mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 11:54:52 +00:00
fix
This commit is contained in:
parent
34931a2111
commit
9b06248395
@ -1,91 +0,0 @@
|
|||||||
import torch
|
|
||||||
|
|
||||||
from transformers import AutoConfig
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
from text_generation.models.model import Model
|
|
||||||
from text_generation.models.causal_lm import CausalLM
|
|
||||||
from text_generation.models.bloom import BLOOM, BLOOMSharded
|
|
||||||
from text_generation.models.seq2seq_lm import Seq2SeqLM
|
|
||||||
from text_generation.models.galactica import Galactica, GalacticaSharded
|
|
||||||
from text_generation.models.santacoder import SantaCoder
|
|
||||||
from text_generation.models.gpt_neox import GPTNeox, GPTNeoxSharded
|
|
||||||
from text_generation.models.opt import OPT, OPTSharded
|
|
||||||
from text_generation.models.t5 import T5Sharded
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"Model",
|
|
||||||
"BLOOM",
|
|
||||||
"BLOOMSharded",
|
|
||||||
"CausalLM",
|
|
||||||
"Galactica",
|
|
||||||
"GalacticaSharded",
|
|
||||||
"GPTNeox",
|
|
||||||
"GPTNeoxSharded",
|
|
||||||
"Seq2SeqLM",
|
|
||||||
"Galactica",
|
|
||||||
"GalacticaSharded",
|
|
||||||
"SantaCoder",
|
|
||||||
"GPTNeox",
|
|
||||||
"GPTNeoxSharded",
|
|
||||||
"OPT",
|
|
||||||
"OPTSharded",
|
|
||||||
"T5Sharded",
|
|
||||||
"get_model",
|
|
||||||
]
|
|
||||||
|
|
||||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
|
||||||
# in PyTorch 1.12 and later.
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
|
||||||
|
|
||||||
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
|
||||||
torch.backends.cudnn.allow_tf32 = True
|
|
||||||
|
|
||||||
# Disable gradients
|
|
||||||
torch.set_grad_enabled(False)
|
|
||||||
|
|
||||||
|
|
||||||
def get_model(
|
|
||||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
|
||||||
) -> Model:
|
|
||||||
if model_id.startswith("facebook/galactica"):
|
|
||||||
if sharded:
|
|
||||||
return GalacticaSharded(model_id, revision, quantize=quantize)
|
|
||||||
else:
|
|
||||||
return Galactica(model_id, revision, quantize=quantize)
|
|
||||||
|
|
||||||
if "santacoder" in model_id:
|
|
||||||
return SantaCoder(model_id, revision, quantize)
|
|
||||||
|
|
||||||
config = AutoConfig.from_pretrained(model_id, revision=revision)
|
|
||||||
|
|
||||||
if config.model_type == "bloom":
|
|
||||||
if sharded:
|
|
||||||
return BLOOMSharded(model_id, revision, quantize=quantize)
|
|
||||||
else:
|
|
||||||
return BLOOM(model_id, revision, quantize=quantize)
|
|
||||||
|
|
||||||
if config.model_type == "gpt_neox":
|
|
||||||
if sharded:
|
|
||||||
return GPTNeoxSharded(model_id, revision, quantize=quantize)
|
|
||||||
else:
|
|
||||||
return GPTNeox(model_id, revision, quantize=quantize)
|
|
||||||
|
|
||||||
if config.model_type == "t5":
|
|
||||||
if sharded:
|
|
||||||
return T5Sharded(model_id, revision, quantize=quantize)
|
|
||||||
else:
|
|
||||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
|
||||||
|
|
||||||
if config.model_type == "opt":
|
|
||||||
if sharded:
|
|
||||||
return OPTSharded(model_id, revision, quantize=quantize)
|
|
||||||
else:
|
|
||||||
return OPT(model_id, revision, quantize=quantize)
|
|
||||||
|
|
||||||
if sharded:
|
|
||||||
raise ValueError("sharded is not supported for AutoModel")
|
|
||||||
try:
|
|
||||||
return CausalLM(model_id, revision, quantize=quantize)
|
|
||||||
except Exception:
|
|
||||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
|
@ -1,4 +1,3 @@
|
|||||||
import os
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from loguru import logger
|
from loguru import logger
|
||||||
@ -11,6 +10,7 @@ from text_generation_server.models.causal_lm import CausalLM
|
|||||||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||||
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
|
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
|
||||||
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
|
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
|
||||||
|
from text_generation_server.models.opt import OPT, OPTSharded
|
||||||
from text_generation_server.models.galactica import Galactica, GalacticaSharded
|
from text_generation_server.models.galactica import Galactica, GalacticaSharded
|
||||||
from text_generation_server.models.santacoder import SantaCoder
|
from text_generation_server.models.santacoder import SantaCoder
|
||||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||||
@ -36,7 +36,11 @@ __all__ = [
|
|||||||
"GalacticaSharded",
|
"GalacticaSharded",
|
||||||
"GPTNeoxSharded",
|
"GPTNeoxSharded",
|
||||||
"Seq2SeqLM",
|
"Seq2SeqLM",
|
||||||
|
"Galactica",
|
||||||
|
"GalacticaSharded",
|
||||||
"SantaCoder",
|
"SantaCoder",
|
||||||
|
"OPT",
|
||||||
|
"OPTSharded",
|
||||||
"T5Sharded",
|
"T5Sharded",
|
||||||
"get_model",
|
"get_model",
|
||||||
]
|
]
|
||||||
@ -48,9 +52,11 @@ if FLASH_ATTENTION:
|
|||||||
__all__.append(FlashLlama)
|
__all__.append(FlashLlama)
|
||||||
__all__.append(FlashLlamaSharded)
|
__all__.append(FlashLlamaSharded)
|
||||||
|
|
||||||
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention CUDA kernels to be installed.\n" \
|
FLASH_ATT_ERROR_MESSAGE = (
|
||||||
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) " \
|
"{} requires Flash Attention CUDA kernels to be installed.\n"
|
||||||
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
||||||
"or install flash attention with `cd server && make install install-flash-attention`"
|
"or install flash attention with `cd server && make install install-flash-attention`"
|
||||||
|
)
|
||||||
|
|
||||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||||
# in PyTorch 1.12 and later.
|
# in PyTorch 1.12 and later.
|
||||||
@ -100,13 +106,17 @@ def get_model(
|
|||||||
if sharded:
|
if sharded:
|
||||||
if FLASH_ATTENTION:
|
if FLASH_ATTENTION:
|
||||||
return FlashLlamaSharded(model_id, revision, quantize=quantize)
|
return FlashLlamaSharded(model_id, revision, quantize=quantize)
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama"))
|
||||||
FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama")
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
llama_cls = FlashLlama if FLASH_ATTENTION else CausalLM
|
llama_cls = FlashLlama if FLASH_ATTENTION else CausalLM
|
||||||
return llama_cls(model_id, revision, quantize=quantize)
|
return llama_cls(model_id, revision, quantize=quantize)
|
||||||
|
|
||||||
|
if config.model_type == "opt":
|
||||||
|
if sharded:
|
||||||
|
return OPTSharded(model_id, revision, quantize=quantize)
|
||||||
|
else:
|
||||||
|
return OPT(model_id, revision, quantize=quantize)
|
||||||
|
|
||||||
if model_type == "t5":
|
if model_type == "t5":
|
||||||
if sharded:
|
if sharded:
|
||||||
return T5Sharded(model_id, revision, quantize=quantize)
|
return T5Sharded(model_id, revision, quantize=quantize)
|
||||||
|
@ -62,7 +62,7 @@ class BLOOMSharded(BLOOM):
|
|||||||
self.master = self.rank == 0
|
self.master = self.rank == 0
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device(f"cuda:{self.rank}")
|
device = torch.device(f"cuda:{self.rank}")
|
||||||
dtype = torch.bfloat16
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||||
else:
|
else:
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
|
@ -18,10 +18,10 @@ from transformers.models.opt.parallel_layers import (
|
|||||||
TensorParallelRowLinear,
|
TensorParallelRowLinear,
|
||||||
)
|
)
|
||||||
|
|
||||||
from text_generation.models import CausalLMBatch
|
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||||
from text_generation.pb import generate_pb2
|
from text_generation_server.pb import generate_pb2
|
||||||
from text_generation.models.opt import OPT, OPTSharded
|
from text_generation_server.models.opt import OPT, OPTSharded
|
||||||
from text_generation.utils import (
|
from text_generation_server.utils import (
|
||||||
NextTokenChooser,
|
NextTokenChooser,
|
||||||
StoppingCriteria,
|
StoppingCriteria,
|
||||||
initialize_torch_distributed,
|
initialize_torch_distributed,
|
||||||
@ -192,7 +192,7 @@ class GalacticaSharded(OPTSharded):
|
|||||||
self.master = self.rank == 0
|
self.master = self.rank == 0
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device(f"cuda:{self.rank}")
|
device = torch.device(f"cuda:{self.rank}")
|
||||||
dtype = torch.bfloat16
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||||
else:
|
else:
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
|
@ -38,7 +38,7 @@ class GPTNeoxSharded(CausalLM):
|
|||||||
self.master = self.rank == 0
|
self.master = self.rank == 0
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device(f"cuda:{self.rank}")
|
device = torch.device(f"cuda:{self.rank}")
|
||||||
dtype = torch.bfloat16
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||||
else:
|
else:
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
|
@ -16,8 +16,8 @@ from transformers.models.opt.parallel_layers import (
|
|||||||
TensorParallelRowLinear,
|
TensorParallelRowLinear,
|
||||||
)
|
)
|
||||||
|
|
||||||
from text_generation.models import CausalLM
|
from text_generation_server.models import CausalLM
|
||||||
from text_generation.utils import (
|
from text_generation_server.utils import (
|
||||||
initialize_torch_distributed,
|
initialize_torch_distributed,
|
||||||
weight_files,
|
weight_files,
|
||||||
)
|
)
|
||||||
@ -54,13 +54,13 @@ class OPTSharded(OPT):
|
|||||||
self.master = self.rank == 0
|
self.master = self.rank == 0
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device(f"cuda:{self.rank}")
|
device = torch.device(f"cuda:{self.rank}")
|
||||||
dtype = torch.bfloat16
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||||
else:
|
else:
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
model_id, revision=revision, padding_side="left"
|
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||||
)
|
)
|
||||||
|
|
||||||
config = AutoConfig.from_pretrained(
|
config = AutoConfig.from_pretrained(
|
||||||
|
@ -38,7 +38,7 @@ class T5Sharded(Seq2SeqLM):
|
|||||||
self.master = self.rank == 0
|
self.master = self.rank == 0
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device(f"cuda:{self.rank}")
|
device = torch.device(f"cuda:{self.rank}")
|
||||||
dtype = torch.bfloat16
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||||
else:
|
else:
|
||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
|
@ -50,7 +50,6 @@ def try_to_load_from_cache(
|
|||||||
|
|
||||||
refs_dir = repo_cache / "refs"
|
refs_dir = repo_cache / "refs"
|
||||||
snapshots_dir = repo_cache / "snapshots"
|
snapshots_dir = repo_cache / "snapshots"
|
||||||
no_exist_dir = repo_cache / ".no_exist"
|
|
||||||
|
|
||||||
# Resolve refs (for instance to convert main to the associated commit sha)
|
# Resolve refs (for instance to convert main to the associated commit sha)
|
||||||
if refs_dir.is_dir():
|
if refs_dir.is_dir():
|
||||||
@ -59,10 +58,6 @@ def try_to_load_from_cache(
|
|||||||
with revision_file.open() as f:
|
with revision_file.open() as f:
|
||||||
revision = f.read()
|
revision = f.read()
|
||||||
|
|
||||||
# Check if file is cached as "no_exist"
|
|
||||||
if (no_exist_dir / revision / filename).is_file():
|
|
||||||
return None
|
|
||||||
|
|
||||||
# Check if revision folder exists
|
# Check if revision folder exists
|
||||||
if not snapshots_dir.exists():
|
if not snapshots_dir.exists():
|
||||||
return None
|
return None
|
||||||
|
Loading…
Reference in New Issue
Block a user