mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 19:34:53 +00:00
fix
This commit is contained in:
parent
34931a2111
commit
9b06248395
@ -1,91 +0,0 @@
|
||||
import torch
|
||||
|
||||
from transformers import AutoConfig
|
||||
from typing import Optional
|
||||
|
||||
from text_generation.models.model import Model
|
||||
from text_generation.models.causal_lm import CausalLM
|
||||
from text_generation.models.bloom import BLOOM, BLOOMSharded
|
||||
from text_generation.models.seq2seq_lm import Seq2SeqLM
|
||||
from text_generation.models.galactica import Galactica, GalacticaSharded
|
||||
from text_generation.models.santacoder import SantaCoder
|
||||
from text_generation.models.gpt_neox import GPTNeox, GPTNeoxSharded
|
||||
from text_generation.models.opt import OPT, OPTSharded
|
||||
from text_generation.models.t5 import T5Sharded
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
"BLOOM",
|
||||
"BLOOMSharded",
|
||||
"CausalLM",
|
||||
"Galactica",
|
||||
"GalacticaSharded",
|
||||
"GPTNeox",
|
||||
"GPTNeoxSharded",
|
||||
"Seq2SeqLM",
|
||||
"Galactica",
|
||||
"GalacticaSharded",
|
||||
"SantaCoder",
|
||||
"GPTNeox",
|
||||
"GPTNeoxSharded",
|
||||
"OPT",
|
||||
"OPTSharded",
|
||||
"T5Sharded",
|
||||
"get_model",
|
||||
]
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# Disable gradients
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
|
||||
def get_model(
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
) -> Model:
|
||||
if model_id.startswith("facebook/galactica"):
|
||||
if sharded:
|
||||
return GalacticaSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Galactica(model_id, revision, quantize=quantize)
|
||||
|
||||
if "santacoder" in model_id:
|
||||
return SantaCoder(model_id, revision, quantize)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id, revision=revision)
|
||||
|
||||
if config.model_type == "bloom":
|
||||
if sharded:
|
||||
return BLOOMSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return BLOOM(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "gpt_neox":
|
||||
if sharded:
|
||||
return GPTNeoxSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return GPTNeox(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "t5":
|
||||
if sharded:
|
||||
return T5Sharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "opt":
|
||||
if sharded:
|
||||
return OPTSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return OPT(model_id, revision, quantize=quantize)
|
||||
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
try:
|
||||
return CausalLM(model_id, revision, quantize=quantize)
|
||||
except Exception:
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
@ -1,4 +1,3 @@
|
||||
import os
|
||||
import torch
|
||||
|
||||
from loguru import logger
|
||||
@ -11,6 +10,7 @@ from text_generation_server.models.causal_lm import CausalLM
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
|
||||
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
|
||||
from text_generation_server.models.opt import OPT, OPTSharded
|
||||
from text_generation_server.models.galactica import Galactica, GalacticaSharded
|
||||
from text_generation_server.models.santacoder import SantaCoder
|
||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
@ -36,7 +36,11 @@ __all__ = [
|
||||
"GalacticaSharded",
|
||||
"GPTNeoxSharded",
|
||||
"Seq2SeqLM",
|
||||
"Galactica",
|
||||
"GalacticaSharded",
|
||||
"SantaCoder",
|
||||
"OPT",
|
||||
"OPTSharded",
|
||||
"T5Sharded",
|
||||
"get_model",
|
||||
]
|
||||
@ -48,9 +52,11 @@ if FLASH_ATTENTION:
|
||||
__all__.append(FlashLlama)
|
||||
__all__.append(FlashLlamaSharded)
|
||||
|
||||
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention CUDA kernels to be installed.\n" \
|
||||
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) " \
|
||||
"or install flash attention with `cd server && make install install-flash-attention`"
|
||||
FLASH_ATT_ERROR_MESSAGE = (
|
||||
"{} requires Flash Attention CUDA kernels to be installed.\n"
|
||||
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
||||
"or install flash attention with `cd server && make install install-flash-attention`"
|
||||
)
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
@ -64,7 +70,7 @@ torch.set_grad_enabled(False)
|
||||
|
||||
|
||||
def get_model(
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
) -> Model:
|
||||
if "facebook/galactica" in model_id:
|
||||
if sharded:
|
||||
@ -100,13 +106,17 @@ def get_model(
|
||||
if sharded:
|
||||
if FLASH_ATTENTION:
|
||||
return FlashLlamaSharded(model_id, revision, quantize=quantize)
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama")
|
||||
)
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama"))
|
||||
else:
|
||||
llama_cls = FlashLlama if FLASH_ATTENTION else CausalLM
|
||||
return llama_cls(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "opt":
|
||||
if sharded:
|
||||
return OPTSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return OPT(model_id, revision, quantize=quantize)
|
||||
|
||||
if model_type == "t5":
|
||||
if sharded:
|
||||
return T5Sharded(model_id, revision, quantize=quantize)
|
||||
|
@ -62,7 +62,7 @@ class BLOOMSharded(BLOOM):
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
@ -18,10 +18,10 @@ from transformers.models.opt.parallel_layers import (
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation.models import CausalLMBatch
|
||||
from text_generation.pb import generate_pb2
|
||||
from text_generation.models.opt import OPT, OPTSharded
|
||||
from text_generation.utils import (
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.opt import OPT, OPTSharded
|
||||
from text_generation_server.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
initialize_torch_distributed,
|
||||
@ -192,7 +192,7 @@ class GalacticaSharded(OPTSharded):
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
@ -38,7 +38,7 @@ class GPTNeoxSharded(CausalLM):
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
@ -16,8 +16,8 @@ from transformers.models.opt.parallel_layers import (
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation.models import CausalLM
|
||||
from text_generation.utils import (
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
)
|
||||
@ -54,13 +54,13 @@ class OPTSharded(OPT):
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
|
@ -38,7 +38,7 @@ class T5Sharded(Seq2SeqLM):
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
@ -50,7 +50,6 @@ def try_to_load_from_cache(
|
||||
|
||||
refs_dir = repo_cache / "refs"
|
||||
snapshots_dir = repo_cache / "snapshots"
|
||||
no_exist_dir = repo_cache / ".no_exist"
|
||||
|
||||
# Resolve refs (for instance to convert main to the associated commit sha)
|
||||
if refs_dir.is_dir():
|
||||
@ -59,10 +58,6 @@ def try_to_load_from_cache(
|
||||
with revision_file.open() as f:
|
||||
revision = f.read()
|
||||
|
||||
# Check if file is cached as "no_exist"
|
||||
if (no_exist_dir / revision / filename).is_file():
|
||||
return None
|
||||
|
||||
# Check if revision folder exists
|
||||
if not snapshots_dir.exists():
|
||||
return None
|
||||
|
Loading…
Reference in New Issue
Block a user