mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
feat(server): load santacoder/starcoder models with safetensors (#393)
Fix #366
This commit is contained in:
parent
c0928e6f26
commit
95d3546976
@ -546,11 +546,7 @@ enum LauncherError {
|
||||
WebserverCannotStart,
|
||||
}
|
||||
|
||||
fn download_convert_model(
|
||||
args: &Args,
|
||||
auto_convert: bool,
|
||||
running: Arc<AtomicBool>,
|
||||
) -> Result<(), LauncherError> {
|
||||
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
|
||||
let mut download_argv = vec![
|
||||
"text-generation-server".to_string(),
|
||||
"download-weights".to_string(),
|
||||
@ -562,11 +558,6 @@ fn download_convert_model(
|
||||
"--json-output".to_string(),
|
||||
];
|
||||
|
||||
// Auto convert weights to safetensors
|
||||
if auto_convert {
|
||||
download_argv.push("--auto-convert".to_string());
|
||||
}
|
||||
|
||||
// Model optional revision
|
||||
if let Some(revision) = &args.revision {
|
||||
download_argv.push("--revision".to_string());
|
||||
@ -932,11 +923,8 @@ fn main() -> Result<(), LauncherError> {
|
||||
})
|
||||
.expect("Error setting Ctrl-C handler");
|
||||
|
||||
// auto_convert is only needed for sharded models as we do not require safetensors in
|
||||
// single shard mode
|
||||
let auto_convert = num_shard > 1;
|
||||
// Download and convert model weights
|
||||
download_convert_model(&args, auto_convert, running.clone())?;
|
||||
download_convert_model(&args, running.clone())?;
|
||||
|
||||
// Shared shutdown bool
|
||||
let shutdown = Arc::new(Mutex::new(false));
|
||||
|
@ -54,12 +54,7 @@ class FlashSantacoder(FlashCausalLM):
|
||||
)
|
||||
|
||||
# We do not use from_pretrained as we modified the model internal module layout
|
||||
try:
|
||||
filenames = weight_files(model_id, revision, ".bin")
|
||||
# Local files not found
|
||||
except LocalEntryNotFoundError:
|
||||
hub_files = weight_hub_files(model_id, revision, ".bin")
|
||||
filenames = download_weights(hub_files, model_id, revision)
|
||||
filenames = weight_files(model_id, revision, ".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
model = FlashSantacoderForCausalLM(config)
|
||||
@ -91,8 +86,11 @@ class FlashSantacoder(FlashCausalLM):
|
||||
transpose: bool,
|
||||
):
|
||||
for filename in filenames:
|
||||
state_dict = torch.load(filename, map_location="cpu")
|
||||
for key, value in state_dict.items():
|
||||
with safe_open(
|
||||
filename, framework="pt", device=str(device) if quantize is None else "cpu"
|
||||
) as f:
|
||||
for key in f.keys():
|
||||
value = f.get_tensor(key)
|
||||
value = value.to(device if quantize is None else "cpu").to(dtype)
|
||||
|
||||
layer_name = ".".join(key.split(".")[:4])
|
||||
@ -167,9 +165,21 @@ class FlashSantacoder(FlashCausalLM):
|
||||
|
||||
del value
|
||||
|
||||
if model.lm_head.weight.device == torch.device("meta"):
|
||||
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
model.post_load_weights(quantize)
|
||||
|
||||
uninitialized_parameters = []
|
||||
for n, p in model.named_parameters():
|
||||
if p.data.device == torch.device("meta"):
|
||||
uninitialized_parameters.append(n)
|
||||
if uninitialized_parameters:
|
||||
raise RuntimeError(
|
||||
f"found uninitialized parameters in model : {uninitialized_parameters}"
|
||||
)
|
||||
|
||||
def decode(self, generated_ids: List[int]) -> str:
|
||||
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
||||
return self.tokenizer.decode(
|
||||
@ -389,6 +399,8 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
|
||||
if model.lm_head.weight.device == torch.device("meta"):
|
||||
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
model.post_load_weights(quantize)
|
||||
|
Loading…
Reference in New Issue
Block a user