Refine the warmup process

Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
yuanwu 2024-12-07 09:56:16 +00:00
parent 253a992447
commit 9f356ce045

View File

@ -516,7 +516,7 @@ class CausalLMBatch(Batch):
left_padding = max_input_length - input_len
if input_len < max_input_length and PAD_SEQUENCE_TO_MULTIPLE_OF != 0:
assert PAD_SEQUENCE_TO_MULTIPLE_OF <= max_input_length, "PAD_SEQUENCE_TO_MULTIPLE_OF cannot be higher than max_input_length"
rounded_seq_len = round_up(input_len + 1, PREFILL_BATCH_BUCKET_SIZE)
rounded_seq_len = round_up(input_len + 1, PAD_SEQUENCE_TO_MULTIPLE_OF)
if rounded_seq_len <= max_input_length:
bucket_size = rounded_seq_len - 1
else:
@ -1193,9 +1193,41 @@ class CausalLM(Model):
f"You need to decrease `--max-batch-prefill-tokens`"
)
del prefill_batch
#warmup decode batch size
max_prefill_batch_size = batch.input_ids.shape[0]
del batch
# Warmup prefill batch_size
max_input_length = request.max_input_length
prefill_batch_size_list = [batch for batch in range(BATCH_BUCKET_SIZE, max_prefill_batch_size, BATCH_BUCKET_SIZE)]
prefill_batch_size_list.append(max_prefill_batch_size)
prefill_seqlen_list = [seq for seq in range(PAD_SEQUENCE_TO_MULTIPLE_OF, max_input_length, PAD_SEQUENCE_TO_MULTIPLE_OF)]
prefill_seqlen_list.append(max_input_length)
prefill_batch_size_list.sort(reverse=True)
prefill_seqlen_list.sort(reverse=True)
try:
for batch_size in prefill_batch_size_list:
for seq_len in prefill_seqlen_list:
batch = self.generate_warmup_batch(request, seq_len-1, batch_size)
_, prefill_batch, _ = self.generate_token([batch])
except:
prefill_batch_size_list.sort()
prefill_seqlen_list.sort()
raise RuntimeError(
f"Not enough memory to run following prefill batch_size."
f"Prefill batch size list:{prefill_batch_size_list}"
f"Prefill sequence length list:{prefill_seqlen_list}"
f"You need to decrease `--max-batch-prefill-tokens`"
)
prefill_seqlen_list.sort()
prefill_batch_size_list.sort()
mem_stats = get_hpu_memory_stats(self.device)
logger.info(
f"\nFollowing prefill and decode warmup successfully.\n"
f"Prefill batch size list:{prefill_batch_size_list}\n"
f"Prefill sequence length list:{prefill_seqlen_list}\n"
f"Memory stats: {mem_stats} "
)
#warmup decode batch size
max_decode_batch_size = math.floor(MAX_BATCH_TOTAL_TOKENS / MAX_TOTAL_TOKENS)
max_decode_batch_size = round_up(max_decode_batch_size, BATCH_BUCKET_SIZE)
decode_batch_size_list = [i for i in range(BATCH_BUCKET_SIZE, max_decode_batch_size, BATCH_BUCKET_SIZE)]
@ -1203,6 +1235,7 @@ class CausalLM(Model):
decode_batch_size_list.sort(reverse=True)
try:
for i in range(2):
for batch_size in decode_batch_size_list:
batches= []
iters = math.floor(batch_size/max_prefill_batch_size)
@ -1219,11 +1252,13 @@ class CausalLM(Model):
_, decode_batch, _ = self.generate_token(batches)
del decode_batch
batches.clear()
except:
raise RuntimeError(
f"Not enough memory to warmup decode batch_sizes({decode_batch_size_list})."
f"You need to decrease `--max-batch-total-tokens`"
)
decode_batch_size_list.sort()
MAX_BATCH_TOTAL_TOKENS = MAX_TOTAL_TOKENS * decode_batch_size_list[-1]
mem_stats = get_hpu_memory_stats(self.device)
@ -1233,36 +1268,4 @@ class CausalLM(Model):
f"Memory stats: {mem_stats} "
)
limit_hpu_graph = os.getenv("LIMIT_HPU_GRAPH", "false").lower() == "true"
if limit_hpu_graph == False:
# Warmup prefill batch_size
max_input_length = request.max_input_length
prefill_batch_size_list = []
prefill_seqlen_list = []
try:
for batch_size in range(max_prefill_batch_size, 0, -PREFILL_BATCH_BUCKET_SIZE):
prefill_batch_size_list.append(batch_size)
for seq_len in range(max_input_length, 0, -PAD_SEQUENCE_TO_MULTIPLE_OF):
prefill_seqlen_list.append(seq_len)
batch = self.generate_warmup_batch(request, seq_len, batch_size)
_, prefill_batch, _ = self.generate_token([batch])
del batch
del prefill_batch
except:
raise RuntimeError(
f"Not enough memory to run following prefill batch_size."
f"Prefill batch size list:{prefill_batch_size_list}"
f"Prefill sequence length list:{prefill_seqlen_list}"
f"You need to decrease `--max-batch-prefill-tokens`"
)
prefill_batch_size_list.sort()
prefill_seqlen_list.sort()
mem_stats = get_hpu_memory_stats(self.device)
logger.info(
f"\nFollowing prefill and decode warmup successfully.\n"
f"Prefill batch size list:{prefill_batch_size_list}\n"
f"Prefill sequence length list:{prefill_seqlen_list}\n"
f"Memory stats: {mem_stats} "
)
return MAX_BATCH_TOTAL_TOKENS