feat: avoid triton selective_state_update

This commit is contained in:
drbh 2024-02-05 21:34:28 +00:00
parent 0f124cbc52
commit a4f1916a56

View File

@ -1,8 +1,7 @@
import torch
import torch.distributed
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
from mamba_ssm.utils.generation import InferenceParams
from torch import nn
from typing import Optional, Tuple, Any
@ -60,6 +59,7 @@ class MambaBlock(nn.Module):
self.in_proj = FastLinear.load(config, f"{prefix}.in_proj", weights, bias=False)
self.x_proj = FastLinear.load(config, f"{prefix}.x_proj", weights, bias=False)
self.dt_proj = FastLinear.load(config, f"{prefix}.dt_proj", weights, bias=True)
self.dt_proj_no_bias = FastLinear.load(config, f"{prefix}.dt_proj", weights, bias=False)
self.out_proj = FastLinear.load(config, f"{prefix}.out_proj", weights, bias=False)
self.conv1d = FastLinear.load(config, f"{prefix}.conv1d", weights, bias=True)
self.negA = -torch.exp(weights.get_tensor(f"{prefix}.A_log").float())
@ -116,25 +116,32 @@ class MambaBlock(nn.Module):
def step(self, hidden_states, conv_state, ssm_state):
# only support decoding with 1 token at a time
xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
xz = self.in_proj(hidden_states.view((1, -1)))
x, z = xz.chunk(2, dim=-1) # (B D)
x = causal_conv1d_update(
x,
conv_state,
self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)),
self.conv1d.weight.view(self.conv1d.weight.size(0), -1),
self.conv1d.bias,
self.activation,
)
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
x_db = self.x_proj(x)
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
# Don't add dt_bias here
dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
y = selective_state_update(
ssm_state, x, dt, self.negA, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True
)
out = self.out_proj(y)
# conv and ssm are updated in place but we return them to make the control flow more explicit
return out.unsqueeze(1), conv_state, ssm_state
dt = self.dt_proj_no_bias(dt)
dt = F.softplus(dt + self.dt_proj.bias).view((dt.size(1), -1))
dA = torch.exp(dt * self.negA)
dB = dt * B.view(-1, B.size(-1))
x_shape = (-1, x.size(-1), 1)
ssm_state = (ssm_state * dA + dB * x.view(x_shape))
c_shape = (C.size(0), C.size(1), -1)
out_mm_shape = (C.size(0), -1)
out = torch.matmul(ssm_state.to(C.dtype), C.view(c_shape)).view(out_mm_shape)
# in-place ops
out.add_((x * self.D).to(out.dtype))
out.mul_(F.silu(z))
out = self.out_proj(out)
return out.view((1, -1, out.size(-1))), conv_state, ssm_state
class ResidualBlock(nn.Module):
def __init__(self, layer_id, config, weights):