mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-20 22:32:07 +00:00
feat(server): load santacoder/starcoder models with safetensors (#393)
Fix #366
This commit is contained in:
parent
c0928e6f26
commit
95d3546976
@ -546,11 +546,7 @@ enum LauncherError {
|
|||||||
WebserverCannotStart,
|
WebserverCannotStart,
|
||||||
}
|
}
|
||||||
|
|
||||||
fn download_convert_model(
|
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
|
||||||
args: &Args,
|
|
||||||
auto_convert: bool,
|
|
||||||
running: Arc<AtomicBool>,
|
|
||||||
) -> Result<(), LauncherError> {
|
|
||||||
let mut download_argv = vec![
|
let mut download_argv = vec![
|
||||||
"text-generation-server".to_string(),
|
"text-generation-server".to_string(),
|
||||||
"download-weights".to_string(),
|
"download-weights".to_string(),
|
||||||
@ -562,11 +558,6 @@ fn download_convert_model(
|
|||||||
"--json-output".to_string(),
|
"--json-output".to_string(),
|
||||||
];
|
];
|
||||||
|
|
||||||
// Auto convert weights to safetensors
|
|
||||||
if auto_convert {
|
|
||||||
download_argv.push("--auto-convert".to_string());
|
|
||||||
}
|
|
||||||
|
|
||||||
// Model optional revision
|
// Model optional revision
|
||||||
if let Some(revision) = &args.revision {
|
if let Some(revision) = &args.revision {
|
||||||
download_argv.push("--revision".to_string());
|
download_argv.push("--revision".to_string());
|
||||||
@ -932,11 +923,8 @@ fn main() -> Result<(), LauncherError> {
|
|||||||
})
|
})
|
||||||
.expect("Error setting Ctrl-C handler");
|
.expect("Error setting Ctrl-C handler");
|
||||||
|
|
||||||
// auto_convert is only needed for sharded models as we do not require safetensors in
|
|
||||||
// single shard mode
|
|
||||||
let auto_convert = num_shard > 1;
|
|
||||||
// Download and convert model weights
|
// Download and convert model weights
|
||||||
download_convert_model(&args, auto_convert, running.clone())?;
|
download_convert_model(&args, running.clone())?;
|
||||||
|
|
||||||
// Shared shutdown bool
|
// Shared shutdown bool
|
||||||
let shutdown = Arc::new(Mutex::new(false));
|
let shutdown = Arc::new(Mutex::new(false));
|
||||||
|
@ -54,12 +54,7 @@ class FlashSantacoder(FlashCausalLM):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# We do not use from_pretrained as we modified the model internal module layout
|
# We do not use from_pretrained as we modified the model internal module layout
|
||||||
try:
|
filenames = weight_files(model_id, revision, ".safetensors")
|
||||||
filenames = weight_files(model_id, revision, ".bin")
|
|
||||||
# Local files not found
|
|
||||||
except LocalEntryNotFoundError:
|
|
||||||
hub_files = weight_hub_files(model_id, revision, ".bin")
|
|
||||||
filenames = download_weights(hub_files, model_id, revision)
|
|
||||||
|
|
||||||
with init_empty_weights():
|
with init_empty_weights():
|
||||||
model = FlashSantacoderForCausalLM(config)
|
model = FlashSantacoderForCausalLM(config)
|
||||||
@ -91,8 +86,11 @@ class FlashSantacoder(FlashCausalLM):
|
|||||||
transpose: bool,
|
transpose: bool,
|
||||||
):
|
):
|
||||||
for filename in filenames:
|
for filename in filenames:
|
||||||
state_dict = torch.load(filename, map_location="cpu")
|
with safe_open(
|
||||||
for key, value in state_dict.items():
|
filename, framework="pt", device=str(device) if quantize is None else "cpu"
|
||||||
|
) as f:
|
||||||
|
for key in f.keys():
|
||||||
|
value = f.get_tensor(key)
|
||||||
value = value.to(device if quantize is None else "cpu").to(dtype)
|
value = value.to(device if quantize is None else "cpu").to(dtype)
|
||||||
|
|
||||||
layer_name = ".".join(key.split(".")[:4])
|
layer_name = ".".join(key.split(".")[:4])
|
||||||
@ -167,9 +165,21 @@ class FlashSantacoder(FlashCausalLM):
|
|||||||
|
|
||||||
del value
|
del value
|
||||||
|
|
||||||
|
if model.lm_head.weight.device == torch.device("meta"):
|
||||||
|
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
|
||||||
|
uninitialized_parameters = []
|
||||||
|
for n, p in model.named_parameters():
|
||||||
|
if p.data.device == torch.device("meta"):
|
||||||
|
uninitialized_parameters.append(n)
|
||||||
|
if uninitialized_parameters:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"found uninitialized parameters in model : {uninitialized_parameters}"
|
||||||
|
)
|
||||||
|
|
||||||
def decode(self, generated_ids: List[int]) -> str:
|
def decode(self, generated_ids: List[int]) -> str:
|
||||||
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
||||||
return self.tokenizer.decode(
|
return self.tokenizer.decode(
|
||||||
@ -389,6 +399,8 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||||||
else:
|
else:
|
||||||
module._buffers[param_name] = tensor
|
module._buffers[param_name] = tensor
|
||||||
|
|
||||||
|
if model.lm_head.weight.device == torch.device("meta"):
|
||||||
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
Loading…
Reference in New Issue
Block a user