refactor model_id, make tunableop default

This commit is contained in:
fxmarty 2024-05-17 08:46:14 +00:00
parent df0a453693
commit a040a59068
28 changed files with 33 additions and 30 deletions

View File

@ -46,7 +46,6 @@ class BLOOMSharded(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -31,6 +31,7 @@ from text_generation_server.models.cache_manager import (
) )
from text_generation_server.pb import generate_pb2 from text_generation_server.pb import generate_pb2
from text_generation_server.models.globals import MEM_POOL, CUDA_GRAPHS from text_generation_server.models.globals import MEM_POOL, CUDA_GRAPHS
import text_generation_server.models.globals as tgi_globals
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
from text_generation_server.utils.dist import MEMORY_FRACTION from text_generation_server.utils.dist import MEMORY_FRACTION
@ -827,11 +828,14 @@ class FlashCausalLM(Model):
) )
if SYSTEM == "rocm": if SYSTEM == "rocm":
if os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False): if (
if os.environ.get("PYTORCH_TUNABLEOP_TUNING", "1"): os.environ.get("PYTORCH_TUNABLEOP_ENABLED") is None
or os.environ.get("PYTORCH_TUNABLEOP_ENABLED") == "1"
):
if os.environ.get("PYTORCH_TUNABLEOP_TUNING") != "0":
torch.cuda.tunable.tuning_enable(True) torch.cuda.tunable.tuning_enable(True)
if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS", False): if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS") is not None:
tuning_sequences = [ tuning_sequences = [
int(val) int(val)
for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",") for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",")
@ -841,11 +845,11 @@ class FlashCausalLM(Model):
tunableop_filepath = os.path.join( tunableop_filepath = os.path.join(
HUGGINGFACE_HUB_CACHE, HUGGINGFACE_HUB_CACHE,
f"tunableop_{self.model_id.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv", f"tunableop_{tgi_globals.MODEL_ID.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
) )
logger.info( logger.info(
f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])} (typical decoding lengths). The picked GEMMs are saved in the file {tunableop_filepath}." f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`."
) )
if os.path.isfile(tunableop_filepath): if os.path.isfile(tunableop_filepath):

View File

@ -28,7 +28,6 @@ class FlashCohere(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -30,7 +30,6 @@ class FlashDbrx(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -28,7 +28,6 @@ class FlashGemma(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -15,11 +15,11 @@ from text_generation_server.utils import (
weight_files, weight_files,
Weights, Weights,
) )
from text_generation_server.models import CausalLM
from text_generation_server.utils.import_utils import SYSTEM
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
from text_generation_server.utils.import_utils import SYSTEM
class FlashGPT2(FlashCausalLM): class FlashGPT2(FlashCausalLM):
def __init__( def __init__(
@ -31,6 +31,7 @@ class FlashGPT2(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}") device = torch.device(f"cuda:{rank}")

View File

@ -10,6 +10,7 @@ from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_llama_modeling import ( from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM, FlashLlamaForCausalLM,
) )
from text_generation_server.utils import ( from text_generation_server.utils import (
initialize_torch_distributed, initialize_torch_distributed,
weight_files, weight_files,
@ -31,7 +32,6 @@ class FlashLlama(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -27,6 +27,7 @@ from text_generation_server.utils import (
HeterogeneousNextTokenChooser, HeterogeneousNextTokenChooser,
StoppingCriteria, StoppingCriteria,
) )
from text_generation_server.models import CausalLM
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
@ -318,7 +319,6 @@ class BaseFlashMistral(FlashCausalLM):
trust_remote_code: bool = False, trust_remote_code: bool = False,
tokenizer_class=AutoTokenizer, tokenizer_class=AutoTokenizer,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -15,6 +15,7 @@ from text_generation_server.utils import (
Weights, Weights,
) )
from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models import CausalLM
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
@ -29,7 +30,6 @@ class FlashNeoXSharded(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -15,6 +15,7 @@ from text_generation_server.utils import (
weight_files, weight_files,
Weights, Weights,
) )
from text_generation_server.models import CausalLM
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
@ -29,7 +30,6 @@ class FlashPhi(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -20,6 +20,7 @@ from text_generation_server.utils import (
weight_files, weight_files,
Weights, Weights,
) )
from text_generation_server.models import CausalLM
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
@ -34,7 +35,6 @@ class FlashQwen2(BaseFlashMistral):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -30,7 +30,6 @@ class FlashRWSharded(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -33,7 +33,6 @@ class FlashSantacoderSharded(FlashCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -33,7 +33,6 @@ class FlashStarcoder2(BaseFlashMistral):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -21,6 +21,7 @@ from text_generation_server.utils import (
Weights, Weights,
) )
# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py # CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py
# we split individual characters inside special tokens like [START_DNA] # we split individual characters inside special tokens like [START_DNA]
@ -171,7 +172,6 @@ class GalacticaSharded(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -15,3 +15,12 @@ else:
cuda_graphs = None cuda_graphs = None
CUDA_GRAPHS = cuda_graphs CUDA_GRAPHS = cuda_graphs
# This is overridden at model loading.
global MODEL_ID
MODEL_ID = None
def set_model_id(model_id: str):
global MODEL_ID
MODEL_ID = model_id

View File

@ -28,7 +28,6 @@ class GPTNeoxSharded(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -35,7 +35,6 @@ class IDEFICSSharded(IdeficsCausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -22,7 +22,6 @@ from text_generation_server.models.types import (
from text_generation_server.pb import generate_pb2 from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
from text_generation_server.models.vlm_causal_lm import split from text_generation_server.models.vlm_causal_lm import split
import re import re
IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)") IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")
@ -577,6 +576,7 @@ class IdeficsCausalLM(Model):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
from text_generation_server.models.custom_modeling.idefics_modeling import ( from text_generation_server.models.custom_modeling.idefics_modeling import (
IdeficsForVisionText2Text, IdeficsForVisionText2Text,
) )

View File

@ -412,7 +412,6 @@ class Mamba(Model):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, _rank, world_size = initialize_torch_distributed() self.process_group, _rank, world_size = initialize_torch_distributed()
if world_size > 1: if world_size > 1:

View File

@ -47,7 +47,6 @@ class MPTSharded(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -26,7 +26,6 @@ class OPTSharded(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -26,7 +26,6 @@ class Phi(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, _rank, _world_size = initialize_torch_distributed() self.process_group, _rank, _world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -16,6 +16,7 @@ class RW(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
if speculator: if speculator:
raise RuntimeError("Medusa decoding is not enabled for AutoModel") raise RuntimeError("Medusa decoding is not enabled for AutoModel")

View File

@ -23,7 +23,6 @@ class SantaCoder(CausalLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
if torch.cuda.is_available(): if torch.cuda.is_available():
device = torch.device("cuda") device = torch.device("cuda")

View File

@ -17,6 +17,7 @@ from text_generation_server.models.types import (
from text_generation_server.pb import generate_pb2 from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
tracer = trace.get_tracer(__name__) tracer = trace.get_tracer(__name__)
@ -536,7 +537,7 @@ class Seq2SeqLM(Model):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
if speculator: if speculator:
raise RuntimeError("Speculator decoding is not enabled for AutoModel") raise RuntimeError("Speculator decoding is not enabled for AutoModel")

View File

@ -29,7 +29,6 @@ class T5Sharded(Seq2SeqLM):
dtype: Optional[torch.dtype] = None, dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False, trust_remote_code: bool = False,
): ):
self.model_id = model_id
self.process_group, rank, world_size = initialize_torch_distributed() self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available(): if torch.cuda.is_available():

View File

@ -21,6 +21,7 @@ from text_generation_server.models.vlm_causal_lm import (
from text_generation_server.pb import generate_pb2_grpc, generate_pb2 from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
from text_generation_server.models.globals import set_model_id
class SignalHandler: class SignalHandler:
@ -255,6 +256,7 @@ def serve(
while signal_handler.KEEP_PROCESSING: while signal_handler.KEEP_PROCESSING:
await asyncio.sleep(0.5) await asyncio.sleep(0.5)
set_model_id(model_id)
asyncio.run( asyncio.run(
serve_inner( serve_inner(
model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code model_id, revision, sharded, quantize, speculate, dtype, trust_remote_code