mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 03:44:54 +00:00
wip
This commit is contained in:
parent
2378529c15
commit
9541c8f146
@ -18,7 +18,6 @@ from text_generation_server.models.t5 import T5Sharded
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
|
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
|
||||||
from text_generation_server.models.flash_santacoder import FlashSantacoder
|
|
||||||
from text_generation_server.models.flash_llama import FlashLlama, FlashLlamaSharded
|
from text_generation_server.models.flash_llama import FlashLlama, FlashLlamaSharded
|
||||||
from text_generation_server.models.flash_santacoder import FlashSantacoder, FlashSantacoderSharded
|
from text_generation_server.models.flash_santacoder import FlashSantacoder, FlashSantacoderSharded
|
||||||
|
|
||||||
@ -84,7 +83,9 @@ def get_model(
|
|||||||
if "bigcode" in model_id:
|
if "bigcode" in model_id:
|
||||||
if sharded:
|
if sharded:
|
||||||
if not FLASH_ATTENTION:
|
if not FLASH_ATTENTION:
|
||||||
raise NotImplementedError("sharded is not supported for Santacoder when FLASH_ATTENTION=0")
|
raise NotImplementedError(
|
||||||
|
"sharded is not supported for Santacoder when FLASH_ATTENTION=0"
|
||||||
|
)
|
||||||
return FlashSantacoderSharded(model_id, revision=revision)
|
return FlashSantacoderSharded(model_id, revision=revision)
|
||||||
else:
|
else:
|
||||||
santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
|
santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
|
||||||
|
@ -207,11 +207,7 @@ class FlashMQAttention(torch.nn.Module):
|
|||||||
self.c_proj = FastLinear(hidden_size, hidden_size)
|
self.c_proj = FastLinear(hidden_size, hidden_size)
|
||||||
else:
|
else:
|
||||||
self.num_heads = self.num_heads // process_group.size()
|
self.num_heads = self.num_heads // process_group.size()
|
||||||
self.hidden_size = self.hidden_size // process_group.size()
|
self.c_attn = FastLinear(hidden_size, self.head_size * (self.num_heads + 2))
|
||||||
self.c_attn = FastLinear(
|
|
||||||
hidden_size,
|
|
||||||
self.head_size * (self.num_heads + 2)
|
|
||||||
)
|
|
||||||
self.c_proj = TensorParallelRowLinear(
|
self.c_proj = TensorParallelRowLinear(
|
||||||
hidden_size, hidden_size, process_group=process_group, reduce=True
|
hidden_size, hidden_size, process_group=process_group, reduce=True
|
||||||
)
|
)
|
||||||
@ -228,7 +224,9 @@ class FlashMQAttention(torch.nn.Module):
|
|||||||
qkv = self.c_attn(hidden_states)
|
qkv = self.c_attn(hidden_states)
|
||||||
|
|
||||||
# Split query from key_value
|
# Split query from key_value
|
||||||
query, key_value = qkv.split([self.head_size * self.num_heads, 2 * self.head_size], dim=1)
|
query, key_value = qkv.split(
|
||||||
|
[self.head_size * self.num_heads, 2 * self.head_size], dim=1
|
||||||
|
)
|
||||||
|
|
||||||
# Prepare query and key_value for indexing
|
# Prepare query and key_value for indexing
|
||||||
query = query.view(-1, self.num_heads, self.head_size)
|
query = query.view(-1, self.num_heads, self.head_size)
|
||||||
@ -302,7 +300,7 @@ class MLP(nn.Module):
|
|||||||
x,
|
x,
|
||||||
approximate="tanh"
|
approximate="tanh"
|
||||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||||
else None,
|
else "none",
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -399,11 +397,13 @@ class FlashSantacoderModel(nn.Module):
|
|||||||
self.wte = TensorParallelEmbedding(
|
self.wte = TensorParallelEmbedding(
|
||||||
config.vocab_size,
|
config.vocab_size,
|
||||||
config.hidden_size,
|
config.hidden_size,
|
||||||
|
reduce=False,
|
||||||
process_group=process_group,
|
process_group=process_group,
|
||||||
)
|
)
|
||||||
self.wpe = TensorParallelEmbedding(
|
self.wpe = TensorParallelEmbedding(
|
||||||
config.max_position_embeddings,
|
config.max_position_embeddings,
|
||||||
config.hidden_size,
|
config.hidden_size,
|
||||||
|
reduce=False,
|
||||||
process_group=process_group,
|
process_group=process_group,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -195,7 +195,8 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||||
|
|
||||||
with init_empty_weights():
|
with init_empty_weights():
|
||||||
model = FlashSantacoderForCausalLM(config, self.process_group)
|
# model = FlashSantacoderForCausalLM(config, self.process_group)
|
||||||
|
model = FlashSantacoderForCausalLM(config)
|
||||||
|
|
||||||
torch.distributed.barrier(group=self.process_group)
|
torch.distributed.barrier(group=self.process_group)
|
||||||
self.load_weights(
|
self.load_weights(
|
||||||
@ -204,7 +205,7 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||||||
device=device,
|
device=device,
|
||||||
rank=self.rank,
|
rank=self.rank,
|
||||||
world_size=self.world_size,
|
world_size=self.world_size,
|
||||||
transpose=config.architectures[0].startswith("GPT2")
|
transpose=config.architectures[0].startswith("GPT2"),
|
||||||
)
|
)
|
||||||
self.model = model.eval().to(dtype)
|
self.model = model.eval().to(dtype)
|
||||||
torch.distributed.barrier(group=self.process_group)
|
torch.distributed.barrier(group=self.process_group)
|
||||||
@ -220,7 +221,7 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||||||
device: torch.device,
|
device: torch.device,
|
||||||
rank: int,
|
rank: int,
|
||||||
world_size: int,
|
world_size: int,
|
||||||
transpose: bool
|
transpose: bool,
|
||||||
):
|
):
|
||||||
for file in filenames:
|
for file in filenames:
|
||||||
with safe_open(file, framework="pt", device=str(device)) as f:
|
with safe_open(file, framework="pt", device=str(device)) as f:
|
||||||
@ -240,40 +241,39 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||||||
module_name, param_name = final_name.rsplit(".", 1)
|
module_name, param_name = final_name.rsplit(".", 1)
|
||||||
module = model.get_submodule(module_name)
|
module = model.get_submodule(module_name)
|
||||||
|
|
||||||
if isinstance(module, TensorParallelColumnLinear):
|
# if isinstance(module, TensorParallelColumnLinear):
|
||||||
size = slice_.get_shape()[0]
|
# dim = 1 if transpose and "weight" in param_name else 0
|
||||||
block_size = size // world_size
|
# size = slice_.get_shape()[dim]
|
||||||
start = rank * block_size
|
# block_size = size // world_size
|
||||||
stop = (rank + 1) * block_size
|
# start = rank * block_size
|
||||||
tensor = slice_[start:stop]
|
# stop = (rank + 1) * block_size
|
||||||
elif isinstance(module, TensorParallelRowLinear):
|
# tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
|
||||||
if param_name == "weight":
|
# elif isinstance(module, TensorParallelRowLinear):
|
||||||
size = slice_.get_shape()[1]
|
# if param_name == "weight":
|
||||||
block_size = size // world_size
|
# dim = 0 if transpose else 1
|
||||||
start = rank * block_size
|
# size = slice_.get_shape()[dim]
|
||||||
stop = (rank + 1) * block_size
|
# block_size = size // world_size
|
||||||
tensor = slice_[:, start:stop]
|
# start = rank * block_size
|
||||||
else:
|
# stop = (rank + 1) * block_size
|
||||||
tensor = slice_[:]
|
# tensor = slice_[start:stop] if dim == 0 else slice_[:, start:stop]
|
||||||
# XXX: Hack for Rowlinear to add the bias only once.
|
# else:
|
||||||
if rank != 0:
|
# tensor = slice_[:]
|
||||||
tensor = torch.zeros_like(tensor)
|
# # XXX: Hack for Rowlinear to add the bias only once.
|
||||||
elif isinstance(module, TensorParallelEmbedding):
|
# if rank != 0:
|
||||||
size = slice_.get_shape()[0]
|
# tensor = torch.zeros_like(tensor)
|
||||||
block_size = size // world_size
|
# elif isinstance(module, TensorParallelEmbedding):
|
||||||
start = rank * block_size
|
# size = slice_.get_shape()[0]
|
||||||
stop = (rank + 1) * block_size
|
# block_size = size // world_size
|
||||||
tensor = slice_[start:stop]
|
# start = rank * block_size
|
||||||
elif "c_attn" in name:
|
# stop = (rank + 1) * block_size
|
||||||
size = slice_.get_shape()[0]
|
# tensor = slice_[start:stop]
|
||||||
raise ValueError
|
# elif name == "lm_head.weight" and model.transformer.tp_embeddings:
|
||||||
elif name == "lm_head.weight" and model.transformer.tp_embeddings:
|
# size = slice_.get_shape()[0]
|
||||||
size = slice_.get_shape()[0]
|
# block_size = size // world_size
|
||||||
block_size = size // world_size
|
# start = rank * block_size
|
||||||
start = rank * block_size
|
# stop = (rank + 1) * block_size
|
||||||
stop = (rank + 1) * block_size
|
# tensor = slice_[start:stop]
|
||||||
tensor = slice_[start:stop]
|
# else:
|
||||||
else:
|
|
||||||
try:
|
try:
|
||||||
tensor = slice_[:]
|
tensor = slice_[:]
|
||||||
except:
|
except:
|
||||||
@ -295,7 +295,7 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||||||
or "c_attn.weight" in name
|
or "c_attn.weight" in name
|
||||||
):
|
):
|
||||||
# Tranpose as we use nn.Linear instead of Conv1D
|
# Tranpose as we use nn.Linear instead of Conv1D
|
||||||
value = value.T
|
tensor = tensor.T
|
||||||
|
|
||||||
if current_parameter_tensor.device == torch.device("meta"):
|
if current_parameter_tensor.device == torch.device("meta"):
|
||||||
# Init qkv
|
# Init qkv
|
||||||
@ -316,19 +316,54 @@ class FlashSantacoderSharded(FlashSantacoder):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Copy to correct slice
|
# Copy to correct slice
|
||||||
|
# if "q_attn" in name:
|
||||||
|
# size = tensor.shape[0]
|
||||||
|
# block_size = size // world_size
|
||||||
|
# start = rank * block_size
|
||||||
|
# stop = (rank + 1) * block_size
|
||||||
|
# tensor = tensor[start:stop]
|
||||||
|
# module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||||
|
# elif "kv_attn.weight" in name:
|
||||||
|
# module._parameters[param_name][
|
||||||
|
# model.transformer.head_size
|
||||||
|
# * model.transformer.num_heads :
|
||||||
|
# ] = tensor
|
||||||
|
# elif "kv_attn.bias" in name:
|
||||||
|
# module._parameters[param_name][
|
||||||
|
# model.transformer.head_size
|
||||||
|
# * model.transformer.num_heads :
|
||||||
|
# ] = tensor
|
||||||
|
# elif "c_attn" in name:
|
||||||
|
# q_tensor = tensor[: -2 * model.transformer.head_size]
|
||||||
|
# kv_tensor = tensor[-2 * model.transformer.head_size :]
|
||||||
|
# from loguru import logger
|
||||||
|
#
|
||||||
|
# block_size = q_tensor.shape[0] // world_size
|
||||||
|
# start = rank * block_size
|
||||||
|
# stop = (rank + 1) * block_size
|
||||||
|
# q_tensor = q_tensor[start:stop]
|
||||||
|
# logger.error(q_tensor.shape)
|
||||||
|
# logger.error(kv_tensor.shape)
|
||||||
|
# module._parameters[param_name][
|
||||||
|
# : q_tensor.shape[0]
|
||||||
|
# ] = q_tensor
|
||||||
|
# module._parameters[param_name][
|
||||||
|
# q_tensor.shape[0] :
|
||||||
|
# ] = kv_tensor
|
||||||
|
from loguru import logger
|
||||||
if "q_attn.weight" in name:
|
if "q_attn.weight" in name:
|
||||||
|
logger.error(f"q - {module._parameters[param_name][: tensor.shape[0]].shape} - {tensor.shape}")
|
||||||
module._parameters[param_name][: tensor.shape[0]] = tensor
|
module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||||
elif "q_attn.bias" in name:
|
elif "q_attn.bias" in name:
|
||||||
module._parameters[param_name][: tensor.shape[0]] = tensor
|
module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||||
elif "kv_attn.weight" in name:
|
elif "kv_attn.weight" in name:
|
||||||
|
logger.error(f"kv - {module._parameters[param_name][model.transformer.head_size * model.transformer.num_heads:].shape} - {tensor.shape}")
|
||||||
module._parameters[param_name][
|
module._parameters[param_name][
|
||||||
model.transformer.head_size
|
model.transformer.head_size * model.transformer.num_heads:
|
||||||
* model.transformer.num_heads :
|
|
||||||
] = tensor
|
] = tensor
|
||||||
elif "kv_attn.bias" in name:
|
elif "kv_attn.bias" in name:
|
||||||
module._parameters[param_name][
|
module._parameters[param_name][
|
||||||
model.transformer.head_size
|
model.transformer.head_size * model.transformer.num_heads:
|
||||||
* model.transformer.num_heads :
|
|
||||||
] = tensor
|
] = tensor
|
||||||
else:
|
else:
|
||||||
if current_parameter_tensor.shape != tensor.shape:
|
if current_parameter_tensor.shape != tensor.shape:
|
||||||
|
Loading…
Reference in New Issue
Block a user