mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-22 15:32:08 +00:00
fix(server): fix generate_stream by forcing tokens to be decoded correctly (#100)
This commit is contained in:
parent
1c19b0934e
commit
9b205d33cc
@ -385,10 +385,8 @@ class CausalLM(Model):
|
|||||||
# Generated token
|
# Generated token
|
||||||
next_token_logprob = logprobs[-1, next_token_id]
|
next_token_logprob = logprobs[-1, next_token_id]
|
||||||
next_token_id_squeezed = next_token_id.squeeze()
|
next_token_id_squeezed = next_token_id.squeeze()
|
||||||
next_token_text = self.tokenizer.decode(
|
next_token_text = self.decode_token(
|
||||||
next_token_id_squeezed,
|
next_token_id_squeezed,
|
||||||
clean_up_tokenization_spaces=False,
|
|
||||||
skip_special_tokens=False,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Evaluate stopping criteria
|
# Evaluate stopping criteria
|
||||||
|
@ -15,6 +15,15 @@ class Model(ABC):
|
|||||||
self.all_special_ids = set(tokenizer.all_special_ids)
|
self.all_special_ids = set(tokenizer.all_special_ids)
|
||||||
self.device = device
|
self.device = device
|
||||||
|
|
||||||
|
# see `decode_token` method
|
||||||
|
self.tokenizer.add_special_tokens(
|
||||||
|
{"additional_special_tokens": ["<decode-token>"]}
|
||||||
|
)
|
||||||
|
self.special_decode_token_id = self.tokenizer.convert_tokens_to_ids(
|
||||||
|
"<decode-token>"
|
||||||
|
)
|
||||||
|
self.special_decode_token_length = len("<decode-token>")
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def batch_type(self) -> Type[B]:
|
def batch_type(self) -> Type[B]:
|
||||||
@ -23,3 +32,12 @@ class Model(ABC):
|
|||||||
@abstractmethod
|
@abstractmethod
|
||||||
def generate_token(self, batch: B) -> Tuple[List[GeneratedText], Optional[B]]:
|
def generate_token(self, batch: B) -> Tuple[List[GeneratedText], Optional[B]]:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def decode_token(self, token_id: int) -> str:
|
||||||
|
"""Hack to hopefully support generate_stream for the maximum number of tokenizers"""
|
||||||
|
# append token to special decode token and decode both
|
||||||
|
result = self.tokenizer.decode(
|
||||||
|
[self.special_decode_token_id, token_id], skip_special_tokens=False
|
||||||
|
)
|
||||||
|
# slice to remove special decode token
|
||||||
|
return result[self.special_decode_token_length :]
|
||||||
|
@ -342,7 +342,9 @@ class Seq2SeqLM(Model):
|
|||||||
return Seq2SeqLMBatch
|
return Seq2SeqLMBatch
|
||||||
|
|
||||||
def decode(self, decoder_ids: List[int]) -> str:
|
def decode(self, decoder_ids: List[int]) -> str:
|
||||||
return self.tokenizer.decode(decoder_ids, skip_special_tokens=True)
|
return self.tokenizer.decode(
|
||||||
|
decoder_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||||
|
)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -457,10 +459,8 @@ class Seq2SeqLM(Model):
|
|||||||
# Generated token
|
# Generated token
|
||||||
next_token_logprob = logprobs[-1, next_token_id]
|
next_token_logprob = logprobs[-1, next_token_id]
|
||||||
next_token_id_squeezed = next_token_id.squeeze()
|
next_token_id_squeezed = next_token_id.squeeze()
|
||||||
next_token_text = self.tokenizer.decode(
|
next_token_text = self.decode_token(
|
||||||
next_token_id_squeezed,
|
next_token_id_squeezed,
|
||||||
clean_up_tokenization_spaces=False,
|
|
||||||
skip_special_tokens=False,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Evaluate stopping criteria
|
# Evaluate stopping criteria
|
||||||
|
Loading…
Reference in New Issue
Block a user