device=device)
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size, dtype=dtype, device=device)
self.wte = nn.Embedding(
config.vocab_size, config.hidden_size, dtype=dtype, device=device
)
self.wpe = nn.Embedding(
config.max_position_embeddings,
config.hidden_size,
dtype=dtype,
device=device,
)
self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i, dtype=dtype, device=device) for i in range(config.num_hidden_layers)])
self.ln_f = nn.LayerNorm(config.hidden_size, dtype=dtype, device=device, eps=config.layer_norm_epsilon)
self.h = nn.ModuleList(
[
GPTBigCodeBlock(config, layer_idx=i, dtype=dtype, device=device)
for i in range(config.num_hidden_layers)
]
)
self.ln_f = nn.LayerNorm(
config.hidden_size,
dtype=dtype,
device=device,
eps=config.layer_norm_epsilon,
)
self.inference_runner_type = InferenceRunnerType.NO_RUNNER #InferenceRunnerType(config.inference_runner)
self.inference_runner_type = (
InferenceRunnerType.NO_RUNNER
) # InferenceRunnerType(config.inference_runner)
self.flash_attention = True #config.flash_attention
self.flash_attention = True # config.flash_attention
if self.flash_attention:
if flash_attn_unpadded_func is None:
@ -388,12 +463,19 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
# Causal mask
self.register_buffer(
"bias", torch.empty((config.max_position_embeddings, config.max_position_embeddings), dtype=torch.bool, device=device)
"bias",
torch.empty(
(config.max_position_embeddings, config.max_position_embeddings),
dtype=torch.bool,
device=device,
),
)
def _get_causal_mask(self, padding_mask, query_length, key_length):
# Self-attention mask.
attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
attention_mask = self.bias[
None, key_length - query_length : key_length, :key_length
]
if padding_mask is not None:
attention_mask = attention_mask * padding_mask.unsqueeze(1).to(
@ -401,7 +483,9 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
)
pad = -key_length % 8
if pad > 0:
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad), mode="constant", value=False)
attention_mask = torch.nn.functional.pad(
attention_mask, (0, pad), mode="constant", value=False
)
# (batch_size, query_length, n_heads, key_length)
return attention_mask.unsqueeze(2)
@ -417,7 +501,9 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
if self.inference_runner is not None and past_key_values is not None:
if self.config.validate_runner_input:
assert past_key_values is not None
return self.inference_runner.forward(input_ids, attention_mask, position_ids, past_key_values)
return self.inference_runner.forward(
input_ids, attention_mask, position_ids, past_key_values
)
batch_size, query_length = input_ids.shape
@ -428,30 +514,38 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
else:
past_length = past_key_values[0][1]
hidden_states = self.wte(input_ids) + self.wpe(position_ids)
# TODO: Unpad earlier (input ids), support unpadded input?
if flash_attention:
hidden_states, padding_index, sequence_lengths, max_sequence_length = unpad_input(
hidden_states, attention_mask
(
hidden_states,
padding_index,
sequence_lengths,
max_sequence_length,
) = unpad_input(hidden_states, attention_mask)
flash_params = (
sequence_lengths,
padding_index,
batch_size,
max_sequence_length,
)
flash_params = (sequence_lengths, padding_index, batch_size, max_sequence_length)
attention_mask=None
attention_mask = None
else:
key_length = past_length + query_length
# Self-attention mask (padding + causal).
attention_mask = self._get_causal_mask(attention_mask, query_length, key_length)
flash_params=None
attention_mask = self._get_causal_mask(
attention_mask, query_length, key_length
)
flash_params = None
presents = []
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
flash_params=flash_params
flash_params=flash_params,
)
hidden_states = outputs[0]
@ -460,17 +554,26 @@ class GPTBigCodeModel(GPTBigCodePreTrainedModel):
hidden_states = self.ln_f(hidden_states)
if flash_attention:
hidden_states = pad_input(hidden_states, padding_index, batch_size, query_length)
hidden_states = pad_input(
hidden_states, padding_index, batch_size, query_length
)
return hidden_states, presents
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
def __init__(self, config, dtype:torch.dtype=torch.float32, device:torch.device=torch.device("cpu")):
def __init__(
self,
config,
dtype: torch.dtype = torch.float32,
device: torch.device = torch.device("cpu"),
):
super().__init__(config)
meta=torch.device("meta")
meta = torch.device("meta")
self.transformer = GPTBigCodeModel(config, dtype=dtype, device=meta)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False, dtype=dtype, device=meta)
self.lm_head = nn.Linear(
config.n_embd, config.vocab_size, bias=False, dtype=dtype, device=meta
)
self.to_empty(device=device)
@ -484,14 +587,13 @@ class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
past_key_values: Optional[Union[List[torch.Tensor], int]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: torch.Tensor,
predict_all_tokens: bool=True,
predict_all_tokens: bool = True,
) -> Tuple:
hidden_states, presents=self.transformer(
hidden_states, presents = self.transformer(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids
position_ids=position_ids,
)
if not predict_all_tokens:

View File

@ -6,8 +6,13 @@ from opentelemetry import trace
from transformers import AutoTokenizer
from typing import Optional, Type
from text_generation_server.models.vectorized_causal_lm import VectorizedCausalLM,VectorizedCausalLMBatch
from text_generation_server.models.custom_modeling.gpt_bigcode_modeling import GPTBigCodeForCausalLM
from text_generation_server.models.vectorized_causal_lm import (
VectorizedCausalLM,
VectorizedCausalLMBatch,
)
from text_generation_server.models.custom_modeling.gpt_bigcode_modeling import (
GPTBigCodeForCausalLM,
)
tracer = trace.get_tracer(__name__)
@ -24,7 +29,9 @@ class BigcodeBatch(VectorizedCausalLMBatch):
layer_kv.data = layer_kv[keep_indices, sequence_slice]
@classmethod
def _concatenate_key_values(cls, batches, start_indices, end_indices, left_indices, max_input_length):
def _concatenate_key_values(
cls, batches, start_indices, end_indices, left_indices, max_input_length
):
device = batches[0].input_ids.device
batch_size = sum([len(batch.requests) for batch in batches])
@ -35,13 +42,21 @@ class BigcodeBatch(VectorizedCausalLMBatch):
past_key_values = []
for kv_caches in zip(*(batch.past_key_values for batch in batches)):
key_values, seq_lengths = zip(*kv_caches)
assert all(left_index + seq_length == max_input_length for left_index, seq_length in zip(left_indices, seq_lengths))
assert all(
left_index + seq_length == max_input_length
for left_index, seq_length in zip(left_indices, seq_lengths)
)
allocate_seq_len=max(left_index + key_value.size(1) for left_index, key_value in zip(left_indices, key_values))
allocate_seq_len += - allocate_seq_len % 8
allocate_seq_len = max(
left_index + key_value.size(1)
for left_index, key_value in zip(left_indices, key_values)
)
allocate_seq_len += -allocate_seq_len % 8
kv_cache = torch.empty(
(batch_size, allocate_seq_len, *key_values[0].shape[2:]), dtype=key_values[0].dtype, device=device
(batch_size, allocate_seq_len, *key_values[0].shape[2:]),
dtype=key_values[0].dtype,
device=device,
)
for key_value, start_index, end_index, left_index in zip(
key_values,
@ -49,7 +64,9 @@ class BigcodeBatch(VectorizedCausalLMBatch):
end_indices,
left_indices,
):
kv_cache[start_index:end_index,left_index:max_input_length].copy_(key_value)
kv_cache[start_index:end_index, left_index:max_input_length].copy_(
key_value
)
# Set padding to zero to avoid propagating nans.
kv_cache[start_index:end_index, :left_index].fill_(0)
kv_cache[start_index:end_index, max_input_length:].fill_(0)
@ -58,6 +75,7 @@ class BigcodeBatch(VectorizedCausalLMBatch):
def __len__(self):
return len(self.requests)
class BigcodeCausalLM(VectorizedCausalLM):
def __init__(
self,
@ -103,7 +121,7 @@ class BigcodeCausalLM(VectorizedCausalLM):
def batch_type(self) -> Type[BigcodeBatch]:
return BigcodeBatch
def forward(self, batch:BigcodeBatch):
def forward(self, batch: BigcodeBatch):
key_length = batch.max_input_length
query_length = key_length if batch.past_key_values is None else 1
input_ids = batch.input_ids[:, key_length - query_length : key_length]
@ -113,7 +131,7 @@ class BigcodeCausalLM(VectorizedCausalLM):
attention_mask=batch.attention_mask[:, :key_length],
position_ids=batch.position_ids[:, key_length - query_length : key_length],
past_key_values=batch.past_key_values,
use_cache=True,
predict_all_tokens=batch.details,
)
next_token_ids, logprobs = batch.next_token_chooser(
input_ids, logits, batch.details
@ -126,10 +144,20 @@ class BigcodeCausalLM(VectorizedCausalLM):
return next_token_ids, logprobs
def mock_kv_cache(self, batch: BigcodeBatch, dtype:Optional[torch.dtype]):
allocate_length=batch.max_input_length+-batch.max_input_length%8
return [(torch.empty(
[len(batch), allocate_length-1, 2 * self.model.config.n_embd // self.model.config.n_head],
dtype=dtype,
device=batch.input_ids.device,
),batch.max_input_length-1) for _ in range(self.model.config.n_layer)]
def mock_kv_cache(self, batch: BigcodeBatch, dtype: Optional[torch.dtype]):
allocate_length = batch.max_input_length + -batch.max_input_length % 8
return [
(
torch.empty(
[
len(batch),
allocate_length - 1,
2 * self.model.config.n_embd // self.model.config.n_head,
],
dtype=dtype,
device=batch.input_ids.device,
),
batch.max_input_length - 1,
)
for _ in range(self.model.config.n_layer)
]

View File

@ -4,10 +4,17 @@ from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer
from typing import Optional, Type
from typing import Optional, Type, List
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
from text_generation_server.models.vectorized_causal_lm import VectorizedCausalLM,VectorizedCausalLMBatch
from text_generation_server.models.custom_modeling.gpt_bigcode2_modeling import GPTBigCodeForCausalLM
from text_generation_server.pb import generate_pb2
from text_generation_server.models.vectorized_causal_lm import (
VectorizedCausalLM,
VectorizedCausalLMBatch,
)
from text_generation_server.models.custom_modeling.gpt_bigcode2_modeling import (
GPTBigCodeForCausalLM,
)
tracer = trace.get_tracer(__name__)
@ -15,19 +22,40 @@ tracer = trace.get_tracer(__name__)
@dataclass
class Bigcode2Batch(VectorizedCausalLMBatch):
kv_cache_seq_dim: int = 1
pad_key_length_to_multiple:int=8
pad_key_length_to_multiple: int = 8
# Prefill the attention mask for padded key length.
attention_mask_fill_value=False
attention_mask_fill_value = False
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
device: torch.device,
) -> "Bigcode2Batch":
batch = super().from_pb(pb, tokenizer, device)
batch.attention_mask[:, batch.max_input_length :].fill_(False)
return batch
def _filter_kv_caches(self, keep_indices, sequence_slice):
if self.past_key_values is not None:
for layer_kv, _ in self.past_key_values:
for layer_kv in self.past_key_values:
# Update tensors in-place to allow incremental garbage collection
layer_kv.data = layer_kv[keep_indices, sequence_slice]
@classmethod
def _concatenate_key_values(cls, batches, start_indices, end_indices, left_indices, max_input_length):
def concatenate(cls, batches: List["Bigcode2Batch"]) -> "Bigcode2Batch":
batch = super().concatenate(batches)
# Replace the attention mask with zeros to support padded key length.
# They are already filled with ones in super, but duplication is needed to generate the position ids.
batch.attention_mask[:, batch.max_input_length :].fill_(False)
return batch
@classmethod
def _concatenate_key_values(
cls, batches, start_indices, end_indices, left_indices, max_input_length
):
device = batches[0].input_ids.device
batch_size = sum([len(batch.requests) for batch in batches])
@ -36,15 +64,19 @@ class Bigcode2Batch(VectorizedCausalLMBatch):
raise ValueError("Only concatenate prefilled batches")
past_key_values = []
for kv_caches in zip(*(batch.past_key_values for batch in batches)):
key_values, seq_lengths = zip(*kv_caches)
assert all(left_index + seq_length == max_input_length for left_index, seq_length in zip(left_indices, seq_lengths))
allocate_seq_len=max(left_index + key_value.size(1) for left_index, key_value in zip(left_indices, key_values))
allocate_seq_len += - allocate_seq_len % batches[0].pad_key_length_to_multiple
for key_values in zip(*(batch.past_key_values for batch in batches)):
allocate_seq_len = max(
left_index + key_value.size(1)
for left_index, key_value in zip(left_indices, key_values)
)
allocate_seq_len += (
-allocate_seq_len % batches[0].pad_key_length_to_multiple
)
kv_cache = torch.empty(
(batch_size, allocate_seq_len, *key_values[0].shape[2:]), dtype=key_values[0].dtype, device=device
(batch_size, allocate_seq_len, *key_values[0].shape[2:]),
dtype=key_values[0].dtype,
device=device,
)
for key_value, start_index, end_index, left_index in zip(
key_values,
@ -52,16 +84,21 @@ class Bigcode2Batch(VectorizedCausalLMBatch):
end_indices,
left_indices,
):
kv_cache[start_index:end_index,left_index:max_input_length].copy_(key_value)
kv_cache[start_index:end_index, left_index:max_input_length].copy_(
key_value
)
# Set padding to zero to avoid propagating nans.
kv_cache[start_index:end_index, :left_index].fill_(0)
kv_cache[start_index:end_index, max_input_length:].fill_(0)
past_key_values.append((kv_cache, max_input_length))
past_key_values.append(kv_cache)
def __len__(self):
return len(self.requests)
class Bigcode2CausalLM(VectorizedCausalLM):
model: GPTBigCodeForCausalLM
def __init__(
self,
model_id: str,
@ -85,9 +122,12 @@ class Bigcode2CausalLM(VectorizedCausalLM):
model_id,
revision=revision,
torch_dtype=dtype,
dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
load_in_8bit=quantize == "bitsandbytes",
)
model.post_load_weights()
tokenizer.pad_token_id = (
model.config.pad_token_id
if model.config.pad_token_id is not None
@ -106,29 +146,33 @@ class Bigcode2CausalLM(VectorizedCausalLM):
def batch_type(self) -> Type[Bigcode2Batch]:
return Bigcode2Batch
def forward(self, batch:Bigcode2Batch):
def forward(self, batch: Bigcode2Batch):
key_length = batch.max_input_length
if batch.past_key_values is None:
# Prefill (flash attn, unpadded key length)
batch.pad_key_length_to_multiple=self.model.pad_key_length_to_multiple
padded_key_length=key_length
query_length=key_length
input_ids = batch.input_ids[:, :key_length]
logits, batch.past_key_values = self.model.prefill(
input_ids=input_ids,
attention_mask=batch.attention_mask[:, :key_length],
position_ids=batch.position_ids[:, :key_length],
predict_all_tokens=batch.details,
)
else:
# Decode (fused attn, padded key length)
batch.attention_mask[:, key_length-1].fill_(True)
padded_key_length=key_length+-key_length%batch.pad_key_length_to_multiple
query_length=1
batch.attention_mask[:, key_length - 1].fill_(True)
padded_key_length = (
key_length + -key_length % batch.pad_key_length_to_multiple
)
input_ids = batch.input_ids[:, key_length - 1 : key_length]
# Model Forward
logits, batch.past_key_values = self.model.decode(
input_ids=input_ids,
attention_mask=batch.attention_mask[:, :padded_key_length],
position_ids=batch.position_ids[:, key_length - 1 : key_length],
past_key_values=batch.past_key_values,
key_length=key_length,
)
input_ids = batch.input_ids[:, key_length - query_length : key_length]
# Model Forward
logits, batch.past_key_values = self.model.forward(
input_ids=input_ids,
attention_mask=batch.attention_mask[:, :padded_key_length],
position_ids=batch.position_ids[:, key_length - query_length : key_length],
past_key_values=batch.past_key_values,
key_length=key_length,
predict_all_tokens=batch.details
)
next_token_ids, logprobs = batch.next_token_chooser(
input_ids, logits, batch.details
)
@ -140,10 +184,20 @@ class Bigcode2CausalLM(VectorizedCausalLM):
return next_token_ids, logprobs
def mock_kv_cache(self, batch: Bigcode2Batch, dtype:Optional[torch.dtype]):
allocate_length=batch.max_input_length+-batch.max_input_length%batch.pad_key_length_to_multiple
return [(torch.empty(
[len(batch), allocate_length-1, 2 * self.model.config.n_embd // self.model.config.n_head],
dtype=dtype,
device=batch.input_ids.device,
),batch.max_input_length-1) for _ in range(self.model.config.n_layer)]
def mock_kv_cache(self, batch: Bigcode2Batch, dtype: Optional[torch.dtype]):
allocate_length = (
batch.max_input_length
+ -batch.max_input_length % batch.pad_key_length_to_multiple
)
return [
torch.randn(
[
len(batch),
allocate_length - 1,
2 * self.model.config.n_embd // self.model.config.n_head,
],
dtype=dtype,
device=batch.input_ids.device,
)
for _ in range(self.model.config.n_layer)
]

View File

@ -58,9 +58,6 @@ class VectorizedCausalLMBatch(Batch):
kv_cache_seq_dim: int = 2
# Prefill the attention mask for the generated tokens
attention_mask_fill_value=True
# TODO: Get from requests (should these be lists?)
details: bool = os.environ.get("RETURN_DETAILS") is not None
generate_stream: bool = os.environ.get("GENERATE_STREAM") is not None
@ -116,7 +113,7 @@ class VectorizedCausalLMBatch(Batch):
attention_mask = torch.empty(input_shape, dtype=torch.bool, device=device)
# Copy tokenizer attention_mask into fully allocated attention_mask
attention_mask[:, :max_input_length].copy_(tokenized_inputs["attention_mask"])
attention_mask[:, max_input_length:].fill_(cls.attention_mask_fill_value)
attention_mask[:, max_input_length:].fill_(True)
position_ids = attention_mask.cumsum(-1).sub_(1)
position_ids[:, :max_input_length].relu_()
@ -271,7 +268,10 @@ class VectorizedCausalLMBatch(Batch):
# Allocate maximum attention_mask
attention_mask = torch.empty(input_shape, dtype=torch.bool, device=device)
attention_mask[:, :max_input_length].fill_(0)
attention_mask[:, max_input_length:].fill_(cls.attention_mask_fill_value)
attention_mask[:, max_input_length:].fill_(True)
position_ids = attention_mask.cumsum(-1).sub_(1)
position_ids[:, :max_input_length].relu_()
input_ids = torch.empty(input_shape, dtype=torch.int64, device=device)
# TODO : only needed for prefill
@ -287,16 +287,15 @@ class VectorizedCausalLMBatch(Batch):
batch.input_ids[:, : batch.max_input_length]
)
position_ids = attention_mask.cumsum(-1).sub_(1)
position_ids[:, :max_input_length].relu_()
max_tokens = sum(
batch.max_tokens + (max_input_length - batch.max_input_length) * len(batch)
for batch in batches
)
kv_cache_seq_dim = batches[0].kv_cache_seq_dim
past_key_values=cls._concatenate_key_values(batches, start_indices, end_indices, left_indices, max_input_length)
past_key_values = cls._concatenate_key_values(
batches, start_indices, end_indices, left_indices, max_input_length
)
return cls(
batch_id=batches[0].batch_id,
@ -317,7 +316,9 @@ class VectorizedCausalLMBatch(Batch):
)
@classmethod
def _concatenate_key_values(cls, batches, start_indices, end_indices, left_indices, max_input_length):
def _concatenate_key_values(
cls, batches, start_indices, end_indices, left_indices, max_input_length
):
device = batches[0].input_ids.device
batch_size = sum([len(batch.requests) for batch in batches])
@ -386,10 +387,10 @@ class VectorizedCausalLMBatch(Batch):
return
def __len__(self):
return len(self.requests)
class VectorizedCausalLM(Model):
def __init__(
self,
@ -441,7 +442,7 @@ class VectorizedCausalLM(Model):
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
)
def forward(self, batch:VectorizedCausalLMBatch):
def forward(self, batch: VectorizedCausalLMBatch):
key_length = batch.max_input_length
query_length = key_length if batch.past_key_values is None else 1
input_ids = batch.input_ids[:, key_length - query_length : key_length]
@ -499,7 +500,7 @@ class VectorizedCausalLM(Model):
prefill_token_ids, prefill_logprobs, batch.input_lengths
):
# Input length has already been incremented so we subtract 1.
prefill_token_ids_ = prefill_token_ids_[-(input_length-1):]
prefill_token_ids_ = prefill_token_ids_[-(input_length - 1) :]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids_,
clean_up_tokenization_spaces=False,
@ -558,23 +559,42 @@ class VectorizedCausalLM(Model):
return generations, next_batch
def mock_kv_cache(self, batch: VectorizedCausalLMBatch, dtype:Optional[torch.dtype]):
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import GPTBigCodeForCausalLM
def mock_kv_cache(
self, batch: VectorizedCausalLMBatch, dtype: Optional[torch.dtype]
):
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import (
GPTBigCodeForCausalLM,
)
if not isinstance(self.model, GPTBigCodeForCausalLM):
raise NotImplementedError()
return [torch.empty(
[len(batch), batch.max_input_length-1, 2 * self.model.config.n_embd // self.model.config.n_head],
dtype=dtype,
device=batch.input_ids.device,
) for _ in range(self.model.config.n_layer)]
return [
torch.empty(
[
len(batch),
batch.max_input_length - 1,
2 * self.model.config.n_embd // self.model.config.n_head,
],
dtype=dtype,
device=batch.input_ids.device,
)
for _ in range(self.model.config.n_layer)
]
def fast_forward(self, batch: VectorizedCausalLMBatch, max_input_length: int, cache_dtype:Optional[torch.dtype]):
diff=max_input_length-batch.max_input_length
batch.input_ids[:, batch.max_input_length:max_input_length].fill_(self.tokenizer.pad_token_id)
def fast_forward(
self,
batch: VectorizedCausalLMBatch,
max_input_length: int,
cache_dtype: Optional[torch.dtype],
):
diff = max_input_length - batch.max_input_length
batch.input_ids[:, batch.max_input_length : max_input_length].fill_(
self.tokenizer.pad_token_id
)
batch.input_lengths = [length + diff for length in batch.input_lengths]
batch.max_input_length += diff
for stopping_criteria in batch.stopping_criterias:
stopping_criteria.current_tokens+=diff
batch.past_key_values = None if cache_dtype is None else self.mock_kv_cache(batch, cache_dtype)
stopping_criteria.current_tokens += diff
batch.past_key_values = (
None if cache_dtype is None else self.mock_kv_cache(batch, cache_dtype)
)