mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-05-02 15:32:13 +00:00
Refine the warmup process
Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
parent
253a992447
commit
9f356ce045
@ -516,7 +516,7 @@ class CausalLMBatch(Batch):
|
||||
left_padding = max_input_length - input_len
|
||||
if input_len < max_input_length and PAD_SEQUENCE_TO_MULTIPLE_OF != 0:
|
||||
assert PAD_SEQUENCE_TO_MULTIPLE_OF <= max_input_length, "PAD_SEQUENCE_TO_MULTIPLE_OF cannot be higher than max_input_length"
|
||||
rounded_seq_len = round_up(input_len + 1, PREFILL_BATCH_BUCKET_SIZE)
|
||||
rounded_seq_len = round_up(input_len + 1, PAD_SEQUENCE_TO_MULTIPLE_OF)
|
||||
if rounded_seq_len <= max_input_length:
|
||||
bucket_size = rounded_seq_len - 1
|
||||
else:
|
||||
@ -1193,9 +1193,41 @@ class CausalLM(Model):
|
||||
f"You need to decrease `--max-batch-prefill-tokens`"
|
||||
)
|
||||
del prefill_batch
|
||||
#warmup decode batch size
|
||||
|
||||
max_prefill_batch_size = batch.input_ids.shape[0]
|
||||
del batch
|
||||
# Warmup prefill batch_size
|
||||
max_input_length = request.max_input_length
|
||||
prefill_batch_size_list = [batch for batch in range(BATCH_BUCKET_SIZE, max_prefill_batch_size, BATCH_BUCKET_SIZE)]
|
||||
prefill_batch_size_list.append(max_prefill_batch_size)
|
||||
prefill_seqlen_list = [seq for seq in range(PAD_SEQUENCE_TO_MULTIPLE_OF, max_input_length, PAD_SEQUENCE_TO_MULTIPLE_OF)]
|
||||
prefill_seqlen_list.append(max_input_length)
|
||||
prefill_batch_size_list.sort(reverse=True)
|
||||
prefill_seqlen_list.sort(reverse=True)
|
||||
try:
|
||||
for batch_size in prefill_batch_size_list:
|
||||
for seq_len in prefill_seqlen_list:
|
||||
batch = self.generate_warmup_batch(request, seq_len-1, batch_size)
|
||||
_, prefill_batch, _ = self.generate_token([batch])
|
||||
except:
|
||||
prefill_batch_size_list.sort()
|
||||
prefill_seqlen_list.sort()
|
||||
raise RuntimeError(
|
||||
f"Not enough memory to run following prefill batch_size."
|
||||
f"Prefill batch size list:{prefill_batch_size_list}"
|
||||
f"Prefill sequence length list:{prefill_seqlen_list}"
|
||||
f"You need to decrease `--max-batch-prefill-tokens`"
|
||||
)
|
||||
prefill_seqlen_list.sort()
|
||||
prefill_batch_size_list.sort()
|
||||
mem_stats = get_hpu_memory_stats(self.device)
|
||||
logger.info(
|
||||
f"\nFollowing prefill and decode warmup successfully.\n"
|
||||
f"Prefill batch size list:{prefill_batch_size_list}\n"
|
||||
f"Prefill sequence length list:{prefill_seqlen_list}\n"
|
||||
f"Memory stats: {mem_stats} "
|
||||
)
|
||||
|
||||
#warmup decode batch size
|
||||
max_decode_batch_size = math.floor(MAX_BATCH_TOTAL_TOKENS / MAX_TOTAL_TOKENS)
|
||||
max_decode_batch_size = round_up(max_decode_batch_size, BATCH_BUCKET_SIZE)
|
||||
decode_batch_size_list = [i for i in range(BATCH_BUCKET_SIZE, max_decode_batch_size, BATCH_BUCKET_SIZE)]
|
||||
@ -1203,66 +1235,37 @@ class CausalLM(Model):
|
||||
decode_batch_size_list.sort(reverse=True)
|
||||
|
||||
try:
|
||||
for batch_size in decode_batch_size_list:
|
||||
batches= []
|
||||
iters = math.floor(batch_size/max_prefill_batch_size)
|
||||
for i in range(iters):
|
||||
batch = self.generate_warmup_batch(request, PAD_SEQUENCE_TO_MULTIPLE_OF - 1, max_prefill_batch_size)
|
||||
_, prefill_batch, _ = self.generate_token([batch])
|
||||
batches.append(prefill_batch)
|
||||
for i in range(2):
|
||||
for batch_size in decode_batch_size_list:
|
||||
batches= []
|
||||
iters = math.floor(batch_size/max_prefill_batch_size)
|
||||
for i in range(iters):
|
||||
batch = self.generate_warmup_batch(request, PAD_SEQUENCE_TO_MULTIPLE_OF - 1, max_prefill_batch_size)
|
||||
_, prefill_batch, _ = self.generate_token([batch])
|
||||
batches.append(prefill_batch)
|
||||
|
||||
if batch_size % max_prefill_batch_size != 0:
|
||||
batch = self.generate_warmup_batch(request, PAD_SEQUENCE_TO_MULTIPLE_OF - 1, batch_size % max_prefill_batch_size)
|
||||
_, prefill_batch, _ = self.generate_token([batch])
|
||||
batches.append(prefill_batch)
|
||||
if batch_size % max_prefill_batch_size != 0:
|
||||
batch = self.generate_warmup_batch(request, PAD_SEQUENCE_TO_MULTIPLE_OF - 1, batch_size % max_prefill_batch_size)
|
||||
_, prefill_batch, _ = self.generate_token([batch])
|
||||
batches.append(prefill_batch)
|
||||
|
||||
_, decode_batch, _ = self.generate_token(batches)
|
||||
del decode_batch
|
||||
batches.clear()
|
||||
|
||||
_, decode_batch, _ = self.generate_token(batches)
|
||||
del decode_batch
|
||||
batches.clear()
|
||||
except:
|
||||
raise RuntimeError(
|
||||
f"Not enough memory to warmup decode batch_sizes({decode_batch_size_list})."
|
||||
f"You need to decrease `--max-batch-total-tokens`"
|
||||
)
|
||||
|
||||
decode_batch_size_list.sort()
|
||||
MAX_BATCH_TOTAL_TOKENS = MAX_TOTAL_TOKENS * decode_batch_size_list[-1]
|
||||
mem_stats = get_hpu_memory_stats(self.device)
|
||||
logger.info(
|
||||
f"\nFollowing decode warmup successfully.\n"
|
||||
f"Decode batch size list:{decode_batch_size_list}\n"
|
||||
f"Memory stats: {mem_stats} "
|
||||
)
|
||||
|
||||
limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true"
|
||||
if limit_hpu_graph == False:
|
||||
# Warmup prefill batch_size
|
||||
max_input_length = request.max_input_length
|
||||
prefill_batch_size_list = []
|
||||
prefill_seqlen_list = []
|
||||
try:
|
||||
for batch_size in range(max_prefill_batch_size, 0, -PREFILL_BATCH_BUCKET_SIZE):
|
||||
prefill_batch_size_list.append(batch_size)
|
||||
for seq_len in range(max_input_length, 0, -PAD_SEQUENCE_TO_MULTIPLE_OF):
|
||||
prefill_seqlen_list.append(seq_len)
|
||||
batch = self.generate_warmup_batch(request, seq_len, batch_size)
|
||||
_, prefill_batch, _ = self.generate_token([batch])
|
||||
del batch
|
||||
del prefill_batch
|
||||
except:
|
||||
raise RuntimeError(
|
||||
f"Not enough memory to run following prefill batch_size."
|
||||
f"Prefill batch size list:{prefill_batch_size_list}"
|
||||
f"Prefill sequence length list:{prefill_seqlen_list}"
|
||||
f"You need to decrease `--max-batch-prefill-tokens`"
|
||||
)
|
||||
prefill_batch_size_list.sort()
|
||||
prefill_seqlen_list.sort()
|
||||
mem_stats = get_hpu_memory_stats(self.device)
|
||||
logger.info(
|
||||
f"\nFollowing prefill and decode warmup successfully.\n"
|
||||
f"Prefill batch size list:{prefill_batch_size_list}\n"
|
||||
f"Prefill sequence length list:{prefill_seqlen_list}\n"
|
||||
f"Memory stats: {mem_stats} "
|
||||
)
|
||||
f"\nFollowing decode warmup successfully.\n"
|
||||
f"Decode batch size list:{decode_batch_size_list}\n"
|
||||
f"Memory stats: {mem_stats} "
|
||||
)
|
||||
|
||||
return MAX_BATCH_TOTAL_TOKENS
|
||||
|
Loading…
Reference in New Issue
Block a user