mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
Merge branch 'habana-main' into v2.0.4
This commit is contained in:
commit
a41e974c3b
@ -87,15 +87,15 @@ Maximum sequence length is controlled by two arguments:
|
|||||||
- `--max-total-tokens` is the maximum possible total length of the sequence (input and output). Default value is `4096`.
|
- `--max-total-tokens` is the maximum possible total length of the sequence (input and output). Default value is `4096`.
|
||||||
|
|
||||||
Maximum batch size is controlled by two arguments:
|
Maximum batch size is controlled by two arguments:
|
||||||
- For prefill operation, please set `--max-prefill-total-tokens` as `bs * max-input-tokens`, where `bs` is your expected maximum prefill batch size.
|
- For prefill operation, please set `--max-batch-prefill-tokens` as `bs * max-input-tokens`, where `bs` is your expected maximum prefill batch size.
|
||||||
- For decode operation, please set `--max-batch-total-tokens` as `bs * max-total-tokens`, where `bs` is your expected maximum decode batch size.
|
- For decode operation, please set `--max-batch-total-tokens` as `bs * max-total-tokens`, where `bs` is your expected maximum decode batch size.
|
||||||
- Please note that batch size will be always padded to the nearest multiplication of `BATCH_BUCKET_SIZE` and `PREFILL_BATCH_BUCKET_SIZE`.
|
- Please note that batch size will be always padded to the nearest multiplication of `BATCH_BUCKET_SIZE` and `PREFILL_BATCH_BUCKET_SIZE`.
|
||||||
|
|
||||||
To ensure greatest performance results, at the begginging of each server run, warmup is performed. It's designed to cover major recompilations while using HPU Graphs. It creates queries with all possible input shapes, based on provided parameters (described in this section) and runs basic TGI operations on them (prefill, decode, concatenate).
|
To ensure greatest performance results, at the beginning of each server run, warmup is performed. It's designed to cover major recompilations while using HPU Graphs. It creates queries with all possible input shapes, based on provided parameters (described in this section) and runs basic TGI operations on them (prefill, decode, concatenate).
|
||||||
|
|
||||||
Except those already mentioned, there are other parameters that need to be properly adjusted to improve performance or memory usage:
|
Except those already mentioned, there are other parameters that need to be properly adjusted to improve performance or memory usage:
|
||||||
|
|
||||||
- `PAD_SEQUENCE_TO_MULTIPLE_OF` determines sizes of input legnth buckets. Since warmup creates several graphs for each bucket, it's important to adjust that value proportionally to input sequence length. Otherwise, some out of memory issues can be observed.
|
- `PAD_SEQUENCE_TO_MULTIPLE_OF` determines sizes of input length buckets. Since warmup creates several graphs for each bucket, it's important to adjust that value proportionally to input sequence length. Otherwise, some out of memory issues can be observed.
|
||||||
- `ENABLE_HPU_GRAPH` enables HPU graphs usage, which is crucial for performance results. Recommended value to keep is `true` .
|
- `ENABLE_HPU_GRAPH` enables HPU graphs usage, which is crucial for performance results. Recommended value to keep is `true` .
|
||||||
|
|
||||||
For more information and documentation about Text Generation Inference, checkout [the README](https://github.com/huggingface/text-generation-inference#text-generation-inference) of the original repo.
|
For more information and documentation about Text Generation Inference, checkout [the README](https://github.com/huggingface/text-generation-inference#text-generation-inference) of the original repo.
|
||||||
@ -118,7 +118,7 @@ Additional hints to quantize model for TGI when using `run_lm_eval.py`:
|
|||||||
## Currently supported configurations
|
## Currently supported configurations
|
||||||
|
|
||||||
Not all features of TGI are currently supported as this is still a work in progress.
|
Not all features of TGI are currently supported as this is still a work in progress.
|
||||||
Currently supported and validated configurations (other configurations are not guaranted to work or ensure reasonable performance):
|
Currently supported and validated configurations (other configurations are not guaranteed to work or ensure reasonable performance):
|
||||||
|
|
||||||
### LLama 7b BF16 on 1 Gaudi2 card
|
### LLama 7b BF16 on 1 Gaudi2 card
|
||||||
|
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
huggingface_hub==0.20.3
|
huggingface_hub==0.23.5
|
||||||
requests==2.31.0
|
requests==2.31.0
|
||||||
datasets==2.18.0
|
datasets==2.18.0
|
||||||
transformers>=4.37.0
|
transformers>=4.37.0
|
@ -8,16 +8,19 @@ pub(crate) struct Env {
|
|||||||
docker_label: &'static str,
|
docker_label: &'static str,
|
||||||
nvidia_env: String,
|
nvidia_env: String,
|
||||||
xpu_env: String,
|
xpu_env: String,
|
||||||
|
hpu_env: String,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Env {
|
impl Env {
|
||||||
pub fn new() -> Self {
|
pub fn new() -> Self {
|
||||||
let nvidia_env = nvidia_smi();
|
let nvidia_env = nvidia_smi();
|
||||||
let xpu_env = xpu_smi();
|
let xpu_env = xpu_smi();
|
||||||
|
let hpu_env = hl_smi();
|
||||||
|
|
||||||
Self {
|
Self {
|
||||||
nvidia_env: nvidia_env.unwrap_or("N/A".to_string()),
|
nvidia_env: nvidia_env.unwrap_or("N/A".to_string()),
|
||||||
xpu_env: xpu_env.unwrap_or("N/A".to_string()),
|
xpu_env: xpu_env.unwrap_or("N/A".to_string()),
|
||||||
|
hpu_env: hpu_env.unwrap_or("N/A".to_string()),
|
||||||
cargo_target: env!("VERGEN_CARGO_TARGET_TRIPLE"),
|
cargo_target: env!("VERGEN_CARGO_TARGET_TRIPLE"),
|
||||||
cargo_version: env!("VERGEN_RUSTC_SEMVER"),
|
cargo_version: env!("VERGEN_RUSTC_SEMVER"),
|
||||||
git_sha: option_env!("VERGEN_GIT_SHA").unwrap_or("N/A"),
|
git_sha: option_env!("VERGEN_GIT_SHA").unwrap_or("N/A"),
|
||||||
@ -35,7 +38,8 @@ impl fmt::Display for Env {
|
|||||||
writeln!(f, "Commit sha: {}", self.git_sha)?;
|
writeln!(f, "Commit sha: {}", self.git_sha)?;
|
||||||
writeln!(f, "Docker label: {}", self.docker_label)?;
|
writeln!(f, "Docker label: {}", self.docker_label)?;
|
||||||
writeln!(f, "nvidia-smi:\n{}", self.nvidia_env)?;
|
writeln!(f, "nvidia-smi:\n{}", self.nvidia_env)?;
|
||||||
write!(f, "xpu-smi:\n{}", self.xpu_env)?;
|
writeln!(f, "xpu-smi:\n{}", self.xpu_env)?;
|
||||||
|
write!(f, "hpu-smi:\n{}", self.hpu_env)?;
|
||||||
|
|
||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
@ -54,3 +58,10 @@ fn xpu_smi() -> Option<String> {
|
|||||||
let output = xpu_smi.replace('\n', "\n ");
|
let output = xpu_smi.replace('\n', "\n ");
|
||||||
Some(output.trim().to_string())
|
Some(output.trim().to_string())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn hl_smi() -> Option<String> {
|
||||||
|
let output = Command::new("hl-smi").output().ok()?;
|
||||||
|
let hl_smi = String::from_utf8(output.stdout).ok()?;
|
||||||
|
let output = hl_smi.replace('\n', "\n ");
|
||||||
|
Some(output.trim().to_string())
|
||||||
|
}
|
||||||
|
@ -119,7 +119,6 @@ def roll(tensor, chunk, dim, merge_graphs):
|
|||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
|
|
||||||
@torch_compile_for_eager
|
|
||||||
def grouped_roll(tensor_groups, chunk, dims, merge_graphs):
|
def grouped_roll(tensor_groups, chunk, dims, merge_graphs):
|
||||||
tensor_groups = [[roll(t, chunk, dim, merge_graphs) for t in tensors] for tensors, dim in zip(tensor_groups, dims)]
|
tensor_groups = [[roll(t, chunk, dim, merge_graphs) for t in tensors] for tensors, dim in zip(tensor_groups, dims)]
|
||||||
if merge_graphs:
|
if merge_graphs:
|
||||||
@ -135,7 +134,6 @@ def grouped_shift(tensor_groups, dims, offset, merge_graphs):
|
|||||||
return tensor_groups
|
return tensor_groups
|
||||||
|
|
||||||
|
|
||||||
@torch_compile_for_eager
|
|
||||||
def move(dst_tensors, dst_indices, src_tensors):
|
def move(dst_tensors, dst_indices, src_tensors):
|
||||||
bs_dim = 0
|
bs_dim = 0
|
||||||
num_indices = dst_indices.size(0)
|
num_indices = dst_indices.size(0)
|
||||||
@ -687,6 +685,8 @@ class CausalLM(Model):
|
|||||||
"return_dict": True,
|
"return_dict": True,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if model.config.model_type in ["llama", "mistral", "starcoder2"]:
|
||||||
|
|
||||||
if model.config.model_type in ["llama", "mistral"]:
|
if model.config.model_type in ["llama", "mistral"]:
|
||||||
kwargs["attn_softmax_bf16"] = True
|
kwargs["attn_softmax_bf16"] = True
|
||||||
kwargs["trim_logits"] = True
|
kwargs["trim_logits"] = True
|
||||||
|
@ -10,7 +10,7 @@ from transformers import PreTrainedTokenizerBase, AutoTokenizer, AutoConfig
|
|||||||
from typing import Optional, Tuple, Type
|
from typing import Optional, Tuple, Type
|
||||||
|
|
||||||
from text_generation_server.pb import generate_pb2
|
from text_generation_server.pb import generate_pb2
|
||||||
from text_generation_server.models import FlashCausalLM
|
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||||
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE
|
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE
|
||||||
from text_generation_server.models.cache_manager import (
|
from text_generation_server.models.cache_manager import (
|
||||||
get_cache_manager,
|
get_cache_manager,
|
||||||
|
@ -32,6 +32,7 @@ try:
|
|||||||
except (ImportError, NotImplementedError):
|
except (ImportError, NotImplementedError):
|
||||||
# These imports can fail on CPU/Non flash.
|
# These imports can fail on CPU/Non flash.
|
||||||
VLM_BATCH_TYPES = set()
|
VLM_BATCH_TYPES = set()
|
||||||
|
from text_generation_server.utils.version import is_driver_compatible, MIN_TGI_GAUDI_SYNAPSE_VERSION
|
||||||
|
|
||||||
|
|
||||||
class SignalHandler:
|
class SignalHandler:
|
||||||
@ -63,6 +64,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||||||
# Force inference mode for the lifetime of TextGenerationService
|
# Force inference mode for the lifetime of TextGenerationService
|
||||||
# self._inference_mode_raii_guard = torch._C._InferenceMode(True)
|
# self._inference_mode_raii_guard = torch._C._InferenceMode(True)
|
||||||
|
|
||||||
|
|
||||||
async def Info(self, request, context):
|
async def Info(self, request, context):
|
||||||
return self.model.info
|
return self.model.info
|
||||||
|
|
||||||
@ -191,6 +193,9 @@ def serve(
|
|||||||
dtype: Optional[str] = None,
|
dtype: Optional[str] = None,
|
||||||
trust_remote_code: bool = False,
|
trust_remote_code: bool = False,
|
||||||
):
|
):
|
||||||
|
if not is_driver_compatible():
|
||||||
|
logger.warning(f"Current Synapse version is lower than the minimum version supported: {MIN_TGI_GAUDI_SYNAPSE_VERSION}, this could result in failures")
|
||||||
|
|
||||||
unix_socket_template = "unix://{}-{}"
|
unix_socket_template = "unix://{}-{}"
|
||||||
logger.info("Server:server_inner: sharded ={}".format(sharded))
|
logger.info("Server:server_inner: sharded ={}".format(sharded))
|
||||||
|
|
||||||
|
12
server/text_generation_server/utils/version.py
Normal file
12
server/text_generation_server/utils/version.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
from optimum.habana.utils import get_driver_version
|
||||||
|
from packaging.version import Version
|
||||||
|
|
||||||
|
MIN_TGI_GAUDI_SYNAPSE_VERSION=Version("1.16.0")
|
||||||
|
|
||||||
|
|
||||||
|
def is_driver_compatible():
|
||||||
|
driver_version = get_driver_version()
|
||||||
|
if driver_version is not None:
|
||||||
|
if driver_version < MIN_TGI_GAUDI_SYNAPSE_VERSION:
|
||||||
|
return False
|
||||||
|
return True
|
Loading…
Reference in New Issue
Block a user