diff --git a/.dockerignore b/.dockerignore index 1c641e7a..0b495924 100644 --- a/.dockerignore +++ b/.dockerignore @@ -4,3 +4,4 @@ server/transformers server/flash-attention cmake-build-debug/ cmake-build-release/ +Dockerfile* diff --git a/.github/workflows/build.yaml b/.github/workflows/build.yaml index d415f369..ce1cdc33 100644 --- a/.github/workflows/build.yaml +++ b/.github/workflows/build.yaml @@ -45,7 +45,7 @@ jobs: export dockerfile="Dockerfile" export label_extension="" export docker_devices="" - export runs_on="aws-g6-12xlarge-plus-priv" + export runs_on="aws-g6-12xl-plus-priv-cache" export platform="" ;; rocm) diff --git a/.github/workflows/tests.yaml b/.github/workflows/tests.yaml index 5ad0fd6a..4eeca334 100644 --- a/.github/workflows/tests.yaml +++ b/.github/workflows/tests.yaml @@ -42,6 +42,7 @@ jobs: sudo rm -rf /usr/share/dotnet # will release about 20GB if you don't need .NET - name: Install run: | + sudo apt update sudo apt install python3.11-dev -y make install-cpu - name: Run server tests @@ -57,3 +58,6 @@ jobs: - name: Run Rust tests run: | cargo test + - name: Run Rust tests with google feature + run: | + cargo test --features google diff --git a/.gitignore b/.gitignore index edcc2f89..4270a1ae 100644 --- a/.gitignore +++ b/.gitignore @@ -3,9 +3,8 @@ target router/tokenizer.json *__pycache__* +backends/v2/src/client/pb backends/v3/src/client/pb -backends/client/src/v2/pb -backends/client/src/v3/pb # ROCm auto-generated files *.hip diff --git a/.redocly.lint-ignore.yaml b/.redocly.lint-ignore.yaml index 13b80497..fb02c00f 100644 --- a/.redocly.lint-ignore.yaml +++ b/.redocly.lint-ignore.yaml @@ -23,9 +23,11 @@ docs/openapi.json: - '#/components/schemas/GenerateResponse/properties/details/nullable' - '#/components/schemas/StreamResponse/properties/details/nullable' - '#/components/schemas/ChatRequest/properties/response_format/nullable' + - '#/components/schemas/ChatRequest/properties/stream_options/nullable' - '#/components/schemas/ChatRequest/properties/tool_choice/nullable' - '#/components/schemas/ToolChoice/nullable' - '#/components/schemas/ChatCompletionComplete/properties/logprobs/nullable' + - '#/components/schemas/ChatCompletionChunk/properties/usage/nullable' - '#/components/schemas/ChatCompletionChoice/properties/logprobs/nullable' no-invalid-media-type-examples: - '#/paths/~1/post/responses/422/content/application~1json/example' diff --git a/Cargo.lock b/Cargo.lock index 06a61853..5e85e384 100644 --- a/Cargo.lock +++ b/Cargo.lock @@ -4,9 +4,9 @@ version = 3 [[package]] name = "addr2line" -version = "0.22.0" +version = "0.24.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "6e4503c46a5c0c7844e948c9a4d6acd9f50cccb4de1c48eb9e291ea17470c678" +checksum = "f5fb1d8e4442bd405fdfd1dacb42792696b0cf9cb15882e5d097b742a676d375" dependencies = [ "gimli", ] @@ -52,6 +52,12 @@ version = "0.5.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "4aa90d7ce82d4be67b64039a3d588d38dbcc6736577de4a847025ce5b0c468d1" +[[package]] +name = "allocator-api2" +version = "0.2.18" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "5c6cb57a04249c6480766f7f7cef5467412af1490f8d1e243141daddada3264f" + [[package]] name = "anstream" version = "0.6.15" @@ -103,9 +109,9 @@ dependencies = [ [[package]] name = "anyhow" -version = "1.0.86" +version = "1.0.89" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "b3d1d046238990b9cf5bcde22a3fb3584ee5cf65fb2765f454ed428c7a0063da" +checksum = "86fdf8605db99b54d3cd748a44c6d04df638eb5dafb219b135d0149bd0db01f6" [[package]] name = "arbitrary" @@ -127,7 +133,7 @@ checksum = "0ae92a5119aa49cdbcf6b9f893fe4e1d98b04ccbf82ee0584ad948a44a734dea" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -166,18 +172,18 @@ checksum = "16e62a023e7c117e27523144c5d2459f4397fcc3cab0085af8e2224f643a0193" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] name = "async-trait" -version = "0.1.81" +version = "0.1.83" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "6e0c28dcc82d7c8ead5cb13beb15405b57b8546e93215673ff8ca0349a028107" +checksum = "721cae7de5c34fbb2acd27e21e6d2cf7b886dce0c27388d46c4e6c47ea4318dd" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -199,9 +205,9 @@ dependencies = [ [[package]] name = "autocfg" -version = "1.3.0" +version = "1.4.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0" +checksum = "ace50bade8e6234aa140d9a2f552bbee1db4d353f69b8217bc503490fc1a9f26" [[package]] name = "av1-grain" @@ -251,9 +257,9 @@ dependencies = [ [[package]] name = "aws-lc-rs" -version = "1.8.1" +version = "1.9.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4ae74d9bd0a7530e8afd1770739ad34b36838829d6ad61818f9230f683f5ad77" +checksum = "2f95446d919226d587817a7d21379e6eb099b97b45110a7f272a444ca5c54070" dependencies = [ "aws-lc-sys", "mirai-annotations", @@ -263,9 +269,9 @@ dependencies = [ [[package]] name = "aws-lc-sys" -version = "0.20.1" +version = "0.21.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0f0e249228c6ad2d240c2dc94b714d711629d52bad946075d8e9b2f5391f0703" +checksum = "b3ddc4a5b231dd6958b140ff3151b6412b3f4321fab354f399eec8f14b06df62" dependencies = [ "bindgen", "cc", @@ -303,19 +309,19 @@ dependencies = [ "serde_urlencoded", "sync_wrapper 0.1.2", "tokio", - "tower", + "tower 0.4.13", "tower-layer", "tower-service", ] [[package]] name = "axum" -version = "0.7.5" +version = "0.7.7" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3a6c9af12842a67734c9a2e355436e5d03b22383ed60cf13cd0c18fbfe3dcbcf" +checksum = "504e3947307ac8326a5437504c517c4b56716c9d98fac0028c2acc7ca47d70ae" dependencies = [ "async-trait", - "axum-core 0.4.3", + "axum-core 0.4.5", "bytes", "futures-util", "http 1.1.0", @@ -336,7 +342,7 @@ dependencies = [ "serde_urlencoded", "sync_wrapper 1.0.1", "tokio", - "tower", + "tower 0.5.1", "tower-layer", "tower-service", "tracing", @@ -361,9 +367,9 @@ dependencies = [ [[package]] name = "axum-core" -version = "0.4.3" +version = "0.4.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a15c63fd72d41492dc4f497196f5da1fb04fb7529e631d73630d1b491e47a2e3" +checksum = "09f2bd6146b97ae3359fa0cc6d6b376d9539582c7b4220f041a33ec24c226199" dependencies = [ "async-trait", "bytes", @@ -374,7 +380,7 @@ dependencies = [ "mime", "pin-project-lite", "rustversion", - "sync_wrapper 0.1.2", + "sync_wrapper 1.0.1", "tower-layer", "tower-service", "tracing", @@ -386,13 +392,13 @@ version = "0.16.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "bdad298231394729042d1f155b93f9fdf0b5ee1aea0b62404c4d7341f7d8fe08" dependencies = [ - "axum 0.7.5", + "axum 0.7.7", "futures-core", "futures-util", "http 1.1.0", "opentelemetry 0.21.0", "pin-project-lite", - "tower", + "tower 0.4.13", "tracing", "tracing-opentelemetry 0.22.0", "tracing-opentelemetry-instrumentation-sdk", @@ -400,17 +406,17 @@ dependencies = [ [[package]] name = "backtrace" -version = "0.3.73" +version = "0.3.74" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "5cc23269a4f8976d0a4d2e7109211a419fe30e8d88d677cd60b6bc79c5732e0a" +checksum = "8d82cb332cdfaed17ae235a638438ac4d4839913cc2af585c3c6746e8f8bee1a" dependencies = [ "addr2line", - "cc", "cfg-if", "libc", - "miniz_oxide 0.7.4", + "miniz_oxide 0.8.0", "object", "rustc-demangle", + "windows-targets 0.52.6", ] [[package]] @@ -450,7 +456,7 @@ dependencies = [ "regex", "rustc-hash", "shlex", - "syn 2.0.76", + "syn 2.0.79", "which", ] @@ -522,9 +528,9 @@ checksum = "5ce89b21cab1437276d2650d57e971f9d548a2d9037cc231abdc0562b97498ce" [[package]] name = "bytemuck" -version = "1.17.1" +version = "1.18.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "773d90827bc3feecfb67fab12e24de0749aad83c74b9504ecde46237b5cd24e2" +checksum = "94bbb0ad554ad961ddc5da507a12a29b14e4ae5bda06b19f575a3e6079d2e2ae" [[package]] name = "byteorder" @@ -540,9 +546,9 @@ checksum = "8f1fe948ff07f4bd06c30984e69f5b4899c516a3ef74f34df92a2df2ab535495" [[package]] name = "bytes" -version = "1.7.1" +version = "1.7.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "8318a53db07bb3f8dca91a600466bdb3f2eaadeedfdbcf02e1accbad9271ba50" +checksum = "428d9aa8fbc0670b7b8d6030a7fadd0f86151cae55e4dbbece15f3780a3dfaf3" [[package]] name = "camino" @@ -589,10 +595,19 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "37b2a672a2cb129a2e41c10b1224bb368f9f37a2b16b612598138befd7b37eb5" [[package]] -name = "cc" -version = "1.1.15" +name = "castaway" +version = "0.2.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "57b6a275aa2903740dc87da01c62040406b8812552e97129a63ea8850a17c6e6" +checksum = "0abae9be0aaf9ea96a3b1b8b1b55c602ca751eba1b1500220cea4ecbafe7c0d5" +dependencies = [ + "rustversion", +] + +[[package]] +name = "cc" +version = "1.1.22" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "9540e661f81799159abee814118cc139a2004b3a3aa3ea37724a1b66530b90e0" dependencies = [ "jobserver", "libc", @@ -660,9 +675,9 @@ dependencies = [ [[package]] name = "clap" -version = "4.5.16" +version = "4.5.18" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "ed6719fffa43d0d87e5fd8caeab59be1554fb028cd30edc88fc4369b17971019" +checksum = "b0956a43b323ac1afaffc053ed5c4b7c1f1800bacd1683c353aabbb752515dd3" dependencies = [ "clap_builder", "clap_derive", @@ -670,9 +685,9 @@ dependencies = [ [[package]] name = "clap_builder" -version = "4.5.15" +version = "4.5.18" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "216aec2b177652e3846684cbfe25c9964d18ec45234f0f5da5157b207ed1aab6" +checksum = "4d72166dd41634086d5803a47eb71ae740e61d84709c36f3c34110173db3961b" dependencies = [ "anstream", "anstyle", @@ -682,14 +697,14 @@ dependencies = [ [[package]] name = "clap_derive" -version = "4.5.13" +version = "4.5.18" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0" +checksum = "4ac6a0c7b1a9e9a5186361f67dfa1b88213572f427fb9ab038efb2bd8c582dab" dependencies = [ "heck 0.5.0", "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -729,6 +744,20 @@ version = "1.0.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "d3fd119d74b830634cea2a0f58bbd0d54540518a14397557951e79340abc28c0" +[[package]] +name = "compact_str" +version = "0.8.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "6050c3a16ddab2e412160b31f2c871015704239bca62f72f6e5f0be631d3f644" +dependencies = [ + "castaway", + "cfg-if", + "itoa", + "rustversion", + "ryu", + "static_assertions", +] + [[package]] name = "console" version = "0.15.8" @@ -760,9 +789,9 @@ checksum = "773648b94d0e5d620f64f280777445740e61fe701025087ec8b57f45c791888b" [[package]] name = "cpufeatures" -version = "0.2.13" +version = "0.2.14" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "51e852e6dc9a5bed1fae92dd2375037bf2b768725bf3be87811edee3249d09ad" +checksum = "608697df725056feaccfa42cffdaeeec3fccc4ffc38358ecd19b243e716a78e0" dependencies = [ "libc", ] @@ -848,15 +877,15 @@ checksum = "22ec99545bb0ed0ea7bb9b8e1e9122ea386ff8a48c0922e43f36d45ab09e0e80" [[package]] name = "crossterm" -version = "0.27.0" +version = "0.28.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "f476fe445d41c9e991fd07515a6f463074b782242ccf4a5b7b1d1012e70824df" +checksum = "829d955a0bb380ef178a640b91779e3987da38c9aea133b20614cfed8cdea9c6" dependencies = [ "bitflags 2.6.0", "crossterm_winapi", - "libc", - "mio 0.8.11", + "mio", "parking_lot", + "rustix", "signal-hook", "signal-hook-mio", "winapi", @@ -920,9 +949,9 @@ dependencies = [ [[package]] name = "cxx" -version = "1.0.126" +version = "1.0.128" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3c4eae4b7fc8dcb0032eb3b1beee46b38d371cdeaf2d0c64b9944f6f69ad7755" +checksum = "54ccead7d199d584d139148b04b4a368d1ec7556a1d9ea2548febb1b9d49f9a4" dependencies = [ "cc", "cxxbridge-flags", @@ -932,9 +961,9 @@ dependencies = [ [[package]] name = "cxx-build" -version = "1.0.126" +version = "1.0.128" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "6c822bf7fb755d97328d6c337120b6f843678178751cba33c9da25cf522272e0" +checksum = "c77953e99f01508f89f55c494bfa867171ef3a6c8cea03d26975368f2121a5c1" dependencies = [ "cc", "codespan-reporting", @@ -942,24 +971,24 @@ dependencies = [ "proc-macro2", "quote", "scratch", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] name = "cxxbridge-flags" -version = "1.0.126" +version = "1.0.128" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "719d6197dc016c88744aff3c0d0340a01ecce12e8939fc282e7c8f583ee64bc6" +checksum = "65777e06cc48f0cb0152024c77d6cf9e4bdb4408e7b48bea993d42fa0f5b02b6" [[package]] name = "cxxbridge-macro" -version = "1.0.126" +version = "1.0.128" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "35de3b547387863c8f82013c4f79f1c2162edee956383e4089e1d04c18c4f16c" +checksum = "98532a60dedaebc4848cb2cba5023337cc9ea3af16a5b062633fabfd9f18fb60" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -983,7 +1012,7 @@ dependencies = [ "proc-macro2", "quote", "strsim", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -994,7 +1023,7 @@ checksum = "d336a2a514f6ccccaa3e09b02d41d35330c07ddf03a62165fcec10bb561c7806" dependencies = [ "darling_core", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -1008,33 +1037,33 @@ dependencies = [ [[package]] name = "derive_builder" -version = "0.20.0" +version = "0.20.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0350b5cb0331628a5916d6c5c0b72e97393b8b6b03b47a9284f4e7f5a405ffd7" +checksum = "cd33f37ee6a119146a1781d3356a7c26028f83d779b2e04ecd45fdc75c76877b" dependencies = [ "derive_builder_macro", ] [[package]] name = "derive_builder_core" -version = "0.20.0" +version = "0.20.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d48cda787f839151732d396ac69e3473923d54312c070ee21e9effcaa8ca0b1d" +checksum = "7431fa049613920234f22c47fdc33e6cf3ee83067091ea4277a3f8c4587aae38" dependencies = [ "darling", "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] name = "derive_builder_macro" -version = "0.20.0" +version = "0.20.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "206868b8242f27cecce124c19fd88157fbd0dd334df2587f36417bafbc85097b" +checksum = "4abae7035bf79b9877b779505d8cf3749285b80c43941eda66604841889451dc" dependencies = [ "derive_builder_core", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -1163,9 +1192,9 @@ checksum = "e8c02a5121d4ea3eb16a80748c74f5549a5665e4c21333c6098f283870fbdea6" [[package]] name = "fdeflate" -version = "0.3.4" +version = "0.3.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4f9bfee30e4dedf0ab8b422f03af778d9612b63f502710fc500a334ebe2de645" +checksum = "d8090f921a24b04994d9929e204f50b498a33ea6ba559ffaa05e04f7ee7fb5ab" dependencies = [ "simd-adler32", ] @@ -1178,9 +1207,9 @@ checksum = "0ce7134b9999ecaf8bcd65542e436736ef32ddca1b3e06094cb6ec5755203b80" [[package]] name = "flate2" -version = "1.0.33" +version = "1.0.34" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "324a1be68054ef05ad64b861cc9eaf1d623d2d8cb25b4bf2cb9cdd902b4bf253" +checksum = "a1b589b4dc103969ad3cf85c950899926ec64300a1a46d76c03a6072957036f0" dependencies = [ "crc32fast", "miniz_oxide 0.8.0", @@ -1309,7 +1338,7 @@ checksum = "87750cf4b7a4c0625b1529e4c543c2182106e4dedc60a2a6455e00d212c489ac" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -1386,9 +1415,9 @@ dependencies = [ [[package]] name = "gimli" -version = "0.29.0" +version = "0.31.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "40ecd4077b5ae9fd2e9e169b102c6c330d0605168eb0e8bf79952b256dbefffd" +checksum = "32085ea23f3234fc7846555e85283ba4de91e21016dc0455a16286d87a292d64" [[package]] name = "glob" @@ -1418,7 +1447,7 @@ dependencies = [ "futures-sink", "futures-util", "http 0.2.12", - "indexmap 2.4.0", + "indexmap 2.5.0", "slab", "tokio", "tokio-util", @@ -1437,7 +1466,7 @@ dependencies = [ "futures-core", "futures-sink", "http 1.1.0", - "indexmap 2.4.0", + "indexmap 2.5.0", "slab", "tokio", "tokio-util", @@ -1473,6 +1502,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "e5274423e17b7c9fc20b6e7e208532f9b19825d82dfd615708b70edd83df41f1" dependencies = [ "ahash", + "allocator-api2", ] [[package]] @@ -1658,16 +1688,16 @@ dependencies = [ [[package]] name = "hyper-rustls" -version = "0.27.2" +version = "0.27.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "5ee4be2c948921a1a5320b629c4193916ed787a7f7f293fd3f7f5a6c9de74155" +checksum = "08afdbb5c31130e3034af566421053ab03787c640246a446327f550d11bcb333" dependencies = [ "futures-util", "http 1.1.0", "hyper 1.4.1", "hyper-util", "log", - "rustls 0.23.12", + "rustls 0.23.13", "rustls-native-certs", "rustls-pki-types", "tokio", @@ -1702,9 +1732,9 @@ dependencies = [ [[package]] name = "hyper-util" -version = "0.1.7" +version = "0.1.9" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "cde7055719c54e36e95e8719f95883f22072a48ede39db7fc17a4e1d5281e9b9" +checksum = "41296eb09f183ac68eec06e03cdbea2e759633d4067b2f6552fc2e009bcad08b" dependencies = [ "bytes", "futures-channel", @@ -1715,7 +1745,6 @@ dependencies = [ "pin-project-lite", "socket2", "tokio", - "tower", "tower-service", "tracing", ] @@ -1787,9 +1816,9 @@ dependencies = [ [[package]] name = "indexmap" -version = "2.4.0" +version = "2.5.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "93ead53efc7ea8ed3cfb0c79fc8023fbb782a5432b52830b6518941cebe6505c" +checksum = "68b900aa2f7301e21c36462b170ee99994de34dff39a4a6a528e80e7376d07e5" dependencies = [ "equivalent", "hashbrown 0.14.5", @@ -1828,6 +1857,16 @@ dependencies = [ "tracing-opentelemetry 0.21.0", ] +[[package]] +name = "instability" +version = "0.3.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "b23a0c8dfe501baac4adf6ebbfa6eddf8f0c07f56b058cc1288017e32397846c" +dependencies = [ + "quote", + "syn 2.0.79", +] + [[package]] name = "instant" version = "0.1.13" @@ -1845,14 +1884,14 @@ checksum = "c34819042dc3d3971c46c2190835914dfbe0c3c13f61449b2997f4e9722dfa60" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] name = "ipnet" -version = "2.9.0" +version = "2.10.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "8f518f335dce6725a761382244631d86cf0ccb2863413590b31338feb467f9c3" +checksum = "187674a687eed5fe42285b40c6291f9a01517d415fad1c3cbc6a9f778af7fcd4" [[package]] name = "is_terminal_polyfill" @@ -1945,7 +1984,7 @@ dependencies = [ "anyhow", "base64 0.21.7", "bytecount", - "clap 4.5.16", + "clap 4.5.18", "fancy-regex", "fraction", "getrandom", @@ -1985,9 +2024,9 @@ checksum = "03087c2bad5e1034e8cace5926dec053fb3790248370865f5117a7d0213354c8" [[package]] name = "libc" -version = "0.2.158" +version = "0.2.159" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d8adc4bb1803a324070e64a98ae98f38934d91957a99cfb3a43dcbc01bc56439" +checksum = "561d97a539a36e26a9a5fad1ea11a3039a67714694aaa379433e580854bc3dc5" [[package]] name = "libfuzzer-sys" @@ -2066,6 +2105,15 @@ dependencies = [ "imgref", ] +[[package]] +name = "lru" +version = "0.12.4" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "37ee39891760e7d94734f6f63fedc29a2e4a152f836120753a72503f09fcf904" +dependencies = [ + "hashbrown 0.14.5", +] + [[package]] name = "macro_rules_attribute" version = "0.2.0" @@ -2148,7 +2196,7 @@ dependencies = [ "hyper 1.4.1", "hyper-rustls", "hyper-util", - "indexmap 2.4.0", + "indexmap 2.5.0", "ipnet", "metrics", "metrics-util", @@ -2191,9 +2239,9 @@ dependencies = [ [[package]] name = "minijinja" -version = "2.2.0" +version = "2.3.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "6d7d3e3a3eece1fa4618237ad41e1de855ced47eab705cec1c9a920e1d1c5aad" +checksum = "1028b628753a7e1a88fc59c9ba4b02ecc3bc0bd3c7af23df667bc28df9b3310e" dependencies = [ "serde", "serde_json", @@ -2201,9 +2249,9 @@ dependencies = [ [[package]] name = "minijinja-contrib" -version = "2.2.0" +version = "2.3.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "744a2b84dbd22398e347594ed2aef9d3f1b948934e3e6e94ef69ecd39d597f4b" +checksum = "39ffd46ee854be23604a20efd6c9655374fefbe4d44b949dc0f907305d92873a" dependencies = [ "minijinja", "serde", @@ -2222,7 +2270,6 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "b8a240ddb74feaf34a79a7add65a741f3167852fba007066dcac1ca548d89c08" dependencies = [ "adler", - "simd-adler32", ] [[package]] @@ -2232,18 +2279,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "e2d80299ef12ff69b16a84bb182e3b9df68b5a91574d3d4fa6e41b65deec4df1" dependencies = [ "adler2", -] - -[[package]] -name = "mio" -version = "0.8.11" -source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a4a650543ca06a924e8b371db273b2756685faae30f8487da1b56505a8f78b0c" -dependencies = [ - "libc", - "log", - "wasi", - "windows-sys 0.48.0", + "simd-adler32", ] [[package]] @@ -2254,6 +2290,7 @@ checksum = "80e04d1dcff3aae0704555fe5fee3bcfaf3d1fdf8a7e521d5b9d2b42acb52cec" dependencies = [ "hermit-abi 0.3.9", "libc", + "log", "wasi", "windows-sys 0.52.0", ] @@ -2282,7 +2319,7 @@ checksum = "a7ce64b975ed4f123575d11afd9491f2e37bbd5813fbfbc0f09ae1fbddea74e0" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -2482,7 +2519,7 @@ checksum = "ed3955f1a9c7c0c15e092f9c887db08b1fc683305fdf6eb6684f22555355e202" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -2553,18 +2590,21 @@ checksum = "830b246a0e5f20af87141b25c173cd1b609bd7779a4617d6ec582abaf90870f3" [[package]] name = "object" -version = "0.36.3" +version = "0.36.4" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "27b64972346851a39438c60b341ebc01bba47464ae329e55cf343eb93964efd9" +checksum = "084f1a5821ac4c651660a94a7153d27ac9d8a53736203f58b31945ded098070a" dependencies = [ "memchr", ] [[package]] name = "once_cell" -version = "1.19.0" +version = "1.20.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92" +checksum = "82881c4be219ab5faaf2ad5e5e5ecdff8c66bd7402ca3160975c93b24961afd1" +dependencies = [ + "portable-atomic", +] [[package]] name = "onig" @@ -2617,7 +2657,7 @@ checksum = "a948666b637a0f465e8564c73e89d4dde00d72d4d473cc972f390fc3dcee7d9c" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -2656,7 +2696,7 @@ checksum = "1e32339a5dc40459130b3bd269e9892439f55b33e772d2a9d402a789baaf4e8a" dependencies = [ "futures-core", "futures-sink", - "indexmap 2.4.0", + "indexmap 2.5.0", "js-sys", "once_cell", "pin-project-lite", @@ -2771,7 +2811,7 @@ dependencies = [ "glob", "once_cell", "opentelemetry 0.21.0", - "ordered-float 4.2.2", + "ordered-float 4.3.0", "percent-encoding", "rand", "thiserror", @@ -2791,7 +2831,7 @@ dependencies = [ "lazy_static", "once_cell", "opentelemetry 0.23.0", - "ordered-float 4.2.2", + "ordered-float 4.3.0", "percent-encoding", "rand", "thiserror", @@ -2814,9 +2854,9 @@ dependencies = [ [[package]] name = "ordered-float" -version = "4.2.2" +version = "4.3.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4a91171844676f8c7990ce64959210cd2eaef32c2612c50f9fae9f8aaa6065a6" +checksum = "44d501f1a72f71d3c063a6bbc8f7271fa73aa09fe5d6283b6571e2ed176a2537" dependencies = [ "num-traits", ] @@ -2880,7 +2920,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db" dependencies = [ "fixedbitset", - "indexmap 2.4.0", + "indexmap 2.5.0", ] [[package]] @@ -2900,7 +2940,7 @@ checksum = "2f38a4412a78282e09a2cf38d195ea5420d15ba0602cb375210efbc877243965" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -2917,15 +2957,15 @@ checksum = "8b870d8c151b6f2fb93e84a13146138f05d02ed11c7e7c54f8826aaaf7c9f184" [[package]] name = "pkg-config" -version = "0.3.30" +version = "0.3.31" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d231b230927b5e4ad203db57bbcbee2802f6bce620b1e4a9024a07d94e2907ec" +checksum = "953ec861398dccce10c670dfeaf3ec4911ca479e9c02154b3a215178c5f566f2" [[package]] name = "plotters" -version = "0.3.6" +version = "0.3.7" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a15b6eccb8484002195a3e44fe65a4ce8e93a625797a063735536fd59cb01cf3" +checksum = "5aeb6f403d7a4911efb1e33402027fc44f29b5bf6def3effcc22d7bb75f2b747" dependencies = [ "num-traits", "plotters-backend", @@ -2936,37 +2976,37 @@ dependencies = [ [[package]] name = "plotters-backend" -version = "0.3.6" +version = "0.3.7" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "414cec62c6634ae900ea1c56128dfe87cf63e7caece0852ec76aba307cebadb7" +checksum = "df42e13c12958a16b3f7f4386b9ab1f3e7933914ecea48da7139435263a4172a" [[package]] name = "plotters-svg" -version = "0.3.6" +version = "0.3.7" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "81b30686a7d9c3e010b84284bdd26a29f2138574f52f5eb6f794fc0ad924e705" +checksum = "51bae2ac328883f7acdfea3d66a7c35751187f870bc81f94563733a154d7a670" dependencies = [ "plotters-backend", ] [[package]] name = "png" -version = "0.17.13" +version = "0.17.14" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "06e4b0d3d1312775e782c86c91a111aa1f910cbb65e1337f9975b5f9a554b5e1" +checksum = "52f9d46a34a05a6a57566bc2bfae066ef07585a6e3fa30fbbdff5936380623f0" dependencies = [ "bitflags 1.3.2", "crc32fast", "fdeflate", "flate2", - "miniz_oxide 0.7.4", + "miniz_oxide 0.8.0", ] [[package]] name = "portable-atomic" -version = "1.7.0" +version = "1.9.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265" +checksum = "cc9c68a3f6da06753e9335d63e27f6b9754dd1920d941135b7ea8224f141adb2" [[package]] name = "powerfmt" @@ -2990,7 +3030,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "479cf940fbbb3426c32c5d5176f62ad57549a0bb84773423ba8be9d089f5faba" dependencies = [ "proc-macro2", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -3042,7 +3082,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "8021cf59c8ec9c432cfc2526ac6b8aa508ecaf29cd415f271b8406c1b851c3fd" dependencies = [ "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -3082,7 +3122,7 @@ dependencies = [ "prost 0.12.6", "prost-types", "regex", - "syn 2.0.76", + "syn 2.0.79", "tempfile", ] @@ -3109,7 +3149,7 @@ dependencies = [ "itertools 0.12.1", "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -3123,9 +3163,9 @@ dependencies = [ [[package]] name = "pyo3" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "831e8e819a138c36e212f3af3fd9eeffed6bf1510a805af35b0edee5ffa59433" +checksum = "15ee168e30649f7f234c3d49ef5a7a6cbf5134289bc46c29ff3155fa3221c225" dependencies = [ "cfg-if", "indoc", @@ -3141,9 +3181,9 @@ dependencies = [ [[package]] name = "pyo3-build-config" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "1e8730e591b14492a8945cdff32f089250b05f5accecf74aeddf9e8272ce1fa8" +checksum = "e61cef80755fe9e46bb8a0b8f20752ca7676dcc07a5277d8b7768c6172e529b3" dependencies = [ "once_cell", "target-lexicon", @@ -3151,9 +3191,9 @@ dependencies = [ [[package]] name = "pyo3-ffi" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "5e97e919d2df92eb88ca80a037969f44e5e70356559654962cbb3316d00300c6" +checksum = "67ce096073ec5405f5ee2b8b31f03a68e02aa10d5d4f565eca04acc41931fa1c" dependencies = [ "libc", "pyo3-build-config", @@ -3161,27 +3201,27 @@ dependencies = [ [[package]] name = "pyo3-macros" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "eb57983022ad41f9e683a599f2fd13c3664d7063a3ac5714cae4b7bee7d3f206" +checksum = "2440c6d12bc8f3ae39f1e775266fa5122fd0c8891ce7520fa6048e683ad3de28" dependencies = [ "proc-macro2", "pyo3-macros-backend", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] name = "pyo3-macros-backend" -version = "0.22.2" +version = "0.22.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "ec480c0c51ddec81019531705acac51bcdbeae563557c982aa8263bb96880372" +checksum = "1be962f0e06da8f8465729ea2cb71a416d2257dff56cbe40a70d3e62a93ae5d1" dependencies = [ "heck 0.5.0", "proc-macro2", "pyo3-build-config", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -3255,18 +3295,22 @@ dependencies = [ [[package]] name = "ratatui" -version = "0.23.0" +version = "0.28.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "2e2e4cd95294a85c3b4446e63ef054eea43e0205b1fd60120c16b74ff7ff96ad" +checksum = "fdef7f9be5c0122f890d58bdf4d964349ba6a6161f705907526d891efabba57d" dependencies = [ "bitflags 2.6.0", "cassowary", + "compact_str", "crossterm", - "indoc", - "itertools 0.11.0", + "instability", + "itertools 0.13.0", + "lru", "paste", "strum", + "strum_macros", "unicode-segmentation", + "unicode-truncate", "unicode-width", ] @@ -3361,9 +3405,9 @@ dependencies = [ [[package]] name = "redox_syscall" -version = "0.5.3" +version = "0.5.7" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "2a908a6e00f1fdd0dfd9c0eb08ce85126f6d8bbda50017e74bc4a4b7d4a926a4" +checksum = "9b6dfecf2c74bce2466cabf93f6664d6998a69eb21e39f4207930065b27b771f" dependencies = [ "bitflags 2.6.0", ] @@ -3381,14 +3425,14 @@ dependencies = [ [[package]] name = "regex" -version = "1.10.6" +version = "1.11.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619" +checksum = "38200e5ee88914975b69f657f0801b6f6dccafd44fd9326302a4aaeecfacb1d8" dependencies = [ "aho-corasick", "memchr", - "regex-automata 0.4.7", - "regex-syntax 0.8.4", + "regex-automata 0.4.8", + "regex-syntax 0.8.5", ] [[package]] @@ -3402,13 +3446,13 @@ dependencies = [ [[package]] name = "regex-automata" -version = "0.4.7" +version = "0.4.8" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "38caf58cc5ef2fed281f89292ef23f6365465ed9a41b7a7754eb4e26496c92df" +checksum = "368758f23274712b504848e9d5a6f010445cc8b87a7cdb4d7cbee666c1288da3" dependencies = [ "aho-corasick", "memchr", - "regex-syntax 0.8.4", + "regex-syntax 0.8.5", ] [[package]] @@ -3419,9 +3463,9 @@ checksum = "f162c6dd7b008981e4d40210aca20b4bd0f9b60ca9271061b07f78537722f2e1" [[package]] name = "regex-syntax" -version = "0.8.4" +version = "0.8.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "7a66a03ae7c801facd77a29370b4faec201768915ac14a721ba36f20bc9c209b" +checksum = "2b15c43186be67a4fd63bee50d0303afffcef381492ebe2c5d87f324e1b8815c" [[package]] name = "reqwest" @@ -3465,9 +3509,9 @@ dependencies = [ [[package]] name = "rgb" -version = "0.8.48" +version = "0.8.50" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0f86ae463694029097b846d8f99fd5536740602ae00022c0c50c5600720b2f71" +checksum = "57397d16646700483b67d2dd6511d79318f9d057fdbd21a4066aeac8b41d310a" dependencies = [ "bytemuck", ] @@ -3522,7 +3566,7 @@ dependencies = [ "proc-macro2", "quote", "rust-embed-utils", - "syn 2.0.76", + "syn 2.0.79", "walkdir", ] @@ -3550,18 +3594,18 @@ checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2" [[package]] name = "rustc_version" -version = "0.4.0" +version = "0.4.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "bfa0f585226d2e68097d4f95d113b15b83a82e819ab25717ec0590d9584ef366" +checksum = "cfcb3a22ef46e85b45de6ee7e79d063319ebb6594faafcf1c225ea92ab6e9b92" dependencies = [ "semver", ] [[package]] name = "rustix" -version = "0.38.34" +version = "0.38.37" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "70dc5ec042f7a43c4a73241207cecc9873a06d45debb38b329f8541d85c2730f" +checksum = "8acb788b847c24f28525660c4d7758620a7210875711f79e7f663cc152726811" dependencies = [ "bitflags 2.6.0", "errno", @@ -3598,9 +3642,9 @@ dependencies = [ [[package]] name = "rustls" -version = "0.23.12" +version = "0.23.13" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "c58f8c84392efc0a126acce10fa59ff7b3d2ac06ab451a33f2741989b806b044" +checksum = "f2dabaac7466917e566adb06783a81ca48944c6898a1b08b9374106dd671f4c8" dependencies = [ "aws-lc-rs", "log", @@ -3613,9 +3657,9 @@ dependencies = [ [[package]] name = "rustls-native-certs" -version = "0.7.2" +version = "0.8.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "04182dffc9091a404e0fc069ea5cd60e5b866c3adf881eff99a32d048242dffa" +checksum = "fcaf18a4f2be7326cd874a5fa579fae794320a0f388d365dca7e480e55f83f8a" dependencies = [ "openssl-probe", "rustls-pemfile 2.1.3", @@ -3645,15 +3689,15 @@ dependencies = [ [[package]] name = "rustls-pki-types" -version = "1.8.0" +version = "1.9.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "fc0a2ce646f8655401bb81e7927b812614bd5d91dbc968696be50603510fcaf0" +checksum = "0e696e35370c65c9c541198af4543ccd580cf17fc25d8e05c5a242b202488c55" [[package]] name = "rustls-webpki" -version = "0.102.7" +version = "0.102.8" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "84678086bd54edf2b415183ed7a94d0efb049f1b646a33e22a36f3794be6ae56" +checksum = "64ca1bc8749bd4cf37b5ce386cc146580777b4e8572c7b97baf22c83f444bee9" dependencies = [ "aws-lc-rs", "ring 0.17.8", @@ -3684,11 +3728,11 @@ dependencies = [ [[package]] name = "schannel" -version = "0.1.23" +version = "0.1.24" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "fbc91545643bcf3a0bbb6569265615222618bdf33ce4ffbbd13c4bbd4c093534" +checksum = "e9aaafd5a2b6e3d657ff009d82fbd630b6bd54dd4eb06f21693925cdf80f9b8b" dependencies = [ - "windows-sys 0.52.0", + "windows-sys 0.59.0", ] [[package]] @@ -3728,9 +3772,9 @@ dependencies = [ [[package]] name = "security-framework-sys" -version = "2.11.1" +version = "2.12.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "75da29fe9b9b08fe9d6b22b5b4bcbc75d8db3aa31e639aa56bb62e9d46bfceaf" +checksum = "ea4a292869320c0272d7bc55a5a6aafaff59b4f63404a003887b679a2e05b4b6" dependencies = [ "core-foundation-sys", "libc", @@ -3747,9 +3791,9 @@ dependencies = [ [[package]] name = "serde" -version = "1.0.209" +version = "1.0.210" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "99fce0ffe7310761ca6bf9faf5115afbc19688edd00171d81b1bb1b116c63e09" +checksum = "c8e3592472072e6e22e0a54d5904d9febf8508f65fb8552499a1abc7d1078c3a" dependencies = [ "serde_derive", ] @@ -3766,20 +3810,20 @@ dependencies = [ [[package]] name = "serde_derive" -version = "1.0.209" +version = "1.0.210" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a5831b979fd7b5439637af1752d535ff49f4860c0f341d1baeb6faf0f4242170" +checksum = "243902eda00fad750862fc144cea25caca5e20d615af0a81bee94ca738f1df1f" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] name = "serde_json" -version = "1.0.127" +version = "1.0.128" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "8043c06d9f82bd7271361ed64f415fe5e12a77fdb52e573e7f06a516dea329ad" +checksum = "6ff5456707a1de34e7e37f2a6fd3d3f808c318259cbd01ab6377795054b483d8" dependencies = [ "itoa", "memchr", @@ -3799,9 +3843,9 @@ dependencies = [ [[package]] name = "serde_spanned" -version = "0.6.7" +version = "0.6.8" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "eb5b1b31579f3811bf615c144393417496f152e12ac8b7663bf664f4a815306d" +checksum = "87607cb1398ed59d48732e575a4c28a7a8ebf2454b964fe3f224f2afc07909e1" dependencies = [ "serde", ] @@ -3861,7 +3905,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "34db1a06d485c9142248b7a054f034b349b212551f3dfd19c94d45a754a217cd" dependencies = [ "libc", - "mio 0.8.11", + "mio", "signal-hook", ] @@ -3956,6 +4000,12 @@ dependencies = [ "unicode-segmentation", ] +[[package]] +name = "static_assertions" +version = "1.1.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "a2eb9349b6444b326872e140eb1cf5e7c522154d69e7a0ffb0fb81c06b37543f" + [[package]] name = "strsim" version = "0.11.1" @@ -3964,24 +4014,24 @@ checksum = "7da8b5736845d9f2fcb837ea5d9e2628564b3b043a70948a3f0b778838c5fb4f" [[package]] name = "strum" -version = "0.25.0" +version = "0.26.3" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "290d54ea6f91c969195bdbcd7442c8c2a2ba87da8bf60a7ee86a235d4bc1e125" +checksum = "8fec0f0aef304996cf250b31b5a10dee7980c85da9d759361292b8bca5a18f06" dependencies = [ "strum_macros", ] [[package]] name = "strum_macros" -version = "0.25.3" +version = "0.26.4" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "23dc1fa9ac9c169a78ba62f0b841814b7abae11bdd047b9c58f893439e309ea0" +checksum = "4c6bee85a5a24955dc440386795aa378cd9cf82acd5f764469152d2270e581be" dependencies = [ - "heck 0.4.1", + "heck 0.5.0", "proc-macro2", "quote", "rustversion", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -4003,9 +4053,9 @@ dependencies = [ [[package]] name = "syn" -version = "2.0.76" +version = "2.0.79" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "578e081a14e0cefc3279b0472138c513f37b41a08d5a3cca9b6e4e8ceb6cd525" +checksum = "89132cd0bf050864e1d38dc3bbc07a0eb8e7530af26344d3d2bbbef83499f590" dependencies = [ "proc-macro2", "quote", @@ -4105,9 +4155,9 @@ checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1" [[package]] name = "tempfile" -version = "3.12.0" +version = "3.13.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "04cbcdd0c794ebb0d4cf35e88edd2f7d2c4c3e9a5a6dab322839b321c6a87a64" +checksum = "f0f2c9fc62d0beef6951ccffd757e241266a2c833136efbe35af6cd2567dca5b" dependencies = [ "cfg-if", "fastrand", @@ -4127,11 +4177,11 @@ dependencies = [ [[package]] name = "text-generation-backends-trtllm" -version = "2.2.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-stream", "async-trait", - "clap 4.5.16", + "clap 4.5.18", "cmake", "cxx", "cxx-build", @@ -4150,11 +4200,10 @@ dependencies = [ [[package]] name = "text-generation-benchmark" -version = "2.2.1-dev0" +version = "2.3.2-dev0" dependencies = [ "average", - "clap 4.5.16", - "crossterm", + "clap 4.5.18", "float-ord", "hf-hub", "ratatui", @@ -4171,7 +4220,7 @@ dependencies = [ [[package]] name = "text-generation-client" -version = "2.2.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-trait", "base64 0.22.1", @@ -4183,20 +4232,22 @@ dependencies = [ "tokio", "tonic 0.10.2", "tonic-build", - "tower", + "tower 0.4.13", "tracing", ] [[package]] name = "text-generation-launcher" -version = "2.2.1-dev0" +version = "2.3.2-dev0" dependencies = [ - "clap 4.5.16", + "clap 4.5.18", "ctrlc", "float_eq", "hf-hub", "nix 0.28.0", "once_cell", + "pyo3", + "regex", "reqwest", "serde", "serde_json", @@ -4208,14 +4259,14 @@ dependencies = [ [[package]] name = "text-generation-router" -version = "2.2.1-dev0" +version = "2.3.2-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.5", + "axum 0.7.7", "axum-tracing-opentelemetry", "base64 0.22.1", - "clap 4.5.16", + "clap 4.5.18", "csv", "futures", "futures-util", @@ -4256,15 +4307,64 @@ dependencies = [ ] [[package]] -name = "text-generation-router-v3" -version = "2.2.1-dev0" +name = "text-generation-router-v2" +version = "2.3.2-dev0" dependencies = [ "async-stream", "async-trait", - "axum 0.7.5", + "axum 0.7.7", "axum-tracing-opentelemetry", "base64 0.22.1", - "clap 4.5.16", + "clap 4.5.18", + "futures", + "futures-util", + "grpc-metadata", + "hf-hub", + "image", + "init-tracing-opentelemetry", + "jsonschema", + "metrics", + "metrics-exporter-prometheus", + "minijinja", + "minijinja-contrib", + "nohash-hasher", + "once_cell", + "opentelemetry 0.20.0", + "opentelemetry-otlp", + "prost 0.12.6", + "prost-build", + "rand", + "regex", + "reqwest", + "serde", + "serde_json", + "slotmap", + "text-generation-router", + "thiserror", + "tokenizers 0.20.0", + "tokio", + "tokio-stream", + "tonic 0.10.2", + "tonic-build", + "tower 0.4.13", + "tower-http", + "tracing", + "tracing-opentelemetry 0.21.0", + "tracing-subscriber", + "utoipa", + "utoipa-swagger-ui", +] + +[[package]] +name = "text-generation-router-v3" +version = "2.3.2-dev0" +dependencies = [ + "async-stream", + "async-trait", + "axum 0.7.7", + "axum-tracing-opentelemetry", + "base64 0.22.1", + "clap 4.5.18", "criterion", "futures", "futures-util", @@ -4297,7 +4397,7 @@ dependencies = [ "tokio-stream", "tonic 0.10.2", "tonic-build", - "tower", + "tower 0.4.13", "tower-http", "tracing", "tracing-opentelemetry 0.21.0", @@ -4317,22 +4417,22 @@ dependencies = [ [[package]] name = "thiserror" -version = "1.0.63" +version = "1.0.64" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724" +checksum = "d50af8abc119fb8bb6dbabcfa89656f46f84aa0ac7688088608076ad2b459a84" dependencies = [ "thiserror-impl", ] [[package]] name = "thiserror-impl" -version = "1.0.63" +version = "1.0.64" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261" +checksum = "08904e7672f5eb876eaaf87e0ce17857500934f4981c4a0ab2b4aa98baac7fc3" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -4437,7 +4537,7 @@ dependencies = [ "rayon", "rayon-cond", "regex", - "regex-syntax 0.8.4", + "regex-syntax 0.8.5", "serde", "serde_json", "spm_precompiled", @@ -4470,7 +4570,7 @@ dependencies = [ "rayon", "rayon-cond", "regex", - "regex-syntax 0.8.4", + "regex-syntax 0.8.5", "serde", "serde_json", "spm_precompiled", @@ -4482,14 +4582,14 @@ dependencies = [ [[package]] name = "tokio" -version = "1.39.3" +version = "1.40.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "9babc99b9923bfa4804bd74722ff02c0381021eafa4db9949217e3be8e84fff5" +checksum = "e2b070231665d27ad9ec9b8df639893f46727666c6767db40317fbe920a5d998" dependencies = [ "backtrace", "bytes", "libc", - "mio 1.0.2", + "mio", "parking_lot", "pin-project-lite", "signal-hook-registry", @@ -4516,7 +4616,7 @@ checksum = "693d596312e88961bc67d7f1f97af8a70227d9f90c31bba5806eec004978d752" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -4546,16 +4646,16 @@ version = "0.26.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "0c7bc40d0e5a97695bb96e27995cd3a08538541b0a846f65bba7a359f36700d4" dependencies = [ - "rustls 0.23.12", + "rustls 0.23.13", "rustls-pki-types", "tokio", ] [[package]] name = "tokio-stream" -version = "0.1.15" +version = "0.1.16" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "267ac89e0bec6e691e5813911606935d77c476ff49024f98abcea3e7b15e37af" +checksum = "4f4e6ce100d0eb49a2734f8c0812bcd324cf357d21810932c5df6b96ef2b86f1" dependencies = [ "futures-core", "pin-project-lite", @@ -4564,9 +4664,9 @@ dependencies = [ [[package]] name = "tokio-util" -version = "0.7.11" +version = "0.7.12" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "9cf6b47b3771c49ac75ad09a6162f53ad4b8088b76ac60e8ec1455b31a189fe1" +checksum = "61e7c3654c13bcd040d4a03abee2c75b1d14a37b423cf5a813ceae1cc903ec6a" dependencies = [ "bytes", "futures-core", @@ -4599,11 +4699,11 @@ dependencies = [ [[package]] name = "toml_edit" -version = "0.22.20" +version = "0.22.22" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "583c44c02ad26b0c3f3066fe629275e50627026c51ac2e595cca4c230ce1ce1d" +checksum = "4ae48d6208a266e853d946088ed816055e556cc6028c5e8e2b84d9fa5dd7c7f5" dependencies = [ - "indexmap 2.4.0", + "indexmap 2.5.0", "serde", "serde_spanned", "toml_datetime", @@ -4632,7 +4732,7 @@ dependencies = [ "prost 0.11.9", "tokio", "tokio-stream", - "tower", + "tower 0.4.13", "tower-layer", "tower-service", "tracing", @@ -4659,7 +4759,7 @@ dependencies = [ "prost 0.12.6", "tokio", "tokio-stream", - "tower", + "tower 0.4.13", "tower-layer", "tower-service", "tracing", @@ -4675,7 +4775,7 @@ dependencies = [ "proc-macro2", "prost-build", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -4698,6 +4798,22 @@ dependencies = [ "tracing", ] +[[package]] +name = "tower" +version = "0.5.1" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "2873938d487c3cfb9aed7546dc9f2711d867c9f90c46b889989a2cb84eba6b4f" +dependencies = [ + "futures-core", + "futures-util", + "pin-project-lite", + "sync_wrapper 0.1.2", + "tokio", + "tower-layer", + "tower-service", + "tracing", +] + [[package]] name = "tower-http" version = "0.5.2" @@ -4746,7 +4862,7 @@ checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -4905,15 +5021,15 @@ checksum = "08f95100a766bf4f8f28f90d77e0a5461bbdb219042e7679bebe79004fed8d75" [[package]] name = "unicode-ident" -version = "1.0.12" +version = "1.0.13" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b" +checksum = "e91b56cd4cadaeb79bbf1a5645f6b4f8dc5bde8834ad5894a8db35fda9efa1fe" [[package]] name = "unicode-normalization" -version = "0.1.23" +version = "0.1.24" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a56d1686db2308d901306f92a263857ef59ea39678a5458e7cb17f01415101f5" +checksum = "5033c97c4262335cded6d6fc3e5c18ab755e1a3dc96376350f3d8e9f009ad956" dependencies = [ "tinyvec", ] @@ -4929,15 +5045,26 @@ dependencies = [ [[package]] name = "unicode-segmentation" -version = "1.11.0" +version = "1.12.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d4c87d22b6e3f4a18d4d40ef354e97c90fcb14dd91d7dc0aa9d8a1172ebf7202" +checksum = "f6ccf251212114b54433ec949fd6a7841275f9ada20dddd2f29e9ceea4501493" + +[[package]] +name = "unicode-truncate" +version = "1.1.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "b3644627a5af5fa321c95b9b235a72fd24cd29c648c2c379431e6628655627bf" +dependencies = [ + "itertools 0.13.0", + "unicode-segmentation", + "unicode-width", +] [[package]] name = "unicode-width" -version = "0.1.13" +version = "0.1.14" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0336d538f7abc86d282a4189614dfaa90810dfc2c6f6427eaf88e16311dd225d" +checksum = "7dd6e30e90baa6f72411720665d41d89b9a3d039dc45b8faea1ddd07f617f6af" [[package]] name = "unicode_categories" @@ -5012,7 +5139,7 @@ version = "4.2.3" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "c5afb1a60e207dca502682537fefcfd9921e71d0b83e9576060f09abc6efab23" dependencies = [ - "indexmap 2.4.0", + "indexmap 2.5.0", "serde", "serde_json", "utoipa-gen", @@ -5028,7 +5155,7 @@ dependencies = [ "proc-macro2", "quote", "regex", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -5037,7 +5164,7 @@ version = "6.0.0" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "0b39868d43c011961e04b41623e050aedf2cc93652562ff7935ce0f819aaf2da" dependencies = [ - "axum 0.7.5", + "axum 0.7.7", "mime_guess", "regex", "rust-embed", @@ -5066,7 +5193,7 @@ checksum = "ee1cd046f83ea2c4e920d6ee9f7c3537ef928d75dce5d84a87c2c5d6b3999a3a" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -5167,7 +5294,7 @@ dependencies = [ "once_cell", "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", "wasm-bindgen-shared", ] @@ -5201,7 +5328,7 @@ checksum = "afc340c74d9005395cf9dd098506f7f44e38f2b4a21c6aaacf9a105ea5e1e836" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", "wasm-bindgen-backend", "wasm-bindgen-shared", ] @@ -5254,9 +5381,9 @@ dependencies = [ [[package]] name = "webpki-roots" -version = "0.26.3" +version = "0.26.6" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "bd7c23921eeb1713a4e851530e9b9756e4fb0e89978582942612524cf09f01cd" +checksum = "841c67bff177718f1d4dfefde8d8f0e78f9b6589319ba88312f567fc5841a958" dependencies = [ "rustls-pki-types", ] @@ -5545,9 +5672,9 @@ checksum = "589f6da84c646204747d1270a2a5661ea66ed1cced2631d546fdfb155959f9ec" [[package]] name = "winnow" -version = "0.6.18" +version = "0.6.20" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "68a9bda4691f099d435ad181000724da8e5899daa10713c2d432552b9ccd3a6f" +checksum = "36c1fec1a2bb5866f07c25f68c26e565c4c200aebb96d7e55710c19d3e8ac49b" dependencies = [ "memchr", ] @@ -5580,7 +5707,7 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e" dependencies = [ "proc-macro2", "quote", - "syn 2.0.76", + "syn 2.0.79", ] [[package]] @@ -5588,20 +5715,6 @@ name = "zeroize" version = "1.8.1" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "ced3678a2879b30306d323f4542626697a464a97c0a07c9aebf7ebca65cd4dde" -dependencies = [ - "zeroize_derive", -] - -[[package]] -name = "zeroize_derive" -version = "1.4.2" -source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "ce36e65b0d2999d2aafac989fb249189a141aee1f53c612c1f37d72631959f69" -dependencies = [ - "proc-macro2", - "quote", - "syn 2.0.76", -] [[package]] name = "zip" diff --git a/Cargo.toml b/Cargo.toml index a50bba24..ad2caeb8 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -1,24 +1,26 @@ [workspace] members = [ "benchmark", + "backends/v2", "backends/v3", "backends/grpc-metadata", "backends/trtllm", - "backends/client", - "launcher" + "launcher", + "router" ] default-members = [ "benchmark", + "backends/v2", "backends/v3", "backends/grpc-metadata", # "backends/trtllm", - "backends/client", - "launcher" + "launcher", + "router" ] resolver = "2" [workspace.package] -version = "2.2.1-dev0" +version = "2.3.2-dev0" edition = "2021" authors = ["Olivier Dehaene"] homepage = "https://github.com/huggingface/text-generation-inference" @@ -31,6 +33,7 @@ metrics = { version = "0.23.0" } metrics-exporter-prometheus = { version = "0.15.1", features = [] } minijinja = { version = "2.2.0", features = ["json"] } minijinja-contrib = { version = "2.0.2", features = ["pycompat"] } +pyo3 = { version = "0.22.2", features = ["auto-initialize"] } [profile.release] incremental = true diff --git a/Dockerfile b/Dockerfile index 37ced781..80e5b681 100644 --- a/Dockerfile +++ b/Dockerfile @@ -40,7 +40,6 @@ COPY router router COPY backends backends COPY launcher launcher RUN cargo build --profile release-opt -RUN cargo build --profile release-opt # Python builder # Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile @@ -258,7 +257,7 @@ COPY server/Makefile server/Makefile RUN cd server && \ make gen-server && \ pip install -r requirements_cuda.txt && \ - pip install ".[bnb, accelerate, marlin, quantize, peft, outlines]" --no-cache-dir && \ + pip install ".[bnb, accelerate, marlin, moe, quantize, peft, outlines]" --no-cache-dir && \ pip install nvidia-nccl-cu12==2.22.3 ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2 diff --git a/Dockerfile.nix b/Dockerfile.nix new file mode 100644 index 00000000..f1e7e0f5 --- /dev/null +++ b/Dockerfile.nix @@ -0,0 +1,24 @@ +# Build the image and get out the docker file: +# +# docker build -t tgi-nix-builder -f Dockerfile.nix +# docker run --log-driver=none tgi-nix-builder | docker load + +FROM nixos/nix:2.18.8 AS builder +RUN echo "experimental-features = nix-command flakes" >> /etc/nix/nix.conf +RUN nix profile install nixpkgs#cachix +RUN cachix use text-generation-inference +WORKDIR /root +ADD . . +RUN nix build . +RUN mkdir /tmp/nix-store-closure +RUN cp -R $(nix-store -qR result/) /tmp/nix-store-closure + +FROM ubuntu:24.04 + +WORKDIR /app + +# Copy /nix/store +COPY --from=builder /tmp/nix-store-closure /nix/store +COPY --from=builder /root/result /app +RUN ldconfig +CMD ["ldconfig", "/app/bin/text-generation-launcher"] diff --git a/Dockerfile_amd b/Dockerfile_amd index a79aae48..0b059f8c 100644 --- a/Dockerfile_amd +++ b/Dockerfile_amd @@ -41,7 +41,7 @@ COPY launcher launcher RUN cargo build --profile release-opt # Text Generation Inference base image for RoCm -FROM rocm/dev-ubuntu-22.04:6.1.1_hip_update AS base +FROM rocm/dev-ubuntu-22.04:6.2 AS base RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \ build-essential \ @@ -50,33 +50,34 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins curl \ git \ make \ + libmsgpack-dev \ libssl-dev \ + llvm-dev \ g++ \ # Needed to build VLLM & flash. rocthrust-dev \ hipsparse-dev \ hipblas-dev \ - hipblaslt-dev \ + hipcub-dev \ rocblas-dev \ hiprand-dev \ + hipfft-dev \ rocrand-dev \ miopen-hip-dev \ - hipfft-dev \ - hipcub-dev \ hipsolver-dev \ rccl-dev \ cmake \ - python3.11-dev && \ + python3.11-venv && \ rm -rf /var/lib/apt/lists/* # Keep in sync with `server/pyproject.toml ARG MAMBA_VERSION=23.1.0-1 -ARG PYTORCH_VERSION='2.3.0' -ARG ROCM_VERSION='6.0.2' ARG PYTHON_VERSION='3.11.10' # Automatically set by buildx ARG TARGETPLATFORM -ENV PATH /opt/conda/bin:$PATH +ENV PATH=/opt/conda/bin:$PATH + +ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942" # TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda. # Install mamba @@ -100,41 +101,132 @@ RUN case ${TARGETPLATFORM} in \ /opt/conda/bin/conda install -y "python=${PYTHON_VERSION}" ;; \ esac && \ /opt/conda/bin/conda clean -ya + # Install flash-attention, torch dependencies -RUN pip install numpy einops ninja --no-cache-dir +RUN python3 -m pip install --upgrade pip && pip install numpy einops ninja joblib msgpack cmake --no-cache-dir && rm -rf /var/lib/apt/lists/* -RUN pip uninstall -y triton && \ - git clone --depth 1 --single-branch https://github.com/ROCm/triton.git && \ - cd triton/python && \ - pip install . +RUN conda install mkl=2021 +ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/opt/conda/lib/python3.11/site-packages/torch/lib:/opt/conda/lib/ -RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir -ARG _GLIBCXX_USE_CXX11_ABI="1" -ARG CMAKE_PREFIX_PATH="/opt/conda" +ARG COMMON_WORKDIR=/ +WORKDIR ${COMMON_WORKDIR} + + +# Install HIPBLASLt +FROM base AS build_hipblaslt +ARG HIPBLASLT_BRANCH="e6da924" +RUN git clone https://github.com/ROCm/hipBLASLt.git \ + && cd hipBLASLt \ + && git checkout ${HIPBLASLT_BRANCH} \ + && SCCACHE_IDLE_TIMEOUT=1800 ./install.sh --architecture ${PYTORCH_ROCM_ARCH} --legacy_hipblas_direct \ + && cd build/release \ + && make package + +FROM scratch AS export_hipblaslt +ARG COMMON_WORKDIR +COPY --from=build_hipblaslt ${COMMON_WORKDIR}/hipBLASLt/build/release/*.deb / + +# RCCL build stages +FROM base AS build_rccl +ARG RCCL_BRANCH="rocm-6.2.0" +RUN git clone https://github.com/ROCm/rccl \ + && cd rccl \ + && git checkout ${RCCL_BRANCH} \ + && ./install.sh -p --amdgpu_targets ${PYTORCH_ROCM_ARCH} +FROM scratch AS export_rccl +ARG COMMON_WORKDIR +COPY --from=build_rccl ${COMMON_WORKDIR}/rccl/build/release/*.deb / + +# Triton build stages +FROM base AS build_triton +ARG TRITON_BRANCH="e192dba" +ARG TRITON_REPO="https://github.com/triton-lang/triton.git" +RUN python3 -m pip install ninja cmake wheel pybind11 && git clone ${TRITON_REPO} \ + && cd triton \ + && git checkout ${TRITON_BRANCH} \ + && cd python \ + && python3 setup.py bdist_wheel --dist-dir=dist +FROM scratch AS export_triton +ARG COMMON_WORKDIR +COPY --from=build_triton ${COMMON_WORKDIR}/triton/python/dist/*.whl / + +# # AMD-SMI build stages +FROM base AS build_amdsmi +RUN cd /opt/rocm/share/amd_smi \ + && pip wheel . --wheel-dir=dist +FROM scratch AS export_amdsmi +COPY --from=build_amdsmi /opt/rocm/share/amd_smi/dist/*.whl / + + +FROM base as build_pytorch + +RUN --mount=type=bind,from=export_hipblaslt,src=/,target=/install \ + if ls /install/*.deb; then \ + dpkg -i /install/*.deb \ + && sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \ + && sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status; \ + fi + +ARG BUILD_ENVIRONMENT=pytorch-linux-jammy-rocm6.2-py3.11 ARG PYTORCH_ROCM_ARCH="gfx90a;gfx942" -ARG BUILD_CAFFE2="0" \ - BUILD_CAFFE2_OPS="0" \ - USE_CUDA="0" \ - USE_ROCM="1" \ - BUILD_TEST="0" \ - USE_FBGEMM="0" \ - USE_NNPACK="0" \ - USE_QNNPACK="0" \ - USE_XNNPACK="0" \ - USE_FLASH_ATTENTION="1" \ - USE_MEM_EFF_ATTENTION="0" -RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install +# A commit to fix the output scaling factor issue in _scaled_mm +# Not yet in 2.5.0-rc1 +ARG PYTORCH_BRANCH="cedc116" +ARG PYTORCH_VISION_BRANCH="v0.19.1" +ARG PYTORCH_REPO="https://github.com/ROCm/pytorch.git" -# Set AS recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm -ENV HIP_FORCE_DEV_KERNARG=1 +RUN git clone ${PYTORCH_REPO} pytorch \ + && cd pytorch && git checkout ${PYTORCH_BRANCH} && git submodule update --init --recursive \ + && pip install -r requirements.txt --no-cache-dir \ + && python tools/amd_build/build_amd.py \ + && CMAKE_PREFIX_PATH=$(python3 -c 'import sys; print(sys.prefix)') python3 setup.py bdist_wheel --dist-dir=dist +FROM scratch as export_pytorch +ARG COMMON_WORKDIR +COPY --from=build_pytorch ${COMMON_WORKDIR}/pytorch/dist/*.whl / -# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK. -# However, Triton requires a tunning for each prompt length, which is prohibitive. -ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0 +FROM base AS install_deps -FROM base AS kernel-builder +ARG COMMON_WORKDIR + +# Install hipblaslt +RUN --mount=type=bind,from=export_hipblaslt,src=/,target=/install \ + if ls /install/*.deb; then \ + dpkg -i /install/*.deb \ + && sed -i 's/, hipblaslt-dev \(.*\), hipcub-dev/, hipcub-dev/g' /var/lib/dpkg/status \ + && sed -i 's/, hipblaslt \(.*\), hipfft/, hipfft/g' /var/lib/dpkg/status; \ + fi + +RUN --mount=type=bind,from=export_rccl,src=/,target=/install \ + if ls /install/*.deb; then \ + dpkg -i /install/*.deb \ + # RCCL needs to be installed twice + && dpkg -i /install/*.deb \ + && sed -i 's/, rccl-dev \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status \ + && sed -i 's/, rccl \(.*\), rocalution/, rocalution/g' /var/lib/dpkg/status; \ + fi + +RUN --mount=type=bind,from=export_triton,src=/,target=/install \ + if ls /install/*.whl; then \ + # Preemptively uninstall to prevent pip same-version no-installs + pip uninstall -y triton \ + && pip install /install/*.whl; \ + fi + +RUN --mount=type=bind,from=export_amdsmi,src=/,target=/install \ + # Preemptively uninstall to prevent pip same-version no-installs + pip uninstall -y amdsmi \ + && pip install /install/*.whl; + +RUN --mount=type=bind,from=export_pytorch,src=/,target=/install \ + if ls /install/*.whl; then \ + # Preemptively uninstall to prevent pip same-version no-installs + pip uninstall -y torch torchvision \ + && pip install /install/*.whl; \ + fi + +FROM install_deps AS kernel-builder # # Build vllm kernels FROM kernel-builder AS vllm-builder @@ -174,7 +266,7 @@ COPY server/exllamav2_kernels/ . RUN python setup.py build -FROM base AS base-copy +FROM install_deps AS base-copy # Text Generation Inference base env ENV HF_HOME=/data \ @@ -224,6 +316,19 @@ ENTRYPOINT ["./entrypoint.sh"] # Final image FROM base-copy +# Set AS recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm +ENV HIP_FORCE_DEV_KERNARG=1 + +# On MI250 and MI300, performances for flash with Triton FA are slightly better than CK. +# However, Triton requires a tunning for each prompt length, which is prohibitive. +ENV ROCM_USE_FLASH_ATTN_V2_TRITON=0 +ENV ROCM_USE_CUSTOM_PAGED_ATTN=1 +ENV PYTORCH_TUNABLEOP_TUNING_AFTER_WARMUP=0 +ENV VLLM_MOE_PADDING=0 +ENV ATTENTION=paged +ENV USE_PREFIX_CACHING=0 +ENV ROCM_USE_SKINNY_GEMM=1 + COPY ./tgi-entrypoint.sh /tgi-entrypoint.sh RUN chmod +x /tgi-entrypoint.sh diff --git a/README.md b/README.md index cc9d523f..df6912bf 100644 --- a/README.md +++ b/README.md @@ -83,7 +83,7 @@ model=HuggingFaceH4/zephyr-7b-beta volume=$PWD/data docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.2.0 --model-id $model + ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model ``` And then you can make requests like diff --git a/_server.nix b/_server.nix deleted file mode 100644 index 2cb2f887..00000000 --- a/_server.nix +++ /dev/null @@ -1,17 +0,0 @@ -{ - mkPoetryApplication, - pkg-config, - protobuf, - openssl, -}: - -mkPoetryApplication { - # name = "text-generation-server"; - - projectDir = ./server; - - # nativeBuildInputs = [ pkg-config ]; - - # buildInputs = [ openssl.dev protobuf ]; - -} diff --git a/backends/v2/Cargo.toml b/backends/v2/Cargo.toml new file mode 100644 index 00000000..4d32474e --- /dev/null +++ b/backends/v2/Cargo.toml @@ -0,0 +1,75 @@ +[package] +name = "text-generation-router-v2" +description = "Text Generation Webserver" +version.workspace = true +edition.workspace = true +authors.workspace = true +homepage.workspace = true + +[lib] +path = "src/lib.rs" + +[[bin]] +name = "text-generation-router-v2" +path = "src/main.rs" + +[dependencies] +async-trait = "0.1.74" +async-stream = "0.3.5" +axum = { version = "0.7", features = ["json"] } +axum-tracing-opentelemetry = "0.16" +text-generation-router = { path = "../../router" } +clap = { version = "4.4.5", features = ["derive", "env"] } +grpc-metadata = { path = "../grpc-metadata" } +futures = "0.3.28" +hf-hub = { workspace = true } +jsonschema = { version = "0.17.1", features = ["draft202012"] } +metrics = { workspace = true } +metrics-exporter-prometheus = { workspace = true } +nohash-hasher = "0.2.0" +opentelemetry = { version = "0.20.0", features = ["rt-tokio"] } +opentelemetry-otlp = "0.13.0" +rand = "0.8.5" +reqwest = { version = "0.11.20", features = [] } +serde = "1.0.188" +serde_json = "1.0.107" +slotmap = "1.0.7" +thiserror = "1.0.48" +tokenizers = { workspace = true } +tokio = { version = "1.32.0", features = [ + "rt", + "rt-multi-thread", + "parking_lot", + "signal", + "sync", +] } +tokio-stream = "0.1.14" +tower-http = { version = "0.5.1", features = ["cors"] } +tracing = "0.1.37" +tracing-opentelemetry = "0.21.0" +tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } +utoipa = { version = "4.2.0", features = ["axum_extras"] } +utoipa-swagger-ui = { version = "6.0.0", features = ["axum"] } +init-tracing-opentelemetry = { version = "0.14.1", features = [ + "opentelemetry-otlp", +] } +minijinja = { workspace = true } +minijinja-contrib = { workspace = true } +futures-util = "0.3.30" +regex = "1.10.3" +once_cell = "1.19.0" +image = "0.25.1" +base64 = { workspace = true } +prost = "^0.12" +tonic = "^0.10" +tower = "^0.4" + +[build-dependencies] +tonic-build = "0.10.1" +prost-build = "0.12.1" + +[features] +default = ["ngrok"] +ngrok = ["text-generation-router/ngrok"] +google = ["text-generation-router/google"] +kserve = ["text-generation-router/kserve"] diff --git a/backends/v2/build.rs b/backends/v2/build.rs new file mode 100644 index 00000000..f1d85dc7 --- /dev/null +++ b/backends/v2/build.rs @@ -0,0 +1,19 @@ +use std::fs; + +fn main() -> Result<(), Box> { + println!("cargo:rerun-if-changed=../../proto/"); + + fs::create_dir_all("src/client/pb").unwrap_or(()); + let mut config = prost_build::Config::new(); + config.protoc_arg("--experimental_allow_proto3_optional"); + + tonic_build::configure() + .build_client(true) + .build_server(false) + .out_dir("src/client/pb") + .include_file("mod.rs") + .compile_with_config(config, &["../../proto/generate.proto"], &["../../proto"]) + .unwrap_or_else(|e| panic!("protobuf compilation failed: {e}")); + + Ok(()) +} diff --git a/backends/v2/src/backend.rs b/backends/v2/src/backend.rs new file mode 100644 index 00000000..086fc6dc --- /dev/null +++ b/backends/v2/src/backend.rs @@ -0,0 +1,506 @@ +use crate::client::{Batch, CachedBatch, ClientError, Generation, Health, ShardedClient}; +/// Batching and inference logic +use crate::queue::{Entry, Queue}; +use async_trait::async_trait; +use nohash_hasher::IntMap; +use std::sync::Arc; +use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse}; +use text_generation_router::validation::ValidGenerateRequest; +use text_generation_router::{Attention, FinishReason, PrefillToken, Token}; +use tokio::sync::mpsc::error::SendError; +use tokio::sync::{mpsc, Notify}; +use tokio::time::Instant; +use tokio_stream::wrappers::UnboundedReceiverStream; +use tracing::{info_span, instrument, Instrument, Span}; + +pub struct BackendV2 { + /// Request queue + queue: Queue, + /// Notify batcher on queue appends + batching_task_notifier: Arc, + /// Client clone, used for health checks to skip the queue + client: ShardedClient, +} + +impl BackendV2 { + #[allow(clippy::too_many_arguments)] + pub(crate) fn new( + client: ShardedClient, + waiting_served_ratio: f32, + max_batch_prefill_tokens: u32, + max_batch_total_tokens: u32, + max_waiting_tokens: usize, + max_batch_size: Option, + requires_padding: bool, + window_size: Option, + speculate: u32, + ) -> Self { + // Infer shared state + let attention = if let Ok(attention) = std::env::var("ATTENTION") { + attention + .parse() + .unwrap_or_else(|_| panic!("Invalid attention was specified :`{attention}`")) + } else { + Attention::Paged + }; + let block_size = if attention == Attention::FlashDecoding { + 256 + } else { + 16 + }; + let queue = Queue::new(requires_padding, block_size, window_size, speculate); + let batching_task_notifier = Arc::new(Notify::new()); + + // Spawn batching background task that contains all the inference logic + tokio::spawn(batching_task( + client.clone(), + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + queue.clone(), + batching_task_notifier.clone(), + )); + + Self { + queue, + batching_task_notifier, + client, + } + } +} + +#[async_trait] +impl Backend for BackendV2 { + #[instrument(skip_all)] + fn schedule( + &self, + request: ValidGenerateRequest, + ) -> Result>, InferError> { + // MPSC channel to communicate with the background batching task + let (response_tx, response_rx) = mpsc::unbounded_channel(); + + // Append the request to the queue + self.queue.append(Entry { + request, + response_tx, + span: Span::current(), + temp_span: None, + queue_time: Instant::now(), + batch_time: None, + }); + + // Notify the background task that we have a new entry in the queue that needs + // to be batched + self.batching_task_notifier.notify_one(); + + // Return stream + Ok(UnboundedReceiverStream::new(response_rx)) + } + + async fn health(&self, current_health: bool) -> bool { + if current_health { + // Generation is healthy, we only check that the shards can allocate on device + self.client.device_health().await + } else { + self.client.model_health().await + } + .is_ok() + } +} + +/// Batching logic +/// Will be launched in a background Tokio task +/// +/// Batches requests and sends them to the inference server +#[allow(clippy::too_many_arguments)] +pub(crate) async fn batching_task( + mut client: ShardedClient, + waiting_served_ratio: f32, + max_batch_prefill_tokens: u32, + max_batch_total_tokens: u32, + max_waiting_tokens: usize, + max_batch_size: Option, + queue: Queue, + notifier: Arc, +) { + // Infinite loop + loop { + // Wait for a notification from the Infer struct + notifier.notified().await; + + // Get the next batch from the queue + // This batch might be smaller than the maximum batch size if there are not enough requests + // waiting in the queue + while let Some((mut entries, batch, span)) = queue + .next_batch( + None, + max_batch_size, + max_batch_prefill_tokens, + max_batch_total_tokens, + ) + .await + { + let mut cached_batch = prefill(&mut client, batch, &mut entries) + .instrument(span) + .await; + let mut waiting_tokens = 1; + + // We loop until we do not receive any cached batch from the inference server (== until + // all requests have met their stopping criteria) + while let Some(batch) = cached_batch { + // Get current batch info + let batch_size = batch.size; + let batch_max_tokens = batch.max_tokens; + let mut batches = vec![batch]; + metrics::gauge!("tgi_batch_current_size").set(batch_size as f64); + metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64); + + let min_size = if waiting_tokens >= max_waiting_tokens { + // If we didn't onboard any new requests since >= max_waiting_tokens, we try + // to add a new batch even though its size might be small + None + } else { + // Minimum batch size + Some((batch_size as f32 * waiting_served_ratio).floor() as usize) + }; + + let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens); + let max_size = + max_batch_size.map(|max_size| max_size.saturating_sub(batch_size as usize)); + // Try to get a new batch + if let Some((mut new_entries, new_batch, span)) = queue + .next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget) + .await + { + // Tracking metrics + if min_size.is_some() { + metrics::counter!("tgi_batch_concat", "reason" => "backpressure") + .increment(1); + } else { + metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded") + .increment(1); + } + + entries.iter_mut().for_each(|(_, entry)| { + // Create a new span to add the info that this entry is waiting + // because a new batch is being computed + let entry_waiting_span = info_span!(parent: &entry.span, "waiting"); + // Add relationships + span.follows_from(&entry_waiting_span); + entry_waiting_span.follows_from(&span); + // Update entry + entry.temp_span = Some(entry_waiting_span); + }); + + // Generate one token for this new batch to have the attention past in cache + let new_cached_batch = prefill(&mut client, new_batch, &mut new_entries) + .instrument(span) + .await; + // Reset waiting counter + waiting_tokens = 1; + // Extend current batch with the new batch + if let Some(new_cached_batch) = new_cached_batch { + entries.extend(new_entries); + batches.push(new_cached_batch); + } + } + + // Create span for this batch to add context to inference calls + let next_batch_size = entries.len(); + let next_batch_span = + info_span!(parent: None, "batch", batch_size = next_batch_size); + entries.iter_mut().for_each(|(_, entry)| { + // Create a new span to link the batch back to this entry + let entry_batch_span = info_span!(parent: &entry.span, "infer"); + // Add relationships + next_batch_span.follows_from(&entry_batch_span); + entry_batch_span.follows_from(&next_batch_span); + // Update entry + entry.temp_span = Some(entry_batch_span); + }); + + cached_batch = decode(&mut client, batches, &mut entries) + .instrument(next_batch_span) + .await; + waiting_tokens += 1; + } + metrics::gauge!("tgi_batch_current_size").set(0.0); + metrics::gauge!("tgi_batch_current_max_tokens").set(0.0); + } + } +} + +#[instrument(skip_all)] +async fn prefill( + client: &mut ShardedClient, + batch: Batch, + entries: &mut IntMap, +) -> Option { + let start_time = Instant::now(); + let batch_id = batch.id; + metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1); + + match client.prefill(batch).await { + Ok((generations, next_batch, timings)) => { + let start_filtering_time = Instant::now(); + // Send generated tokens and filter stopped entries + filter_send_generations(generations, entries); + + // Filter next batch and remove requests that were stopped + let next_batch = filter_batch(client, next_batch, entries).await; + + metrics::histogram!("tgi_batch_forward_duration","method" => "prefill") + .record(timings.forward.as_secs_f64()); + metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill") + .record(timings.decode.as_secs_f64()); + metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill") + .record(start_filtering_time.elapsed().as_secs_f64()); + metrics::histogram!("tgi_batch_inference_duration","method" => "prefill") + .record(start_time.elapsed().as_secs_f64()); + metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1); + next_batch + } + // If we have an error, we discard the whole batch + Err(err) => { + let _ = client.clear_cache(Some(batch_id)).await; + send_errors(err, entries); + metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1); + None + } + } +} + +#[instrument(skip_all)] +async fn decode( + client: &mut ShardedClient, + batches: Vec, + entries: &mut IntMap, +) -> Option { + let start_time = Instant::now(); + let batch_ids: Vec = batches.iter().map(|b| b.id).collect(); + metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1); + + match client.decode(batches).await { + Ok((generations, next_batch, timings)) => { + let start_filtering_time = Instant::now(); + // Send generated tokens and filter stopped entries + filter_send_generations(generations, entries); + + // Filter next batch and remove requests that were stopped + let next_batch = filter_batch(client, next_batch, entries).await; + + if let Some(concat_duration) = timings.concat { + metrics::histogram!("tgi_batch_concat_duration", "method" => "decode") + .record(concat_duration.as_secs_f64()); + } + metrics::histogram!("tgi_batch_forward_duration", "method" => "decode") + .record(timings.forward.as_secs_f64()); + metrics::histogram!("tgi_batch_decode_duration", "method" => "decode") + .record(timings.decode.as_secs_f64()); + metrics::histogram!("tgi_batch_filter_duration", "method" => "decode") + .record(start_filtering_time.elapsed().as_secs_f64()); + metrics::histogram!("tgi_batch_inference_duration", "method" => "decode") + .record(start_time.elapsed().as_secs_f64()); + metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1); + next_batch + } + // If we have an error, we discard the whole batch + Err(err) => { + for id in batch_ids { + let _ = client.clear_cache(Some(id)).await; + } + send_errors(err, entries); + metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1); + None + } + } +} + +/// Filter a `batch` and remove all requests not present in `entries` +#[instrument(skip_all)] +async fn filter_batch( + client: &mut ShardedClient, + next_batch: Option, + entries: &IntMap, +) -> Option { + let mut batch = next_batch?; + + // No need to filter + if batch.size as usize == entries.len() { + return Some(batch); + } + + let id = batch.id; + + // Retain only requests that are still in entries + batch.request_ids.retain(|id| entries.contains_key(id)); + + if batch.request_ids.is_empty() { + // All requests have been filtered out + // Next batch is now empty + // Clear it from the Python shards cache + // We unwrap here as we need to panic since we cannot recover if this method fails + client.clear_cache(Some(id)).await.unwrap(); + None + } else { + // Filter Python shard cache + // We unwrap here as we need to panic since we cannot recover if this method fails + client.filter_batch(id, batch.request_ids).await.unwrap() + } +} + +/// Send one or multiple `InferStreamResponse` to Infer for all `entries` +/// and filter entries +#[instrument(skip_all)] +fn filter_send_generations(generations: Vec, entries: &mut IntMap) { + generations.into_iter().for_each(|generation| { + let id = generation.request_id; + // Get entry + // We can `expect` here as the request id should always be in the entries + let entry = entries + .get(&id) + .expect("ID not found in entries. This is a bug."); + + // Create and enter a span to link this function back to the entry + let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered(); + // Send generation responses back to the infer task + // If the receive an error from the Flume channel, it means that the client dropped the + // request and we need to stop generating hence why we unwrap_or(true) + let stopped = send_responses(generation, entry).inspect_err(|_err| { + tracing::error!("Entry response channel error."); + metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); + }).unwrap_or(true); + if stopped { + entries.remove(&id).expect("ID not found in entries. This is a bug."); + } + }); +} + +/// Send responses through the `entry` response channel +fn send_responses( + generation: Generation, + entry: &Entry, +) -> Result>>> { + // Return directly if the channel is disconnected + if entry.response_tx.is_closed() { + metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); + return Ok(true); + } + + let mut stopped = false; + + if let Some(prefill_tokens) = generation.prefill_tokens { + // Create Token objects + // We do that here instead of in the Python code as Rust for loops are faster + let prefill_tokens = prefill_tokens + .ids + .into_iter() + .zip(prefill_tokens.logprobs) + .zip(prefill_tokens.texts) + .map(|((id, logprob), text)| PrefillToken { id, text, logprob }) + .collect(); + + // Send message + entry + .response_tx + .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?; + } + + // Create last Token + let tokens_ = generation.tokens.expect("Non empty tokens in generation"); + let n = tokens_.ids.len(); + metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64); + let mut iterator = tokens_ + .ids + .into_iter() + .zip(tokens_.logprobs) + .zip(tokens_.texts) + .zip(tokens_.is_special) + .enumerate() + .peekable(); + while let Some((i, (((id, logprob), text), special))) = iterator.next() { + let token = Token { + id, + text, + logprob, + special, + }; + let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) { + top_tokens_ + .ids + .iter() + .zip(top_tokens_.logprobs.iter()) + .zip(top_tokens_.texts.iter()) + .zip(top_tokens_.is_special.iter()) + .map(|(((&id, &logprob), text), &special)| Token { + id, + text: text.to_string(), + logprob, + special, + }) + .collect() + } else { + vec![] + }; + match (&generation.generated_text, iterator.peek()) { + (Some(generated_text), None) => { + // Generation has ended + stopped = true; + // Send message + entry.response_tx.send(Ok(InferStreamResponse::End { + token, + top_tokens, + generated_text: GeneratedText::from(generated_text.clone()), + queued: entry.queue_time, + start: entry.batch_time.unwrap(), + }))?; + } + _ => { + // Send message + entry + .response_tx + .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?; + } + } + } + + Ok(stopped) +} + +/// Send errors to Infer for all `entries` +#[instrument(skip_all)] +fn send_errors(error: ClientError, entries: &mut IntMap) { + entries.drain().for_each(|(_, entry)| { + // Create and enter a span to link this function back to the entry + let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered(); + let err = InferError::GenerationError(error.to_string()); + metrics::counter!("tgi_request_failure", "err" => "generation").increment(1); + tracing::error!("{err}"); + + // unwrap_or is valid here as we don't care if the receiver is gone. + entry + .response_tx + .send(Err(err)) + .unwrap_or(()); + }); +} + +impl From for GeneratedText { + fn from(value: crate::client::GeneratedText) -> Self { + let v2_finish_reason = crate::client::FinishReason::try_from(value.finish_reason).unwrap(); + let finish_reason = match v2_finish_reason { + crate::client::FinishReason::Length => FinishReason::Length, + crate::client::FinishReason::EosToken => FinishReason::EndOfSequenceToken, + crate::client::FinishReason::StopSequence => FinishReason::StopSequence, + }; + + Self { + text: value.text, + generated_tokens: value.generated_tokens, + finish_reason, + seed: value.seed, + } + } +} diff --git a/backends/v2/src/client/grpc_client.rs b/backends/v2/src/client/grpc_client.rs new file mode 100644 index 00000000..b4943521 --- /dev/null +++ b/backends/v2/src/client/grpc_client.rs @@ -0,0 +1,257 @@ +/// Single shard Client +use crate::client::pb; +use crate::client::{ClientError, Result, WARMUP_IMAGE_BASE64}; +use grpc_metadata::InjectTelemetryContext; +use pb::generate::v2::text_generation_service_client::TextGenerationServiceClient; +use pb::generate::v2::*; +use std::cmp::min; +use std::time::Duration; +use tonic::transport::{Channel, Uri}; +use tracing::instrument; + +/// Text Generation Inference gRPC client +#[derive(Debug, Clone)] +pub struct Client { + stub: TextGenerationServiceClient, +} + +impl Client { + /// Returns a client connected to the given url + #[allow(dead_code)] + pub async fn connect(uri: Uri) -> Result { + let channel = Channel::builder(uri).connect().await?; + + Ok(Self { + stub: TextGenerationServiceClient::new(channel), + }) + } + + /// Returns a client connected to the given unix socket + pub async fn connect_uds(path: String) -> Result { + let channel = Channel::from_shared("http://[::]:50051".to_string()) + .unwrap() + .connect_with_connector(tower::service_fn(move |_: Uri| { + tokio::net::UnixStream::connect(path.clone()) + })) + .await?; + + Ok(Self { + stub: TextGenerationServiceClient::new(channel), + }) + } + + /// Returns a list of uris or unix sockets of all shards + #[instrument(skip(self))] + pub async fn service_discovery(&mut self) -> Result> { + let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context(); + let response = self.stub.service_discovery(request).await.map_err(|_| { + ClientError::Connection("Server does not support v2 interface".to_string()) + })?; + let urls = response + .into_inner() + .urls + .into_iter() + // Remove unix socket prefix + .map(|url| match url.strip_prefix("unix://") { + None => url, + Some(stripped_url) => stripped_url.to_string(), + }) + .collect(); + Ok(urls) + } + + /// Get model info + #[instrument(skip(self))] + pub async fn info(&mut self) -> Result { + let request = tonic::Request::new(InfoRequest {}).inject_context(); + let response = self.stub.info(request).await?.into_inner(); + Ok(response) + } + + /// Get model health + #[instrument(skip(self))] + pub async fn health(&mut self) -> Result { + let request = tonic::Request::new(HealthRequest {}).inject_context(); + let response = self.stub.health(request).await?.into_inner(); + Ok(response) + } + + /// Clear the past generations cache + #[instrument(skip(self))] + pub async fn clear_cache(&mut self, batch_id: Option) -> Result<()> { + let request = tonic::Request::new(ClearCacheRequest { id: batch_id }).inject_context(); + self.stub.clear_cache(request).await?; + Ok(()) + } + + /// Filter a cached batch + #[instrument(skip(self))] + pub async fn filter_batch( + &mut self, + batch_id: u64, + request_ids: Vec, + ) -> Result> { + let request = tonic::Request::new(FilterBatchRequest { + batch_id, + request_ids, + }) + .inject_context(); + let filtered_batch = self.stub.filter_batch(request).await?.into_inner(); + Ok(filtered_batch.batch) + } + + /// Warmup on a max size batch + /// + /// Returns the maximum amount of tokens supported by the hardware + #[instrument(skip_all)] + pub async fn warmup( + &mut self, + max_input_length: u32, + max_prefill_tokens: u32, + max_total_tokens: u32, + max_batch_size: Option, + ) -> Result> { + let mut n_tokens = 0; + let mut requests = Vec::new(); + // Create requests + while n_tokens < max_prefill_tokens { + let truncate = min(max_input_length, max_prefill_tokens - n_tokens); + + let mut inputs = String::new(); + inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize)); + if n_tokens == 0 { + // 1 request is enough to test vision heads. + // Sending images on other queries messes up easily with truncation. + inputs.push_str(&format!( + "![](data:image/jpeg;base64,{WARMUP_IMAGE_BASE64})", + )); + } + + requests.push(Request { + id: 0, + inputs, + // We truncate the input on the server side to be sure that it has the correct size + truncate, + // Set sampling parameters to also take these ops into account in the max memory + parameters: Some(NextTokenChooserParameters { + temperature: 0.9, + top_k: 10, + top_p: 0.9, + typical_p: 0.9, + do_sample: false, + seed: 0, + repetition_penalty: 1.2, + frequency_penalty: 0.1, + watermark: true, + grammar: String::new(), + grammar_type: GrammarType::None as i32, + }), + stopping_parameters: Some(StoppingCriteriaParameters { + max_new_tokens: max_total_tokens - truncate, + stop_sequences: vec![], + ignore_eos_token: true, + }), + prefill_logprobs: true, + top_n_tokens: 20, + }); + n_tokens += max_input_length; + + // Check max_batch_size + if Some(requests.len()) == max_batch_size { + break; + } + } + + let batch = Batch { + id: 0, + size: requests.len() as u32, + requests, + max_tokens: 0, + }; + + let request = tonic::Request::new(WarmupRequest { + batch: Some(batch), + max_input_length, + max_prefill_tokens, + max_total_tokens, + }) + .inject_context(); + let response = self.stub.warmup(request).await?.into_inner(); + Ok(response.max_supported_total_tokens) + } + + /// Generate one token for each request in the given batch + /// + /// Returns Generation for each request in batch + /// and the next cached batch + #[instrument(skip_all, fields(id = &batch.id, size = &batch.size))] + pub async fn prefill( + &mut self, + batch: Batch, + ) -> Result<(Vec, Option, PrefillTimings)> { + let request = tonic::Request::new(PrefillRequest { batch: Some(batch) }).inject_context(); + let response = self.stub.prefill(request).await?.into_inner(); + Ok(( + response.generations, + response.batch, + PrefillTimings::new(response.forward_ns, response.decode_ns, response.total_ns), + )) + } + + /// Generate one token for each request in the given cached batches + /// + /// Returns Generation for each request in batches + /// and the next cached batch + #[instrument(skip_all, fields(size = batches.iter().map(|batch|{batch.size}).sum::()))] + pub async fn decode( + &mut self, + batches: Vec, + ) -> Result<(Vec, Option, DecodeTimings)> { + let request = tonic::Request::new(DecodeRequest { batches }).inject_context(); + let response = self.stub.decode(request).await?.into_inner(); + Ok(( + response.generations, + response.batch, + DecodeTimings::new( + response.concat_ns, + response.forward_ns, + response.decode_ns, + response.total_ns, + ), + )) + } +} + +pub struct PrefillTimings { + pub forward: Duration, + pub decode: Duration, + pub total: Duration, +} + +impl PrefillTimings { + fn new(forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self { + Self { + forward: Duration::from_nanos(forward_ns), + decode: Duration::from_nanos(decode_ns), + total: Duration::from_nanos(total_ns), + } + } +} + +pub struct DecodeTimings { + pub concat: Option, + pub forward: Duration, + pub decode: Duration, + pub total: Duration, +} + +impl DecodeTimings { + fn new(concat_ns: Option, forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self { + Self { + concat: concat_ns.map(Duration::from_nanos), + forward: Duration::from_nanos(forward_ns), + decode: Duration::from_nanos(decode_ns), + total: Duration::from_nanos(total_ns), + } + } +} diff --git a/backends/v2/src/client/mod.rs b/backends/v2/src/client/mod.rs new file mode 100644 index 00000000..fa9d4406 --- /dev/null +++ b/backends/v2/src/client/mod.rs @@ -0,0 +1,68 @@ +//! Text Generation gRPC client library + +use async_trait::async_trait; +use thiserror::Error; +use tonic::transport; +use tonic::Status; + +#[allow(clippy::derive_partial_eq_without_eq)] +mod pb; + +mod grpc_client; +mod sharded_client; + +pub use grpc_client::Client; +pub use pb::generate::v2::{ + Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType, HealthResponse, + InfoResponse, NextTokenChooserParameters, Request, StoppingCriteriaParameters, +}; +pub use sharded_client::ShardedClient; + +#[async_trait] +pub trait Health { + /// Check if a generate server is healthy by asking it to allocate a tensor on device + async fn device_health(&self) -> Result<()>; + + /// Check if a generate server is healthy by doing a forward pass. + /// EXPENSIVE + async fn model_health(&self) -> Result<()>; +} + +#[derive(Debug)] +pub struct ShardInfo { + pub requires_padding: bool, + pub dtype: String, + pub device_type: String, + pub window_size: Option, + pub speculate: u32, +} + +#[derive(Error, Debug, Clone)] +pub enum ClientError { + #[error("Could not connect to Text Generation server: {0}")] + Connection(String), + #[error("Server error: {0}")] + Generation(String), + #[error("Sharded results are empty")] + EmptyResults, +} + +impl From for ClientError { + fn from(err: Status) -> Self { + let err = Self::Generation(err.message().to_string()); + tracing::error!("{err}"); + err + } +} + +impl From for ClientError { + fn from(err: transport::Error) -> Self { + let err = Self::Connection(err.to_string()); + tracing::error!("{err}"); + err + } +} + +static WARMUP_IMAGE_BASE64 :&str = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII="; + +pub type Result = std::result::Result; diff --git a/backends/v2/src/client/sharded_client.rs b/backends/v2/src/client/sharded_client.rs new file mode 100644 index 00000000..eccf76d5 --- /dev/null +++ b/backends/v2/src/client/sharded_client.rs @@ -0,0 +1,252 @@ +/// Multi shard Client +use crate::client::{ClientError, Result}; +use crate::client::{Health, ShardInfo}; + +use crate::client::grpc_client::{DecodeTimings, PrefillTimings}; +use crate::client::InfoResponse; +use crate::client::{ + Batch, CachedBatch, Client, Generation, GrammarType, HealthResponse, + NextTokenChooserParameters, Request, StoppingCriteriaParameters, +}; +use async_trait::async_trait; +use futures::future::join_all; +use tonic::transport::Uri; +use tracing::instrument; + +#[derive(Debug, Clone)] +/// Text Generation Inference gRPC multi client +pub struct ShardedClient { + clients: Vec, +} + +impl ShardedClient { + fn new(clients: Vec) -> Self { + Self { clients } + } + + /// Create a new ShardedClient from a master client. The master client will communicate with + /// the other shards and returns all uris/unix sockets with the `service_discovery` gRPC method. + async fn from_master_client(mut master_client: Client) -> Result { + // Get all uris/unix sockets from the master client + let uris = master_client.service_discovery().await?; + let futures = uris.into_iter().map(Client::connect_uds); + let clients: Result> = join_all(futures).await.into_iter().collect(); + Ok(Self::new(clients?)) + } + + /// Returns a client connected to the given uri + #[allow(dead_code)] + pub async fn connect(uri: Uri) -> Result { + let master_client = Client::connect(uri).await?; + Self::from_master_client(master_client).await + } + + /// Returns a client connected to the given unix socket + pub async fn connect_uds(path: String) -> Result { + let master_client = Client::connect_uds(path).await?; + Self::from_master_client(master_client).await + } + + /// Get the model info + #[instrument(skip(self))] + pub async fn info(&mut self) -> Result { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| client.info()) + .collect(); + join_all(futures).await.pop().unwrap().map(ShardInfo::from) + } + + /// GRPC health check + #[instrument(skip(self))] + pub async fn health(&mut self) -> Result { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| client.health()) + .collect(); + join_all(futures).await.pop().unwrap() + } + + /// Clear the past generations cache + #[instrument(skip(self))] + pub async fn clear_cache(&mut self, batch_id: Option) -> Result<()> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| client.clear_cache(batch_id)) + .collect(); + join_all(futures).await.into_iter().collect() + } + + /// Filter a cached batch + #[instrument(skip(self))] + pub async fn filter_batch( + &mut self, + batch_id: u64, + request_ids: Vec, + ) -> Result> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| Box::pin(client.filter_batch(batch_id, request_ids.clone()))) + .collect(); + // all shards return the same message + join_all(futures).await.pop().unwrap() + } + + /// Warmup on a max size batch + /// + /// Returns the maximum amount of tokens supported by the hardware + #[instrument(skip(self))] + pub async fn warmup( + &mut self, + max_input_length: u32, + max_prefill_tokens: u32, + max_total_tokens: u32, + max_batch_size: Option, + ) -> Result> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| { + Box::pin(client.warmup( + max_input_length, + max_prefill_tokens, + max_total_tokens, + max_batch_size, + )) + }) + .collect(); + // Take the minimum value + let results = join_all(futures) + .await + .into_iter() + .collect::>>>()?; + Ok(results.into_iter().flatten().min()) + } + + /// Generate one token for each request in the given batch + /// + /// Returns Generation for each request in batch + /// and the next cached batch + #[instrument(skip_all, fields(id = & batch.id, size = & batch.size))] + pub async fn prefill( + &mut self, + batch: Batch, + ) -> Result<(Vec, Option, PrefillTimings)> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| Box::pin(client.prefill(batch.clone()))) + .collect(); + #[allow(clippy::type_complexity)] + let results: Result, Option, PrefillTimings)>> = + join_all(futures).await.into_iter().collect(); + let mut results = results?; + + let (mut generations, next_batch, mut timings) = + results.pop().ok_or(ClientError::EmptyResults)?; + + // Merge generations from different model shards + for (mut shard_generations, _, shard_timings) in results.into_iter() { + generations.append(&mut shard_generations); + // Return the timings of the slowest shard + if shard_timings.total > timings.total { + timings = shard_timings; + } + } + Ok((generations, next_batch, timings)) + } + + /// Generate one token for each request in the given cached batches + /// + /// Returns Generation for each request in batches + /// and the next cached batch + #[instrument(skip_all, fields(size = batches.iter().map(| batch | {batch.size}).sum::< u32 > ()))] + pub async fn decode( + &mut self, + batches: Vec, + ) -> Result<(Vec, Option, DecodeTimings)> { + let futures: Vec<_> = self + .clients + .iter_mut() + .map(|client| Box::pin(client.decode(batches.clone()))) + .collect(); + #[allow(clippy::type_complexity)] + let results: Result, Option, DecodeTimings)>> = + join_all(futures).await.into_iter().collect(); + let mut results = results?; + + let (mut generations, next_batch, mut timings) = + results.pop().ok_or(ClientError::EmptyResults)?; + + // Merge generations from different model shards + for (mut shard_generations, _, shard_timings) in results.into_iter() { + generations.append(&mut shard_generations); + // Return the timings of the slowest shard + if shard_timings.total > timings.total { + timings = shard_timings; + } + } + Ok((generations, next_batch, timings)) + } +} + +impl From for ShardInfo { + fn from(value: InfoResponse) -> Self { + Self { + requires_padding: value.requires_padding, + dtype: value.dtype, + device_type: value.device_type, + window_size: value.window_size, + speculate: value.speculate, + } + } +} + +#[async_trait] +impl Health for ShardedClient { + async fn device_health(&self) -> Result<()> { + self.clone().health().await?; + Ok(()) + } + + async fn model_health(&self) -> Result<()> { + // Dummy batch of 1 token and 1 generated token + let liveness_request = Request { + id: u64::MAX, + inputs: "liveness".to_string(), + truncate: 10, + prefill_logprobs: false, + parameters: Some(NextTokenChooserParameters { + temperature: 1.0, + top_k: 0, + top_p: 1.0, + typical_p: 1.0, + do_sample: false, + seed: 0, + repetition_penalty: 1.0, + frequency_penalty: 0.0, + watermark: false, + grammar: String::new(), + grammar_type: GrammarType::None as i32, + }), + stopping_parameters: Some(StoppingCriteriaParameters { + max_new_tokens: 1, + stop_sequences: vec![], + ignore_eos_token: false, + }), + top_n_tokens: 0, + }; + let batch = Batch { + id: u64::MAX, + requests: vec![liveness_request], + size: 1, + max_tokens: 2, + }; + self.clone().prefill(batch).await?; + Ok(()) + } +} diff --git a/backends/v2/src/lib.rs b/backends/v2/src/lib.rs new file mode 100644 index 00000000..85c36931 --- /dev/null +++ b/backends/v2/src/lib.rs @@ -0,0 +1,141 @@ +mod backend; +mod client; +mod queue; + +use crate::client::{ClientError, ShardedClient}; +pub(crate) use backend::BackendV2; +use serde::Serialize; +use thiserror::Error; +use utoipa::ToSchema; + +#[derive(Clone, Debug, Serialize, ToSchema)] +pub struct BackendInfo { + /// Mandatory + #[schema(example = "cuda")] + pub model_device_type: String, + #[schema(example = "torch.float16")] + pub model_dtype: String, + + /// Backend parameters + #[schema(example = "1")] + pub speculate: usize, + #[schema(example = "1.2")] + pub waiting_served_ratio: f32, + #[schema(example = "32000")] + pub max_batch_total_tokens: u32, + #[schema(example = "20")] + pub max_waiting_tokens: usize, + #[schema(nullable = true, example = "null")] + pub max_batch_size: Option, +} + +#[allow(clippy::too_many_arguments)] +pub async fn connect_backend( + max_input_tokens: usize, + max_total_tokens: usize, + master_shard_uds_path: String, + waiting_served_ratio: f32, + max_batch_prefill_tokens: u32, + max_batch_total_tokens: Option, + max_waiting_tokens: usize, + max_batch_size: Option, +) -> Result<(BackendV2, BackendInfo), V2Error> { + // Helper function + let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option| { + match max_supported_batch_total_tokens { + // Older models do not support automatic max-batch-total-tokens + None => { + let max_batch_total_tokens = max_batch_total_tokens + .unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens))); + tracing::warn!("Model does not support automatic max batch total tokens"); + Ok(max_batch_total_tokens) + } + // Flash attention models return their max supported total tokens + Some(max_supported_batch_total_tokens) => { + // Warn if user added his own max-batch-total-tokens as we will ignore it + if max_batch_total_tokens.is_some() { + tracing::warn!( + "`--max-batch-total-tokens` is deprecated for Flash \ + Attention models." + ); + tracing::warn!( + "Inferred max batch total tokens: {max_supported_batch_total_tokens}" + ); + } + if max_total_tokens as u32 > max_supported_batch_total_tokens { + return Err(V2Error::NotEnoughMemory(max_total_tokens)); + } + + Ok(max_supported_batch_total_tokens) + } + } + }; + + let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path) + .await + .map_err(V2Error::Connection)?; + + // server is running on v2 + // Clear the cache; useful if the webserver rebooted + sharded_client + .clear_cache(None) + .await + .map_err(V2Error::Cache)?; + // Get info from the shard + let shard_info = sharded_client.info().await.map_err(V2Error::Info)?; + + // Warmup model + tracing::info!("Warming up model"); + let max_batch_total_tokens = check_max_batch_total_tokens( + sharded_client + .warmup( + max_input_tokens as u32, + max_batch_prefill_tokens, + max_total_tokens as u32, + max_batch_size, + ) + .await + .map_err(V2Error::Warmup)?, + )?; + tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}"); + + let backend_info = BackendInfo { + waiting_served_ratio, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + model_device_type: shard_info.device_type.clone(), + model_dtype: shard_info.dtype.clone(), + speculate: shard_info.speculate as usize, + }; + + let backend = BackendV2::new( + sharded_client, + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + shard_info.requires_padding, + shard_info.window_size, + shard_info.speculate, + ); + + tracing::info!("Using backend V3"); + + Ok((backend, backend_info)) +} + +#[derive(Debug, Error)] +pub enum V2Error { + #[error("Unable to clear the Python model shards cache: {0}")] + Cache(ClientError), + #[error("Unable to connect to the Python model shards: {0}")] + Connection(ClientError), + #[error("Unable to get the Python model shards info: {0}")] + Info(ClientError), + #[error("Unable to warmup the Python model shards: {0}")] + Warmup(ClientError), + #[error("Not enough memory to handle `max_total_tokens={0}`")] + NotEnoughMemory(usize), +} diff --git a/backends/v2/src/main.rs b/backends/v2/src/main.rs new file mode 100644 index 00000000..f53d898e --- /dev/null +++ b/backends/v2/src/main.rs @@ -0,0 +1,212 @@ +use clap::{Parser, Subcommand}; +use text_generation_router::{server, usage_stats}; +use text_generation_router_v2::{connect_backend, V2Error}; +use thiserror::Error; + +/// App Configuration +#[derive(Parser, Debug)] +#[clap(author, version, about, long_about = None)] +struct Args { + #[command(subcommand)] + command: Option, + + #[clap(default_value = "128", long, env)] + max_concurrent_requests: usize, + #[clap(default_value = "2", long, env)] + max_best_of: usize, + #[clap(default_value = "4", long, env)] + max_stop_sequences: usize, + #[clap(default_value = "5", long, env)] + max_top_n_tokens: u32, + #[clap(default_value = "1024", long, env)] + max_input_tokens: usize, + #[clap(default_value = "2048", long, env)] + max_total_tokens: usize, + #[clap(default_value = "1.2", long, env)] + waiting_served_ratio: f32, + #[clap(default_value = "4096", long, env)] + max_batch_prefill_tokens: u32, + #[clap(long, env)] + max_batch_total_tokens: Option, + #[clap(default_value = "20", long, env)] + max_waiting_tokens: usize, + #[clap(long, env)] + max_batch_size: Option, + #[clap(default_value = "0.0.0.0", long, env)] + hostname: String, + #[clap(default_value = "3000", long, short, env)] + port: u16, + #[clap(default_value = "/tmp/text-generation-server-0", long, env)] + master_shard_uds_path: String, + #[clap(default_value = "bigscience/bloom", long, env)] + tokenizer_name: String, + #[clap(long, env)] + tokenizer_config_path: Option, + #[clap(long, env)] + revision: Option, + #[clap(default_value = "2", long, env)] + validation_workers: usize, + #[clap(long, env)] + api_key: Option, + #[clap(long, env)] + json_output: bool, + #[clap(long, env)] + otlp_endpoint: Option, + #[clap(default_value = "text-generation-inference.router", long, env)] + otlp_service_name: String, + #[clap(long, env)] + cors_allow_origin: Option>, + #[clap(long, env)] + ngrok: bool, + #[clap(long, env)] + ngrok_authtoken: Option, + #[clap(long, env)] + ngrok_edge: Option, + #[clap(long, env, default_value_t = false)] + messages_api_enabled: bool, + #[clap(long, env, default_value_t = false)] + disable_grammar_support: bool, + #[clap(default_value = "4", long, env)] + max_client_batch_size: usize, + #[clap(default_value = "on", long, env)] + usage_stats: usage_stats::UsageStatsLevel, +} + +#[derive(Debug, Subcommand)] +enum Commands { + PrintSchema, +} + +#[tokio::main] +async fn main() -> Result<(), RouterError> { + // Get args + let args = Args::parse(); + // Pattern match configuration + let Args { + command, + max_concurrent_requests, + max_best_of, + max_stop_sequences, + max_top_n_tokens, + max_input_tokens, + max_total_tokens, + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + hostname, + port, + master_shard_uds_path, + tokenizer_name, + tokenizer_config_path, + revision, + validation_workers, + api_key, + json_output, + otlp_endpoint, + otlp_service_name, + cors_allow_origin, + ngrok, + ngrok_authtoken, + ngrok_edge, + messages_api_enabled, + disable_grammar_support, + max_client_batch_size, + usage_stats, + } = args; + + if let Some(Commands::PrintSchema) = command { + use utoipa::OpenApi; + let api_doc = text_generation_router::server::ApiDoc::openapi(); + let api_doc = serde_json::to_string_pretty(&api_doc).unwrap(); + println!("{}", api_doc); + std::process::exit(0); + }; + text_generation_router::logging::init_logging(otlp_endpoint, otlp_service_name, json_output); + + // Validate args + if max_input_tokens >= max_total_tokens { + return Err(RouterError::ArgumentValidation( + "`max_input_tokens` must be < `max_total_tokens`".to_string(), + )); + } + if max_input_tokens as u32 > max_batch_prefill_tokens { + return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}"))); + } + + if validation_workers == 0 { + return Err(RouterError::ArgumentValidation( + "`validation_workers` must be > 0".to_string(), + )); + } + + if let Some(ref max_batch_total_tokens) = max_batch_total_tokens { + if max_batch_prefill_tokens > *max_batch_total_tokens { + return Err(RouterError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}"))); + } + if max_total_tokens as u32 > *max_batch_total_tokens { + return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}"))); + } + } + + if let Some(max_batch_size) = max_batch_size { + if max_batch_size == 0 { + return Err(RouterError::ArgumentValidation( + "`max_batch_size` must be > 0".to_string(), + )); + } + } + + let (backend, _backend_info) = connect_backend( + max_input_tokens, + max_total_tokens, + master_shard_uds_path, + waiting_served_ratio, + max_batch_prefill_tokens, + max_batch_total_tokens, + max_waiting_tokens, + max_batch_size, + ) + .await?; + + // Run server + server::run( + backend, + max_concurrent_requests, + max_best_of, + max_stop_sequences, + max_top_n_tokens, + max_input_tokens, + max_total_tokens, + validation_workers, + api_key, + tokenizer_name, + tokenizer_config_path, + revision, + hostname, + port, + cors_allow_origin, + ngrok, + ngrok_authtoken, + ngrok_edge, + messages_api_enabled, + disable_grammar_support, + max_client_batch_size, + usage_stats, + ) + .await?; + Ok(()) +} + +#[derive(Debug, Error)] +enum RouterError { + #[error("Argument validation error: {0}")] + ArgumentValidation(String), + #[error("Backend failed: {0}")] + Backend(#[from] V2Error), + #[error("WebServer error: {0}")] + WebServer(#[from] server::WebServerError), + #[error("Tokio runtime failed to start: {0}")] + Tokio(#[from] std::io::Error), +} diff --git a/router/src/infer/v2/queue.rs b/backends/v2/src/queue.rs similarity index 98% rename from router/src/infer/v2/queue.rs rename to backends/v2/src/queue.rs index 696cbfc8..bf52900f 100644 --- a/router/src/infer/v2/queue.rs +++ b/backends/v2/src/queue.rs @@ -1,14 +1,14 @@ -use crate::infer::{InferError, InferStreamResponse}; -use crate::validation::{ - ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters, +use crate::client::{ + Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters, }; use nohash_hasher::{BuildNoHashHasher, IntMap}; use std::cmp::min; use std::collections::VecDeque; -use text_generation_client::v2::{ - Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters, +use text_generation_router::infer::InferError; +use text_generation_router::infer::InferStreamResponse; +use text_generation_router::validation::{ + ChunksToString, ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters, }; -use text_generation_client::ChunksToString; use tokio::sync::{mpsc, oneshot}; use tokio::time::Instant; use tracing::{info_span, instrument, Span}; @@ -218,7 +218,7 @@ impl State { // Create span for this batch to add context to inference calls let next_batch_span = info_span!(parent: None, "batch", batch_size = tracing::field::Empty); - next_batch_span.follows_from(&Span::current()); + next_batch_span.follows_from(Span::current()); let mut batch_requests = Vec::with_capacity(self.entries.len()); let mut batch_entries = @@ -404,6 +404,7 @@ impl From for StoppingCriteriaParameters { #[cfg(test)] mod tests { use super::*; + use std::sync::Arc; use tracing::info_span; fn default_entry() -> ( @@ -415,7 +416,9 @@ mod tests { let entry = Entry { request: ValidGenerateRequest { inputs: vec![], + input_ids: Some(Arc::new(vec![])), input_length: 0, + add_special_tokens: true, truncate: 0, decoder_input_details: false, parameters: ValidParameters { diff --git a/backends/v3/src/lib.rs b/backends/v3/src/lib.rs index 77a9a11a..af66b21e 100644 --- a/backends/v3/src/lib.rs +++ b/backends/v3/src/lib.rs @@ -100,6 +100,7 @@ pub async fn connect_backend( .map_err(V3Error::Warmup)?, )?; tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}"); + metrics::gauge!("tgi_batch_max_total_tokens").set(max_batch_total_tokens); let backend_info = BackendInfo { waiting_served_ratio, diff --git a/backends/v3/src/queue.rs b/backends/v3/src/queue.rs index 2bbb6753..f8123b57 100644 --- a/backends/v3/src/queue.rs +++ b/backends/v3/src/queue.rs @@ -364,7 +364,7 @@ impl State { // Add it back to the front tracing::debug!("Over budget: not enough free blocks"); self.entries.push_front((id, entry)); - break; + continue; } Some(block_allocation) => { tracing::debug!("Allocation: {block_allocation:?}"); @@ -436,6 +436,12 @@ impl State { batch_entries.insert(id, entry); } + // Empty batch + if batch_requests.is_empty() { + tracing::debug!("Filterered out all entries"); + return None; + } + // Final batch size let size = batch_requests.len() as u32; next_batch_span.record("batch_size", size); diff --git a/backends/v3/src/radix.rs b/backends/v3/src/radix.rs index 9b117456..8a544891 100644 --- a/backends/v3/src/radix.rs +++ b/backends/v3/src/radix.rs @@ -1,10 +1,22 @@ use crate::block_allocator::{Allocator, BlockAllocation}; use slotmap::{DefaultKey, SlotMap}; +use std::hash::{Hash, Hasher}; use std::{ collections::{BTreeSet, HashMap}, sync::Arc, }; +fn hash(slice: &[u32]) -> u64 { + assert!(!slice.is_empty()); + if slice.len() == 1 { + slice[0] as u64 + } else { + let mut s = std::hash::DefaultHasher::new(); + slice.hash(&mut s); + s.finish() + } +} + pub struct RadixAllocator { allocation_id: u64, @@ -44,6 +56,10 @@ impl RadixAllocator { // the free list if we cannot allocate enough blocks. This is only // temporary, the trie needs to be able to report whether it can // allocate the requested amount. Just not implemented yet. + tracing::debug!( + "Free blocks {} need {n_blocks_needed}", + self.free_blocks.len() + ); self.free_blocks.extend( self.cache_blocks .evict(n_blocks_needed - self.free_blocks.len()), @@ -94,6 +110,9 @@ impl Allocator for RadixAllocator { match self.alloc_or_reclaim(suffix_blocks as usize) { Some(suffix_blocks) => blocks.extend(suffix_blocks), None => { + tracing::debug!("Cannot allocate {:?}", self.cache_blocks); + tracing::debug!("Found {prefix_len} prefix tokens need {suffix_blocks} suffix blocks for {tokens} tokens"); + tracing::debug!("Block size {}", self.block_size); self.cache_blocks .decref(prefix_node) .expect("Failed to decrement refcount"); @@ -211,7 +230,6 @@ struct RadixAllocation { pub enum TrieError { InvalidNodeId, RefCountUnderflow, - BlockTokenCountMismatch, } pub type NodeId = DefaultKey; @@ -268,16 +286,19 @@ impl RadixTrie { fn find_(&mut self, mut node_id: NodeId, key: &[u32], blocks: &mut Vec) -> NodeId { let node = &self.nodes[node_id]; - if let Some(&child_id) = node.children.get(&key[0]) { - self.update_access_time(child_id); - let child = self.nodes.get(child_id).expect("Invalid child identifier"); - let shared_prefix_len = shared_prefix(&child.key, key, self.block_size); - assert_eq!(shared_prefix_len % self.block_size, 0); - blocks.extend(&child.blocks[..shared_prefix_len / self.block_size]); + if key.len() >= self.block_size { + let node_key = hash(&key[..self.block_size]); + if let Some(&child_id) = node.children.get(&node_key) { + self.update_access_time(child_id); + let child = self.nodes.get(child_id).expect("Invalid child identifier"); + let shared_prefix_len = shared_prefix(&child.key, key, self.block_size); + assert_eq!(shared_prefix_len % self.block_size, 0); + blocks.extend(&child.blocks[..shared_prefix_len / self.block_size]); - let key = &key[shared_prefix_len..]; - if !key.is_empty() { - node_id = self.find_(child_id, key, blocks); + let key = &key[shared_prefix_len..]; + if !key.is_empty() { + node_id = self.find_(child_id, key, blocks); + } } } @@ -344,9 +365,11 @@ impl RadixTrie { // evict n_blocks and return `None` if we can't. We are now needlessly // evicting prefixes from the cache in such a case. let mut evicted = Vec::new(); + tracing::debug!("Evicting in search of {n_blocks}"); while let Some((last_access, node_id)) = self.leaves.pop_first() { - let blocks_needed = n_blocks - evicted.len(); + let blocks_needed = n_blocks.saturating_sub(evicted.len()); + tracing::debug!("Evicting node {node_id:?} "); let node = self.nodes.get(node_id).expect("Leave does not exist"); assert_eq!( @@ -368,8 +391,11 @@ impl RadixTrie { // the required number of blocks and leave the remaining blocks // untouched. let node = self.nodes.get_mut(node_id).expect("Leave does not exist"); - node.key.truncate(node.blocks.len() - blocks_needed); - evicted.extend(node.blocks.split_off(node.blocks.len() - blocks_needed)); + + let truncate_blocks = node.blocks.len() - blocks_needed; + let truncate_tokens = truncate_blocks * self.block_size; + node.key.truncate(truncate_tokens); + evicted.extend(node.blocks.split_off(truncate_blocks)); self.leaves.insert((last_access, node_id)); break; } @@ -400,11 +426,10 @@ impl RadixTrie { // the part of the prefix that is already in the trie to detect // mismatches. - if tokens.len() != blocks.len() * self.block_size { - return Err(TrieError::BlockTokenCountMismatch); - } + assert_eq!(tokens.len(), blocks.len() * self.block_size); - if let Some(&child_id) = self.nodes[node_id].children.get(&tokens[0]) { + let node_key = hash(&tokens[..self.block_size]); + if let Some(&child_id) = self.nodes[node_id].children.get(&node_key) { self.update_access_time(child_id); let child = self .nodes @@ -452,14 +477,15 @@ impl RadixTrie { .get_mut(node_id) .expect("Node to-be split does not exist"); let mut parent_key = node.key.split_off(prefix_len); - let mut parent_blocks = node.blocks.split_off(prefix_len); + let prefix_blocks = prefix_len / self.block_size; + let mut parent_blocks = node.blocks.split_off(prefix_blocks); // Move first part of the prefix to the parent. We swap to avoid // an allocation + copy for both splits of the key/blocks. std::mem::swap(&mut node.key, &mut parent_key); std::mem::swap(&mut node.blocks, &mut parent_blocks); - let node_key = node.key[0]; + let node_key = hash(&node.key[..self.block_size]); let grandparent_id = node.parent.expect("Node does not have a parent"); let parent_id = self.add_node(grandparent_id, parent_key, parent_blocks); @@ -484,7 +510,7 @@ impl RadixTrie { ) -> NodeId { let key = key.into(); let blocks = blocks.into(); - let first = key[0]; + let first = hash(&key[..self.block_size]); let child = TrieNode::new(key, blocks, self.time, Some(parent_id)); let child_id = self.nodes.insert(child); @@ -496,10 +522,10 @@ impl RadixTrie { } /// Add a node to the parent. - fn add_node_to_parent(&mut self, parent_id: NodeId, first: u32, child_id: NodeId) { + fn add_node_to_parent(&mut self, parent_id: NodeId, hash: u64, child_id: NodeId) { // Unwrap here, passing in an unknown id is a programming error. let parent = self.nodes.get_mut(parent_id).expect("Unknown parent node"); - if parent.children.insert(first, child_id).is_none() { + if parent.children.insert(hash, child_id).is_none() { // Only increase reference count if child does not replace another child. self.incref(parent_id) .expect("Failed to increase parent refcount"); @@ -517,7 +543,9 @@ impl RadixTrie { ); let parent_id = node.parent.expect("Attempted to remove root node"); let parent = self.nodes.get_mut(parent_id).expect("Unknown parent node"); - parent.children.remove(&node.key[0]); + + let node_key = hash(&node.key[..self.block_size]); + parent.children.remove(&node_key); self.decref(parent_id) .expect("Failed to decrease parent refcount"); node @@ -571,7 +599,7 @@ impl RadixTrie { #[derive(Debug)] struct TrieNode { blocks: Vec, - children: HashMap, + children: HashMap, key: Vec, last_accessed: u64, parent: Option, diff --git a/benchmark/Cargo.toml b/benchmark/Cargo.toml index f82659c9..23885da2 100644 --- a/benchmark/Cargo.toml +++ b/benchmark/Cargo.toml @@ -16,7 +16,6 @@ path = "src/main.rs" [dependencies] average = "0.14" clap = { version = "4.4.5", features = ["derive", "env"] } -crossterm = "0.27" float-ord = "0.3.2" serde = {version = "1.0.188", features = ["derive"]} serde_json = "1.0" @@ -25,7 +24,7 @@ text-generation-client = { path = "../backends/client" } thiserror = "1.0.48" tokenizers = { workspace = true } tokio = { version = "1.32.0", features = ["rt", "rt-multi-thread", "parking_lot", "signal", "sync", "macros"] } -tui = {package = "ratatui", version = "0.23", default-features = false, features = ["crossterm"]} +ratatui = "0.28.1" tracing = "0.1.37" tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } hf-hub = { workspace = true } diff --git a/benchmark/README.md b/benchmark/README.md index 17a02a30..f4e0cb16 100644 --- a/benchmark/README.md +++ b/benchmark/README.md @@ -7,7 +7,7 @@ A lightweight benchmarking tool based inspired by [oha](https://github.com/hatoo/oha) -and powered by [tui](https://github.com/tui-rs-revival/ratatui). +and powered by [Ratatui](https://github.com/ratatui/ratatui). ## Install diff --git a/benchmark/src/app.rs b/benchmark/src/app.rs index a0a9313a..7e3aeaf9 100644 --- a/benchmark/src/app.rs +++ b/benchmark/src/app.rs @@ -1,16 +1,15 @@ /// Inspired by https://github.com/hatoo/oha/blob/bb989ea3cd77727e7743e7daa60a19894bb5e901/src/monitor.rs use crate::generation::{Decode, Message, Prefill}; -use crossterm::event::{KeyCode, KeyEvent, KeyModifiers}; -use text_generation_client::ClientError; -use tokio::sync::mpsc; -use tui::backend::Backend; -use tui::layout::{Alignment, Constraint, Direction, Layout}; -use tui::style::{Color, Modifier, Style}; -use tui::text::{Line, Span}; -use tui::widgets::{ +use ratatui::crossterm::event::{KeyCode, KeyEvent, KeyModifiers}; +use ratatui::layout::{Alignment, Constraint, Direction, Layout}; +use ratatui::style::{Color, Modifier, Style}; +use ratatui::text::{Line, Span}; +use ratatui::widgets::{ Axis, BarChart, Block, Borders, Chart, Dataset, Gauge, GraphType, Paragraph, Tabs, }; -use tui::{symbols, Frame}; +use ratatui::{symbols, Frame}; +use text_generation_client::ClientError; +use tokio::sync::mpsc; /// TUI powered App pub(crate) struct App { @@ -153,7 +152,7 @@ impl App { } /// Render frame - pub fn render(&mut self, f: &mut Frame<'_, B>) { + pub fn render(&mut self, f: &mut Frame) { let batch_progress = (self.completed_batch as f64 / self.data.batch_size.len() as f64).clamp(0.0, 1.0); let run_progress = @@ -172,7 +171,7 @@ impl App { ] .as_ref(), ) - .split(f.size()); + .split(f.area()); // Top row horizontal layout let top = Layout::default() @@ -239,7 +238,7 @@ impl App { f.render_widget(helper, row5[0]); // Batch tabs - let titles = self + let titles: Vec = self .data .batch_size .iter() diff --git a/benchmark/src/event.rs b/benchmark/src/event.rs index 07482aed..d3f10fb6 100644 --- a/benchmark/src/event.rs +++ b/benchmark/src/event.rs @@ -1,5 +1,5 @@ /// Inspired by https://github.com/orhun/rust-tui-template/blob/472aa515119d4c94903eac12d9784417281dc7f5/src/event.rs -use crossterm::event; +use ratatui::crossterm::event; use std::time::{Duration, Instant}; use tokio::sync::{broadcast, mpsc}; diff --git a/benchmark/src/lib.rs b/benchmark/src/lib.rs index c33d64e6..bb4b6a77 100644 --- a/benchmark/src/lib.rs +++ b/benchmark/src/lib.rs @@ -6,13 +6,13 @@ mod utils; use crate::app::App; use crate::event::Event; -use crossterm::ExecutableCommand; +use ratatui::backend::CrosstermBackend; +use ratatui::crossterm::ExecutableCommand; +use ratatui::Terminal; use std::io; use text_generation_client::v3::{GrammarType, NextTokenChooserParameters, ShardedClient}; use tokenizers::Tokenizer; use tokio::sync::{broadcast, mpsc}; -use tui::backend::CrosstermBackend; -use tui::Terminal; /// Run benchmarking app #[allow(clippy::too_many_arguments)] @@ -50,9 +50,9 @@ pub async fn run( }; // Initialize terminal properties - crossterm::terminal::enable_raw_mode()?; - io::stdout().execute(crossterm::terminal::EnterAlternateScreen)?; - io::stdout().execute(crossterm::cursor::Hide)?; + ratatui::crossterm::terminal::enable_raw_mode()?; + io::stdout().execute(ratatui::crossterm::terminal::EnterAlternateScreen)?; + io::stdout().execute(ratatui::crossterm::cursor::Hide)?; // Initialize terminal let mut terminal = { @@ -128,9 +128,9 @@ pub async fn run( let _ = shutdown_guard_receiver.recv().await; // Revert terminal to original view - io::stdout().execute(crossterm::terminal::LeaveAlternateScreen)?; - crossterm::terminal::disable_raw_mode()?; - io::stdout().execute(crossterm::cursor::Show)?; + io::stdout().execute(ratatui::crossterm::terminal::LeaveAlternateScreen)?; + ratatui::crossterm::terminal::disable_raw_mode()?; + io::stdout().execute(ratatui::crossterm::cursor::Show)?; let parameters_table = table::parameters_table( tokenizer_name, diff --git a/clients/python/text_generation/types.py b/clients/python/text_generation/types.py index e36dd470..1085075e 100644 --- a/clients/python/text_generation/types.py +++ b/clients/python/text_generation/types.py @@ -28,11 +28,17 @@ class ToolCall(BaseModel): function: dict +class Chunk(BaseModel): + type: str + text: Optional[str] = None + image_url: Any = None + + class Message(BaseModel): # Role of the message sender role: str # Content of the message - content: Optional[str] = None + content: Optional[Union[str, List[Chunk]]] = None # Optional name of the message sender name: Optional[str] = None # Tool calls associated with the chat completion @@ -168,7 +174,7 @@ class ChatCompletionComplete(BaseModel): # Log probabilities for the chat completion logprobs: Optional[Any] # Reason for completion - finish_reason: str + finish_reason: Optional[str] # Usage details of the chat completion usage: Optional[Any] = None @@ -191,6 +197,7 @@ class ChatCompletionChunk(BaseModel): model: str system_fingerprint: str choices: List[Choice] + usage: Optional[Any] = None class Parameters(BaseModel): diff --git a/docs/openapi.json b/docs/openapi.json index 691705f2..67394a14 100644 --- a/docs/openapi.json +++ b/docs/openapi.json @@ -10,7 +10,7 @@ "name": "Apache 2.0", "url": "https://www.apache.org/licenses/LICENSE-2.0" }, - "version": "2.2.1-dev0" + "version": "2.3.2-dev0" }, "paths": { "/": { @@ -742,6 +742,14 @@ }, "system_fingerprint": { "type": "string" + }, + "usage": { + "allOf": [ + { + "$ref": "#/components/schemas/Usage" + } + ], + "nullable": true } } }, @@ -937,6 +945,14 @@ "stream": { "type": "boolean" }, + "stream_options": { + "allOf": [ + { + "$ref": "#/components/schemas/StreamOptions" + } + ], + "nullable": true + }, "temperature": { "type": "number", "format": "float", @@ -1912,6 +1928,19 @@ } } }, + "StreamOptions": { + "type": "object", + "required": [ + "include_usage" + ], + "properties": { + "include_usage": { + "type": "boolean", + "description": "If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value.", + "example": "true" + } + } + }, "StreamResponse": { "type": "object", "required": [ diff --git a/docs/source/architecture.md b/docs/source/architecture.md index 28c84f62..6660630d 100644 --- a/docs/source/architecture.md +++ b/docs/source/architecture.md @@ -10,7 +10,7 @@ This diagram shows well there are these separate components: - **The router**, also named `webserver`, that receives the client requests, buffers them, creates some batches, and prepares gRPC calls to a model server. - **The model server**, responsible of receiving the gRPC requests and to process the inference on the model. If the model is sharded across multiple accelerators (e.g.: multiple GPUs), the model server shards might be synchronized via NCCL or equivalent. -- **The launcher** is a helper thar will be able to launch one or several model servers (if model is sharded), and it launches the router with the compatible arguments. +- **The launcher** is a helper that will be able to launch one or several model servers (if model is sharded), and it launches the router with the compatible arguments. The router and the model server can be two different machines, they do not need to be deployed together. diff --git a/docs/source/conceptual/lora.md b/docs/source/conceptual/lora.md index cfc2109b..d1f4ce78 100644 --- a/docs/source/conceptual/lora.md +++ b/docs/source/conceptual/lora.md @@ -36,7 +36,13 @@ To use LoRA in TGI, when starting the server, you can specify the list of LoRA m LORA_ADAPTERS=predibase/customer_support,predibase/dbpedia ``` -additionally, you can specify the path to the LoRA models using the `LORA_ADAPTERS_PATH` environment variable. For example: +To specify model revision, use `adapter_id@revision`, as follows: + +```bash +LORA_ADAPTERS=predibase/customer_support@main,predibase/dbpedia@rev2 +``` + +To use a locally stored lora adapter, use `adapter-name=/path/to/adapter`, as seen below. When you want to use this adapter, set `"parameters": {"adapter_id": "adapter-name"}"` ```bash LORA_ADAPTERS=myadapter=/some/path/to/adapter,myadapter2=/another/path/to/adapter @@ -72,6 +78,22 @@ curl 127.0.0.1:3000/generate \ }' ``` +If you are using a lora adapter stored locally that was set in the following manner: `LORA_ADAPTERS=myadapter=/some/path/to/adapter`, here is an example payload: + +```json +curl 127.0.0.1:3000/generate \ + -X POST \ + -H 'Content-Type: application/json' \ + -d '{ + "inputs": "Hello who are you?", + "parameters": { + "max_new_tokens": 40, + "adapter_id": "myadapter" + } +}' +``` + + > **Note:** The Lora feature is new and still being improved. If you encounter any issues or have any feedback, please let us know by opening an issue on the [GitHub repository](https://github.com/huggingface/text-generation-inference/issues/new/choose). Additionally documentation and an improved client library will be published soon. An updated tutorial with detailed examples will be published soon. Stay tuned! diff --git a/docs/source/installation_amd.md b/docs/source/installation_amd.md index 931a9e3a..86d092eb 100644 --- a/docs/source/installation_amd.md +++ b/docs/source/installation_amd.md @@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \ --device=/dev/kfd --device=/dev/dri --group-add video \ --ipc=host --shm-size 256g --net host -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.2.0-rocm \ + ghcr.io/huggingface/text-generation-inference:2.3.1-rocm \ --model-id $model ``` @@ -31,6 +31,12 @@ Two implementations of Flash Attention are available for ROCm, the first is [ROC By default, the Composable Kernel implementation is used. However, the Triton implementation has slightly lower latency on MI250 and MI300, but requires a warmup which can be prohibitive as it needs to be done again for each new prompt length. If needed, FA Triton impelmentation can be enabled with `--env ROCM_USE_FLASH_ATTN_V2_TRITON="0"` when launching TGI's docker container. +## Custom PagedAttention + +For better performance on ROCm, a custom Paged Attention kernel is available and is enabled by default. To disable it and fall back to the PagedAttention v2 kernel, set the environment variable `ROCM_USE_CUSTOM_PAGED_ATTN=0`. + +The custom kernel supports bf16 and fp16 data types, block size of 16, head size of 128, a maximum context length of 16k, and GQA ratios between 1 and 16. For other configurations, we use the PagedAttention v2 kernel. + ## Unsupported features The following features are currently not supported in the ROCm version of TGI, and the supported may be extended in the future: diff --git a/docs/source/installation_intel.md b/docs/source/installation_intel.md index 3084a436..1435b331 100644 --- a/docs/source/installation_intel.md +++ b/docs/source/installation_intel.md @@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading docker run --rm --privileged --cap-add=sys_nice \ --device=/dev/dri \ --ipc=host --shm-size 1g --net host -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.2.0-intel-xpu \ + ghcr.io/huggingface/text-generation-inference:2.3.1-intel-xpu \ --model-id $model --cuda-graphs 0 ``` @@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading docker run --rm --privileged --cap-add=sys_nice \ --device=/dev/dri \ --ipc=host --shm-size 1g --net host -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.2.0-intel-cpu \ + ghcr.io/huggingface/text-generation-inference:2.3.1-intel-cpu \ --model-id $model --cuda-graphs 0 ``` diff --git a/docs/source/installation_nvidia.md b/docs/source/installation_nvidia.md index dac37d79..634380fc 100644 --- a/docs/source/installation_nvidia.md +++ b/docs/source/installation_nvidia.md @@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.2.0 \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ --model-id $model ``` diff --git a/docs/source/quicktour.md b/docs/source/quicktour.md index 18e1a107..655e6f9e 100644 --- a/docs/source/quicktour.md +++ b/docs/source/quicktour.md @@ -11,10 +11,19 @@ model=teknium/OpenHermes-2.5-Mistral-7B volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ - ghcr.io/huggingface/text-generation-inference:2.2.0 \ + ghcr.io/huggingface/text-generation-inference:2.3.1 \ --model-id $model ``` + + +If you want to serve gated or private models, which provide +controlled access to sensitive or proprietary content, refer to +[this guide](https://huggingface.co/docs/text-generation-inference/en/basic_tutorials/gated_model_access) +for detailed instructions. + + + ### Supported hardware TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPUs](./installation_nvidia), [Using TGI with AMD GPUs](./installation_amd), [Using TGI with Intel GPUs](./installation_intel), [Using TGI with Gaudi](./installation_gaudi), [Using TGI with Inferentia](./installation_inferentia) guides depending on which hardware you would like to deploy TGI on. diff --git a/docs/source/reference/launcher.md b/docs/source/reference/launcher.md index 01f15648..b1abd1ee 100644 --- a/docs/source/reference/launcher.md +++ b/docs/source/reference/launcher.md @@ -55,7 +55,9 @@ Options: ## QUANTIZE ```shell --quantize - Whether you want the model to be quantized + Quantization method to use for the model. It is not necessary to specify this option for pre-quantized models, since the quantization method is read from the model configuration. + + Marlin kernels will be used automatically for GPTQ/AWQ models. [env: QUANTIZE=] @@ -87,6 +89,15 @@ Options: [env: DTYPE=] [possible values: float16, bfloat16] +``` +## KV_CACHE_DTYPE +```shell + --kv-cache-dtype + Specify the dtype for the key-value cache. When this option is not provided, the dtype of the model is used (typically `float16` or `bfloat16`). Currently the only supported value is `fp8_e5m2` on CUDA + + [env: KV_CACHE_DTYPE=] + [possible values: fp8_e5m2] + ``` ## TRUST_REMOTE_CODE ```shell diff --git a/docs/source/supported_models.md b/docs/source/supported_models.md index 832f88ef..be280a2b 100644 --- a/docs/source/supported_models.md +++ b/docs/source/supported_models.md @@ -20,6 +20,7 @@ Text Generation Inference enables serving optimized models on specific hardware - [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1) - [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder) - [Phi](https://huggingface.co/microsoft/phi-1_5) +- [PhiMoe](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) - [Baichuan](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat) - [Falcon](https://huggingface.co/tiiuae/falcon-7b-instruct) - [StarCoder 2](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1) @@ -34,6 +35,7 @@ Text Generation Inference enables serving optimized models on specific hardware - [Gpt Neox](https://huggingface.co/EleutherAI/gpt-neox-20b) - [Gptj](https://huggingface.co/EleutherAI/gpt-j-6b) - [Idefics](https://huggingface.co/HuggingFaceM4/idefics-9b) (Multimodal) +- [Mllama](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) (Multimodal) If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models: diff --git a/flake.lock b/flake.lock index a079d418..04d386b3 100644 --- a/flake.lock +++ b/flake.lock @@ -479,11 +479,11 @@ "systems": "systems_6" }, "locked": { - "lastModified": 1710146030, - "narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=", + "lastModified": 1726560853, + "narHash": "sha256-X6rJYSESBVr3hBoH0WbKE5KvhPU5bloyZ2L4K60/fPQ=", "owner": "numtide", "repo": "flake-utils", - "rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a", + "rev": "c1dfcf08411b08f6b8615f7d8971a2bfa81d5e8a", "type": "github" }, "original": { @@ -497,11 +497,11 @@ "systems": "systems_7" }, "locked": { - "lastModified": 1710146030, - "narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=", + "lastModified": 1726560853, + "narHash": "sha256-X6rJYSESBVr3hBoH0WbKE5KvhPU5bloyZ2L4K60/fPQ=", "owner": "numtide", "repo": "flake-utils", - "rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a", + "rev": "c1dfcf08411b08f6b8615f7d8971a2bfa81d5e8a", "type": "github" }, "original": { @@ -718,11 +718,11 @@ }, "nixpkgs_6": { "locked": { - "lastModified": 1724915739, - "narHash": "sha256-7PgRge4mn5akFvhPwefuaLQGbF5BnmxlwZJEf7CgbrE=", + "lastModified": 1727675176, + "narHash": "sha256-xIjBFMYldWvj+g8ahxMPofsj+OqxvKJN6YylNHQ7gn4=", "owner": "nixos", "repo": "nixpkgs", - "rev": "85be051bb60943d3328d91aaf2598798f87e19af", + "rev": "a6d0207fea9212d28cd3d487efe6bc699663b93a", "type": "github" }, "original": { @@ -853,11 +853,11 @@ ] }, "locked": { - "lastModified": 1726021481, - "narHash": "sha256-4J4E+Fh+77XIYnq2RVtg+ENWXpu6t74P0jKN/f2RQmI=", + "lastModified": 1727836133, + "narHash": "sha256-JE0zciM5IGWvK8J/pE2VldNBf7oyMH5WrU8tZArefbg=", "owner": "oxalica", "repo": "rust-overlay", - "rev": "1c2c120246c51a644c20ba2a36a33d3bd4860d70", + "rev": "02321540b0c8000b36889b1b974d1fec585b25a4", "type": "github" }, "original": { @@ -978,16 +978,16 @@ "nixpkgs": "nixpkgs_6" }, "locked": { - "lastModified": 1725950569, - "narHash": "sha256-nJHA1SvIQbXySpL2ueNbzQOhnkQASa5tOLz/kdW0PWA=", - "owner": "danieldk", - "repo": "tgi-nix", - "rev": "d40f3c22e9bcc5e16c94d4605cf6a7d74dd07f46", + "lastModified": 1728029332, + "narHash": "sha256-j0RX3a67lvi2PC5w6J5DHTxM+l96J/OV5sAf34IUfUo=", + "owner": "huggingface", + "repo": "text-generation-inference-nix", + "rev": "98049f853346ca780b81fee730715c90d33ac2b4", "type": "github" }, "original": { - "owner": "danieldk", - "repo": "tgi-nix", + "owner": "huggingface", + "repo": "text-generation-inference-nix", "type": "github" } } diff --git a/flake.nix b/flake.nix index c6adf0a6..edef442f 100644 --- a/flake.nix +++ b/flake.nix @@ -5,7 +5,7 @@ inputs.nixpkgs.follows = "tgi-nix/nixpkgs"; }; nix-filter.url = "github:numtide/nix-filter"; - tgi-nix.url = "github:danieldk/tgi-nix"; + tgi-nix.url = "github:huggingface/text-generation-inference-nix"; nixpkgs.follows = "tgi-nix/nixpkgs"; flake-utils.url = "github:numtide/flake-utils"; rust-overlay = { @@ -37,6 +37,7 @@ overlays = [ rust-overlay.overlays.default tgi-nix.overlays.default + (import nix/overlay.nix) ]; }; crateOverrides = import ./nix/crate-overrides.nix { inherit pkgs nix-filter; }; @@ -67,8 +68,37 @@ ''; }; server = pkgs.python3.pkgs.callPackage ./nix/server.nix { inherit nix-filter; }; + client = pkgs.python3.pkgs.callPackage ./nix/client.nix { }; in { + checks = { + rust = + with pkgs; + rustPlatform.buildRustPackage { + name = "rust-checks"; + src = ./.; + cargoLock = { + lockFile = ./Cargo.lock; + }; + buildInputs = [ openssl.dev ]; + nativeBuildInputs = [ + clippy + pkg-config + protobuf + python3 + rustfmt + ]; + buildPhase = '' + cargo check + ''; + checkPhase = '' + cargo fmt -- --check + cargo test -j $NIX_BUILD_CORES + cargo clippy + ''; + installPhase = "touch $out"; + }; + }; formatter = pkgs.nixfmt-rfc-style; devShells = with pkgs; rec { default = pure; @@ -84,10 +114,11 @@ test = mkShell { buildInputs = [ - # benchmark - # launcher - # router + benchmark + launcher + router server + client openssl.dev pkg-config cargo @@ -102,60 +133,35 @@ pre-commit ruff ]); - }; - impure = mkShell { - buildInputs = - [ - openssl.dev - pkg-config - (rust-bin.stable.latest.default.override { - extensions = [ - "rust-analyzer" - "rust-src" - ]; - }) - protobuf - ] - ++ (with python3.pkgs; [ - venvShellHook - docker - pip - ipdb - click - pyright - pytest - pytest-asyncio - ruff - syrupy - ]); + impure = callPackage ./nix/impure-shell.nix { inherit server; }; - inputsFrom = [ server ]; - - venvDir = "./.venv"; - - postVenvCreation = '' - unset SOURCE_DATE_EPOCH - ( cd server ; python -m pip install --no-dependencies -e . ) - ( cd clients/python ; python -m pip install --no-dependencies -e . ) - ''; - postShellHook = '' - unset SOURCE_DATE_EPOCH - export PATH=$PATH:~/.cargo/bin - ''; + impure-flash-attn-v1 = callPackage ./nix/impure-shell.nix { + server = server.override { flash-attn = python3.pkgs.flash-attn-v1; }; }; }; - packages.default = pkgs.writeShellApplication { - name = "text-generation-inference"; - runtimeInputs = [ - server - router - ]; - text = '' - ${launcher}/bin/text-generation-launcher "$@" - ''; + packages = rec { + default = pkgs.writeShellApplication { + name = "text-generation-inference"; + runtimeInputs = [ + server + router + ]; + text = '' + ${launcher}/bin/text-generation-launcher "$@" + ''; + }; + + dockerImage = pkgs.callPackage nix/docker.nix { + text-generation-inference = default; + }; + + dockerImageStreamed = pkgs.callPackage nix/docker.nix { + text-generation-inference = default; + stream = true; + }; }; } ); diff --git a/integration-tests/conftest.py b/integration-tests/conftest.py index 9632c816..4c8c929f 100644 --- a/integration-tests/conftest.py +++ b/integration-tests/conftest.py @@ -336,12 +336,14 @@ def launcher(event_loop): use_flash_attention: bool = True, disable_grammar_support: bool = False, dtype: Optional[str] = None, + kv_cache_dtype: Optional[str] = None, revision: Optional[str] = None, max_input_length: Optional[int] = None, max_batch_prefill_tokens: Optional[int] = None, max_total_tokens: Optional[int] = None, lora_adapters: Optional[List[str]] = None, cuda_graphs: Optional[List[int]] = None, + attention: Optional[str] = None, ): port = random.randint(8000, 10_000) master_port = random.randint(10_000, 20_000) @@ -374,6 +376,9 @@ def launcher(event_loop): if dtype is not None: args.append("--dtype") args.append(dtype) + if kv_cache_dtype is not None: + args.append("--kv-cache-dtype") + args.append(kv_cache_dtype) if revision is not None: args.append("--revision") args.append(revision) @@ -401,6 +406,8 @@ def launcher(event_loop): if not use_flash_attention: env["USE_FLASH_ATTENTION"] = "false" + if attention is not None: + env["ATTENTION"] = attention with tempfile.TemporaryFile("w+") as tmp: # We'll output stdout/stderr to a temporary file. Using a pipe @@ -431,12 +438,14 @@ def launcher(event_loop): use_flash_attention: bool = True, disable_grammar_support: bool = False, dtype: Optional[str] = None, + kv_cache_dtype: Optional[str] = None, revision: Optional[str] = None, max_input_length: Optional[int] = None, max_batch_prefill_tokens: Optional[int] = None, max_total_tokens: Optional[int] = None, lora_adapters: Optional[List[str]] = None, cuda_graphs: Optional[List[int]] = None, + attention: Optional[str] = None, ): port = random.randint(8000, 10_000) @@ -452,6 +461,9 @@ def launcher(event_loop): if dtype is not None: args.append("--dtype") args.append(dtype) + if kv_cache_dtype is not None: + args.append("--kv-cache-dtype") + args.append(kv_cache_dtype) if revision is not None: args.append("--revision") args.append(revision) @@ -491,6 +503,8 @@ def launcher(event_loop): } if not use_flash_attention: env["USE_FLASH_ATTENTION"] = "false" + if attention is not None: + env["ATTENTION"] = attention if HF_TOKEN is not None: env["HF_TOKEN"] = HF_TOKEN @@ -522,6 +536,7 @@ def launcher(event_loop): devices=devices, volumes=volumes, ports={"80/tcp": port}, + healthcheck={"timeout": int(10 * 1e9)}, shm_size="1G", ) @@ -582,7 +597,6 @@ def generate_multi(): max_new_tokens: int, seed: Optional[int] = None, ) -> List[Response]: - import numpy as np arange = np.arange(len(prompts)) diff --git a/integration-tests/models/__snapshots__/test_completion_prompts/test_flash_llama_completion_stream_usage.json b/integration-tests/models/__snapshots__/test_completion_prompts/test_flash_llama_completion_stream_usage.json new file mode 100644 index 00000000..8c7be4cb --- /dev/null +++ b/integration-tests/models/__snapshots__/test_completion_prompts/test_flash_llama_completion_stream_usage.json @@ -0,0 +1,206 @@ +[ + { + "choices": [ + { + "delta": { + "content": "**", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656043, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": "Deep", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656043, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": " Learning", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656043, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": ":", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656043, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": " An", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656043, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": " Overview", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656043, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": "**\n", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656044, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": "================================", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656044, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": "=====", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 1726656044, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": null + }, + { + "choices": [ + { + "delta": { + "content": "\n\n", + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "length", + "index": 0, + "logprobs": null + } + ], + "created": 1726656044, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion.chunk", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 40, + "total_tokens": 50 + } + } +] diff --git a/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json b/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json index 8829f9fe..e322446b 100644 --- a/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json +++ b/integration-tests/models/__snapshots__/test_flash_gemma/test_flash_gemma.json @@ -24,13 +24,13 @@ "tokens": [ { "id": 1736, - "logprob": -2.03125, + "logprob": -2.109375, "special": false, "text": " form" }, { "id": 109, - "logprob": -1.8671875, + "logprob": -1.90625, "special": false, "text": "\n\n" }, @@ -42,48 +42,48 @@ }, { "id": 2121, - "logprob": -1.8125, + "logprob": -1.796875, "special": false, "text": " test" }, { "id": 3853, - "logprob": -0.24121094, + "logprob": -0.24511719, "special": false, "text": " request" }, { "id": 1736, - "logprob": -0.100097656, + "logprob": -0.09326172, "special": false, "text": " form" }, { "id": 603, - "logprob": -0.9453125, + "logprob": -0.95703125, "special": false, "text": " is" }, { - "id": 476, - "logprob": -1.703125, + "id": 1671, + "logprob": -1.5859375, "special": false, - "text": " a" + "text": " used" }, { - "id": 4551, - "logprob": -2.453125, + "id": 577, + "logprob": -0.39257812, "special": false, - "text": " document" + "text": " to" }, { - "id": 674, - "logprob": -0.796875, + "id": 3853, + "logprob": -1.25, "special": false, - "text": " that" + "text": " request" } ], "top_tokens": null }, - "generated_text": " form\n\nThe test request form is a document that" + "generated_text": " form\n\nThe test request form is used to request" } diff --git a/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json b/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json index bc80a0f9..a7019a43 100644 --- a/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json +++ b/integration-tests/models/__snapshots__/test_flash_gemma_gptq/test_flash_gemma_gptq_all_params.json @@ -11,12 +11,12 @@ }, { "id": 2015, - "logprob": -9.640625, + "logprob": -9.6484375, "text": "Test" }, { "id": 3853, - "logprob": -10.375, + "logprob": -10.3671875, "text": " request" } ], @@ -24,19 +24,19 @@ "tokens": [ { "id": 604, - "logprob": -0.2824707, + "logprob": -0.28271484, "special": false, "text": " for" }, { "id": 573, - "logprob": -0.19030762, + "logprob": -0.18493652, "special": false, "text": " the" }, { "id": 16819, - "logprob": -1.4892578, + "logprob": -1.4804688, "special": false, "text": " detection" }, @@ -46,44 +46,44 @@ "special": false, "text": " of" }, - { - "id": 573, - "logprob": -2.0195312, - "special": false, - "text": " the" - }, - { - "id": 8566, - "logprob": 0.0, - "special": false, - "text": " presence" - }, - { - "id": 689, - "logprob": -0.16491699, - "special": false, - "text": " or" - }, - { - "id": 14862, - "logprob": 0.0, - "special": false, - "text": " absence" - }, - { - "id": 576, - "logprob": -0.9946289, - "special": false, - "text": " of" - }, { "id": 671, - "logprob": -0.5263672, + "logprob": -2.1738281, "special": false, "text": " an" + }, + { + "id": 24646, + "logprob": -3.0449219, + "special": false, + "text": " RNA" + }, + { + "id": 12369, + "logprob": -0.19299316, + "special": false, + "text": " virus" + }, + { + "id": 575, + "logprob": -0.10632324, + "special": false, + "text": " in" + }, + { + "id": 6022, + "logprob": -0.98095703, + "special": false, + "text": " patients" + }, + { + "id": 1064, + "logprob": -1.3095703, + "special": false, + "text": " who" } ], "top_tokens": null }, - "generated_text": "Test request for the detection of the presence or absence of an" + "generated_text": "Test request for the detection of an RNA virus in patients who" } diff --git a/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache.json b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache.json new file mode 100644 index 00000000..c55dd593 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache.json @@ -0,0 +1,104 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.079956055, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.2763672, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37548828, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4628906, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02885437, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.2565918, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0063438416, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3056641, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.6035156, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" +} diff --git a/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_all_params.json b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_all_params.json new file mode 100644 index 00000000..d06d6e56 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_all_params.json @@ -0,0 +1,57 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "eos_token", + "generated_tokens": 3, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 374, + "logprob": -22.96875, + "text": " is" + }, + { + "id": 5655, + "logprob": -10.71875, + "text": " deep" + }, + { + "id": 6975, + "logprob": -2.6992188, + "text": " learning" + }, + { + "id": 30, + "logprob": -4.8398438, + "text": "?" + } + ], + "seed": 0, + "tokens": [ + { + "id": 720, + "logprob": -0.4411621, + "special": false, + "text": " \n" + }, + { + "id": 220, + "logprob": -0.35864258, + "special": false, + "text": " " + }, + { + "id": 128001, + "logprob": 0.0, + "special": true, + "text": "<|end_of_text|>" + } + ], + "top_tokens": null + }, + "generated_text": "What is deep learning? \n " +} diff --git a/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_load.json b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_load.json new file mode 100644 index 00000000..46670819 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_llama_fp8_kv_cache/test_flash_llama_fp8_kv_cache_load.json @@ -0,0 +1,418 @@ +[ + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 128000, + "logprob": null, + "text": "<|begin_of_text|>" + }, + { + "id": 3923, + "logprob": -5.6328125, + "text": "What" + }, + { + "id": 374, + "logprob": -1.2265625, + "text": " is" + }, + { + "id": 5655, + "logprob": -9.1015625, + "text": " deep" + }, + { + "id": 6975, + "logprob": -1.8085938, + "text": " learning" + }, + { + "id": 30, + "logprob": -1.0439453, + "text": "?" + } + ], + "seed": null, + "tokens": [ + { + "id": 18682, + "logprob": -2.1992188, + "special": false, + "text": " Deep" + }, + { + "id": 6975, + "logprob": -0.07897949, + "special": false, + "text": " learning" + }, + { + "id": 374, + "logprob": -0.27734375, + "special": false, + "text": " is" + }, + { + "id": 264, + "logprob": -0.37402344, + "special": false, + "text": " a" + }, + { + "id": 27084, + "logprob": -1.4511719, + "special": false, + "text": " subset" + }, + { + "id": 315, + "logprob": -0.02909851, + "special": false, + "text": " of" + }, + { + "id": 5780, + "logprob": -0.25854492, + "special": false, + "text": " machine" + }, + { + "id": 6975, + "logprob": -0.0061798096, + "special": false, + "text": " learning" + }, + { + "id": 430, + "logprob": -1.3046875, + "special": false, + "text": " that" + }, + { + "id": 374, + "logprob": -1.5537109, + "special": false, + "text": " is" + } + ], + "top_tokens": null + }, + "generated_text": " Deep learning is a subset of machine learning that is" + } +] diff --git a/integration-tests/models/__snapshots__/test_flash_llama_prefix_flashdecoding/test_flash_llama_flashdecoding.json b/integration-tests/models/__snapshots__/test_flash_llama_prefix_flashdecoding/test_flash_llama_flashdecoding.json new file mode 100644 index 00000000..51247ba4 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_llama_prefix_flashdecoding/test_flash_llama_flashdecoding.json @@ -0,0 +1,2550 @@ +[ + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Jeff Walker's Product Launch Formula is a comprehensive system", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 69, + "total_tokens": 79 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here are three key indicators to determine if a customer", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 52, + "total_tokens": 62 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "You can use the `String.format()` method in", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 97, + "total_tokens": 107 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a realm of binary mysticism, we find", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 126, + "total_tokens": 136 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The `dummy` variable is being used to consume", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 305, + "total_tokens": 315 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "You can add multiple new columns in Power Query (", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 51, + "total_tokens": 61 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "There are many exciting new technologies emerging across various fields", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 52, + "total_tokens": 62 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Poly Ether Ether Ketone (PEEK) is", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 40, + "total_tokens": 50 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's a technical overview of a referral system similar", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 85, + "total_tokens": 95 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's an example of how you can add an", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 45, + "total_tokens": 55 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'd be happy to help with Java. What", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 43, + "total_tokens": 53 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I can help you plan a road trip from Pune", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 82, + "total_tokens": 92 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'd be happy to explain more about a topic", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 38, + "total_tokens": 48 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'd be happy to help you brainstorm and provide", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 47, + "total_tokens": 57 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Implementing a Minesweeper algorithm using algebraic", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 54, + "total_tokens": 64 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "There are several issues with the provided code:\n\n1", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 375, + "total_tokens": 385 + } + }, + { + "choices": [ + { + "finish_reason": "stop", + "index": 0, + "logprobs": null, + "message": { + "content": ";)", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 2, + "prompt_tokens": 105, + "total_tokens": 107 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "As I delved into the world of high-st", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 2097, + "total_tokens": 2107 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "/u/CruxHub: Hi, I'm", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 2614, + "total_tokens": 2624 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To simulate a conversation between Alice and /u/C", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1070, + "total_tokens": 1080 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Alice: Hey /u/CruxHub,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1847, + "total_tokens": 1857 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Alice: Hi /u/CruxHub,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1849, + "total_tokens": 1859 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "/u/CruxHub: Hey Alice, I", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1004, + "total_tokens": 1014 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "/u/CruxHub: Hey Alice, I", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1100, + "total_tokens": 1110 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "/u/CruxHub: Hey Alice, I", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1044, + "total_tokens": 1054 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The Dogme approach and the Lexical Approach are", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 54, + "total_tokens": 64 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Implementing a netfilter in Linux with a Rust", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 48, + "total_tokens": 58 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Damage to the Ulnar nerve can cause numb", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 56, + "total_tokens": 66 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The Space Shuttle's Reaction Control System (RCS", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I can provide you with a basic Python script that", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 65, + "total_tokens": 75 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Farming meat has several negative impacts on the environment", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 43, + "total_tokens": 53 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The photograph filter you're referring to is called \"", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 51, + "total_tokens": 61 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's a sample geological database structure with some example", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 59, + "total_tokens": 69 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Web Marketing: A Simplified Explanation**\n\nWeb", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 45, + "total_tokens": 55 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's a rewritten and improved version of the story", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 447, + "total_tokens": 457 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here are the questions rewritten in a more conversational", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 168, + "total_tokens": 178 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Learning Progress: 0%**\n\n| Topic", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 216, + "total_tokens": 226 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I couldn't find any information on a person named", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 44, + "total_tokens": 54 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's a list of the largest outdoor retailers in", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 43, + "total_tokens": 53 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To create a WordPress shortcode that includes Facebook SDK code", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 49, + "total_tokens": 59 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The sentence is mostly grammatically correct, but there", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 78, + "total_tokens": 88 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'd be happy to engage in a debate with", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 59, + "total_tokens": 69 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'd love to hear about your business. As", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 64, + "total_tokens": 74 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'll wait for your request to proceed with part", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 2410, + "total_tokens": 2420 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The final part of the Day Sculpting program emphasizes", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 2699, + "total_tokens": 2709 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Analysis of the Coming of Age Story Archetype", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 349, + "total_tokens": 359 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The Apostle John is one of the most prominent figures", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 49, + "total_tokens": 59 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To build a Google Places autocomplete feature on Jetpack", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 427, + "total_tokens": 437 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The information provided does not mention the captain's name", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 169, + "total_tokens": 179 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The metaverse is a shared, immersive and interactive", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 39, + "total_tokens": 49 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here are some ideas for a series of articles for", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "\"Purim Palooza Alert: \n\nTo", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 78, + "total_tokens": 88 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Summary of the paper in 10 points:", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 2022, + "total_tokens": 2032 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "You'll provide three pieces of text, and then", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 58, + "total_tokens": 68 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'm ready to proceed with text 3.", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1650, + "total_tokens": 1660 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'm ready to answer questions on Text 1", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 1116, + "total_tokens": 1126 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "This is a Solidity contract written in the older", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 334, + "total_tokens": 344 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Speech Recognition and Synthesis using Python**\n\nTo", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 84, + "total_tokens": 94 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I'd be happy to help you discuss a paper", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 42, + "total_tokens": 52 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To handle the given utterance, we can use", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 375, + "total_tokens": 385 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Subscription Services Template:**\n\n**Title:** Virtual", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 443, + "total_tokens": 453 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Hello. How can I assist you today?", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 36, + "total_tokens": 46 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Differentiating yourself from other Etsy shops is crucial to", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 102, + "total_tokens": 112 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To become a Licensed Marriage and Family Therapist (", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 53, + "total_tokens": 63 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**What is Quantum Computing?**\n\nQuantum computing", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 42, + "total_tokens": 52 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Aquí te dejo 40 opciones de nombres", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 108, + "total_tokens": 118 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Deposition is a geological process that involves the transportation", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 38, + "total_tokens": 48 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here are some good e-governance initiatives in", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 55, + "total_tokens": 65 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's a simple Python program that accepts a command", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 56, + "total_tokens": 66 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Imagine you're playing with a toy box. You", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 47, + "total_tokens": 57 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's an example of a question they might ask", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 66, + "total_tokens": 76 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Arduino Uno adalah sebuah papan mikrokontrol", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 38, + "total_tokens": 48 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To edit an array that is within an object,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 42, + "total_tokens": 52 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Microsoft ENTRA (Enterprise Mobility + Security) is", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 56, + "total_tokens": 66 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To calculate the difference in interest paid between a simple", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 69, + "total_tokens": 79 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Yes, you can use Spring State Machine and Spring", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 49, + "total_tokens": 59 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The issue lies in the fact that the `meta", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 142, + "total_tokens": 152 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here are some effective marketing tactics for local small businesses", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 46, + "total_tokens": 56 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The French Revolution, which lasted from 1789", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 41, + "total_tokens": 51 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Roles of a Network Driver:**\n\nA network", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 65, + "total_tokens": 75 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Yes, I'm familiar with the SAS (Stat", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 44, + "total_tokens": 54 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Using relays to control 12V solen", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 60, + "total_tokens": 70 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "You can use the following Python code to achieve this", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 55, + "total_tokens": 65 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here are some prompts for viral comics:\n\n1.", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 336, + "total_tokens": 346 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To simplify and make the comic funnier, consider", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 301, + "total_tokens": 311 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's a rewritten version of the 4-panel", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243278, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 282, + "total_tokens": 292 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Subject: Request for E-Waste Collection and Computer", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 110, + "total_tokens": 120 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In the context of conference calls, the state you", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 84, + "total_tokens": 94 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "I can provide a general classification of companies based on", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 56, + "total_tokens": 66 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here are some user stories that describe the concept in", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 44, + "total_tokens": 54 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "You can check your Python version by running the following", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 39, + "total_tokens": 49 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "**Scenario:**\n\n15-year-old Black youth,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 473, + "total_tokens": 483 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "As a Demand Generation Manager for a B2B", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The error is due to a typo in your code", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 369, + "total_tokens": 379 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "고등교육의 필요성에 관한 영어 에", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243286, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 72, + "total_tokens": 82 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "Here's a simple C# program that uses the", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243283, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 51, + "total_tokens": 61 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "The error message \"connection refused\" indicates that the", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243277, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 85, + "total_tokens": 95 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To load an image, you can use various methods", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1726243284, + "id": "", + "model": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.2.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 41, + "total_tokens": 51 + } + } +] diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral.json b/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral.json new file mode 100644 index 00000000..56419967 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral.json @@ -0,0 +1,114 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 1824, + "logprob": -6.1445312, + "text": "What" + }, + { + "id": 349, + "logprob": -1.4648438, + "text": "is" + }, + { + "id": 21135, + "logprob": -13.6875, + "text": "gradient" + }, + { + "id": 24871, + "logprob": -1.6005859, + "text": "descent" + }, + { + "id": 28804, + "logprob": -0.39526367, + "text": "?" + }, + { + "id": 13, + "logprob": -0.640625, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.18774414, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 20910, + "logprob": -0.96484375, + "special": false, + "text": "Grad" + }, + { + "id": 722, + "logprob": -0.003168106, + "special": false, + "text": "ient" + }, + { + "id": 24871, + "logprob": -0.16540527, + "special": false, + "text": " descent" + }, + { + "id": 349, + "logprob": -0.08886719, + "special": false, + "text": " is" + }, + { + "id": 396, + "logprob": -0.75878906, + "special": false, + "text": " an" + }, + { + "id": 18586, + "logprob": -0.5703125, + "special": false, + "text": " optimization" + }, + { + "id": 9464, + "logprob": -0.11242676, + "special": false, + "text": " algorithm" + }, + { + "id": 1307, + "logprob": -0.7939453, + "special": false, + "text": " used" + }, + { + "id": 298, + "logprob": -0.17102051, + "special": false, + "text": " to" + }, + { + "id": 26518, + "logprob": -0.34326172, + "special": false, + "text": " minimize" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is an optimization algorithm used to minimize" +} diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_all_params.json b/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_all_params.json new file mode 100644 index 00000000..e25086c6 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_all_params.json @@ -0,0 +1,99 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 24871, + "logprob": -17.234375, + "text": "descent" + }, + { + "id": 28804, + "logprob": -7.4375, + "text": "?" + }, + { + "id": 13, + "logprob": -0.8046875, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.33032227, + "text": "\n" + } + ], + "seed": 0, + "tokens": [ + { + "id": 1313, + "logprob": -2.3613281, + "special": false, + "text": "It" + }, + { + "id": 3969, + "logprob": -0.7285156, + "special": false, + "text": " seems" + }, + { + "id": 298, + "logprob": -1.3466797, + "special": false, + "text": " to" + }, + { + "id": 528, + "logprob": 0.0, + "special": false, + "text": " me" + }, + { + "id": 28725, + "logprob": -1.6757812, + "special": false, + "text": "," + }, + { + "id": 369, + "logprob": 0.0, + "special": false, + "text": " that" + }, + { + "id": 513, + "logprob": -1.1269531, + "special": false, + "text": " if" + }, + { + "id": 368, + "logprob": 0.0, + "special": false, + "text": " you" + }, + { + "id": 28742, + "logprob": -2.4921875, + "special": false, + "text": "'" + }, + { + "id": 267, + "logprob": 0.0, + "special": false, + "text": "re" + } + ], + "top_tokens": null + }, + "generated_text": "What is gradient descent?\n\nIt seems to me, that if you're" +} diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_load.json b/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_load.json new file mode 100644 index 00000000..55056cfd --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral/test_flash_mixtral_load.json @@ -0,0 +1,458 @@ +[ + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 1824, + "logprob": -6.1445312, + "text": "What" + }, + { + "id": 349, + "logprob": -1.4648438, + "text": "is" + }, + { + "id": 21135, + "logprob": -13.6875, + "text": "gradient" + }, + { + "id": 24871, + "logprob": -1.6005859, + "text": "descent" + }, + { + "id": 28804, + "logprob": -0.39526367, + "text": "?" + }, + { + "id": 13, + "logprob": -0.640625, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.18774414, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 20910, + "logprob": -0.96484375, + "special": false, + "text": "Grad" + }, + { + "id": 722, + "logprob": -0.003168106, + "special": false, + "text": "ient" + }, + { + "id": 24871, + "logprob": -0.16369629, + "special": false, + "text": " descent" + }, + { + "id": 349, + "logprob": -0.0881958, + "special": false, + "text": " is" + }, + { + "id": 396, + "logprob": -0.76708984, + "special": false, + "text": " an" + }, + { + "id": 18586, + "logprob": -0.57373047, + "special": false, + "text": " optimization" + }, + { + "id": 9464, + "logprob": -0.11291504, + "special": false, + "text": " algorithm" + }, + { + "id": 1307, + "logprob": -0.79589844, + "special": false, + "text": " used" + }, + { + "id": 298, + "logprob": -0.1694336, + "special": false, + "text": " to" + }, + { + "id": 26518, + "logprob": -0.34350586, + "special": false, + "text": " minimize" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is an optimization algorithm used to minimize" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 1824, + "logprob": -6.1445312, + "text": "What" + }, + { + "id": 349, + "logprob": -1.4677734, + "text": "is" + }, + { + "id": 21135, + "logprob": -13.6875, + "text": "gradient" + }, + { + "id": 24871, + "logprob": -1.6015625, + "text": "descent" + }, + { + "id": 28804, + "logprob": -0.39453125, + "text": "?" + }, + { + "id": 13, + "logprob": -0.6435547, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.18713379, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 20910, + "logprob": -0.9628906, + "special": false, + "text": "Grad" + }, + { + "id": 722, + "logprob": -0.0032176971, + "special": false, + "text": "ient" + }, + { + "id": 24871, + "logprob": -0.16540527, + "special": false, + "text": " descent" + }, + { + "id": 349, + "logprob": -0.08898926, + "special": false, + "text": " is" + }, + { + "id": 396, + "logprob": -0.765625, + "special": false, + "text": " an" + }, + { + "id": 18586, + "logprob": -0.5708008, + "special": false, + "text": " optimization" + }, + { + "id": 9464, + "logprob": -0.11401367, + "special": false, + "text": " algorithm" + }, + { + "id": 1307, + "logprob": -0.7963867, + "special": false, + "text": " used" + }, + { + "id": 298, + "logprob": -0.17028809, + "special": false, + "text": " to" + }, + { + "id": 26518, + "logprob": -0.34326172, + "special": false, + "text": " minimize" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is an optimization algorithm used to minimize" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 1824, + "logprob": -6.140625, + "text": "What" + }, + { + "id": 349, + "logprob": -1.4658203, + "text": "is" + }, + { + "id": 21135, + "logprob": -13.6796875, + "text": "gradient" + }, + { + "id": 24871, + "logprob": -1.5898438, + "text": "descent" + }, + { + "id": 28804, + "logprob": -0.3955078, + "text": "?" + }, + { + "id": 13, + "logprob": -0.64501953, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.18493652, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 20910, + "logprob": -0.9580078, + "special": false, + "text": "Grad" + }, + { + "id": 722, + "logprob": -0.0032176971, + "special": false, + "text": "ient" + }, + { + "id": 24871, + "logprob": -0.16552734, + "special": false, + "text": " descent" + }, + { + "id": 349, + "logprob": -0.08874512, + "special": false, + "text": " is" + }, + { + "id": 396, + "logprob": -0.75878906, + "special": false, + "text": " an" + }, + { + "id": 18586, + "logprob": -0.5703125, + "special": false, + "text": " optimization" + }, + { + "id": 9464, + "logprob": -0.11236572, + "special": false, + "text": " algorithm" + }, + { + "id": 1307, + "logprob": -0.79541016, + "special": false, + "text": " used" + }, + { + "id": 298, + "logprob": -0.17102051, + "special": false, + "text": " to" + }, + { + "id": 26518, + "logprob": -0.34326172, + "special": false, + "text": " minimize" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is an optimization algorithm used to minimize" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 1824, + "logprob": -6.1328125, + "text": "What" + }, + { + "id": 349, + "logprob": -1.4658203, + "text": "is" + }, + { + "id": 21135, + "logprob": -13.6796875, + "text": "gradient" + }, + { + "id": 24871, + "logprob": -1.5947266, + "text": "descent" + }, + { + "id": 28804, + "logprob": -0.39648438, + "text": "?" + }, + { + "id": 13, + "logprob": -0.6464844, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.18688965, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 20910, + "logprob": -0.9609375, + "special": false, + "text": "Grad" + }, + { + "id": 722, + "logprob": -0.003168106, + "special": false, + "text": "ient" + }, + { + "id": 24871, + "logprob": -0.16601562, + "special": false, + "text": " descent" + }, + { + "id": 349, + "logprob": -0.088134766, + "special": false, + "text": " is" + }, + { + "id": 396, + "logprob": -0.7597656, + "special": false, + "text": " an" + }, + { + "id": 18586, + "logprob": -0.5708008, + "special": false, + "text": " optimization" + }, + { + "id": 9464, + "logprob": -0.11291504, + "special": false, + "text": " algorithm" + }, + { + "id": 1307, + "logprob": -0.7944336, + "special": false, + "text": " used" + }, + { + "id": 298, + "logprob": -0.17102051, + "special": false, + "text": " to" + }, + { + "id": 26518, + "logprob": -0.34399414, + "special": false, + "text": " minimize" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is an optimization algorithm used to minimize" + } +] diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq.json b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq.json new file mode 100644 index 00000000..993bdadd --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq.json @@ -0,0 +1,89 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8808594, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37280273, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.26098633, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017137527, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2695312, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9238281, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48828125, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" +} diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_all_params.json b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_all_params.json new file mode 100644 index 00000000..94411eef --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_all_params.json @@ -0,0 +1,89 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": 0, + "tokens": [ + { + "id": 13, + "logprob": -0.34838867, + "special": false, + "text": "\n" + }, + { + "id": 13940, + "logprob": -0.38916016, + "special": false, + "text": "``" + }, + { + "id": 28832, + "logprob": 0.0, + "special": false, + "text": "`" + }, + { + "id": 3371, + "logprob": -1.2529297, + "special": false, + "text": "json" + }, + { + "id": 13, + "logprob": 0.0, + "special": false, + "text": "\n" + }, + { + "id": 28751, + "logprob": 0.0, + "special": false, + "text": "{" + }, + { + "id": 13, + "logprob": 0.0, + "special": false, + "text": "\n" + }, + { + "id": 2287, + "logprob": 0.0, + "special": false, + "text": " " + }, + { + "id": 345, + "logprob": 0.0, + "special": false, + "text": " \"" + }, + { + "id": 3134, + "logprob": -0.640625, + "special": false, + "text": "request" + } + ], + "top_tokens": null + }, + "generated_text": "Test request\n```json\n{\n \"request" +} diff --git a/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_load.json b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_load.json new file mode 100644 index 00000000..19e306a3 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_mixtral_gptq/test_flash_mixtral_gptq_load.json @@ -0,0 +1,358 @@ +[ + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1, + "logprob": null, + "text": "" + }, + { + "id": 3735, + "logprob": -11.0078125, + "text": "Test" + }, + { + "id": 2159, + "logprob": -13.59375, + "text": "request" + } + ], + "seed": null, + "tokens": [ + { + "id": 13, + "logprob": -1.7089844, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.68847656, + "special": false, + "text": "\n" + }, + { + "id": 28771, + "logprob": -1.9394531, + "special": false, + "text": "#" + }, + { + "id": 3735, + "logprob": -2.8828125, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.37329102, + "special": false, + "text": " request" + }, + { + "id": 13, + "logprob": -0.2602539, + "special": false, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.0017185211, + "special": false, + "text": "\n" + }, + { + "id": 1064, + "logprob": -2.2753906, + "special": false, + "text": "##" + }, + { + "id": 3735, + "logprob": -1.9316406, + "special": false, + "text": " Test" + }, + { + "id": 2159, + "logprob": -0.48217773, + "special": false, + "text": " request" + } + ], + "top_tokens": null + }, + "generated_text": "\n\n# Test request\n\n## Test request" + } +] diff --git a/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe.json b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe.json new file mode 100644 index 00000000..0d6dca31 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe.json @@ -0,0 +1,109 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7133789, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9296875, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.048919678, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8105469, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.84521484, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.017028809, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0027313232, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0623207e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5361328, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17578125, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.00011539459, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.47436523, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027680397, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" +} diff --git a/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_all_params.json b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_all_params.json new file mode 100644 index 00000000..38b80335 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_all_params.json @@ -0,0 +1,99 @@ +{ + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 16030, + "logprob": null, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -6.4960938, + "text": "descent" + }, + { + "id": 29973, + "logprob": -5.1484375, + "text": "?" + }, + { + "id": 13, + "logprob": -4.0351562, + "text": "\n" + }, + { + "id": 13, + "logprob": -5.2265625, + "text": "\n" + } + ], + "seed": 0, + "tokens": [ + { + "id": 10994, + "logprob": -1.1542969, + "special": false, + "text": "Hello" + }, + { + "id": 29991, + "logprob": 0.0, + "special": false, + "text": "!" + }, + { + "id": 739, + "logprob": 0.0, + "special": false, + "text": " It" + }, + { + "id": 2444, + "logprob": -0.42260742, + "special": false, + "text": " seems" + }, + { + "id": 366, + "logprob": 0.0, + "special": false, + "text": " you" + }, + { + "id": 29915, + "logprob": 0.0, + "special": false, + "text": "'" + }, + { + "id": 276, + "logprob": -0.9838867, + "special": false, + "text": "re" + }, + { + "id": 3211, + "logprob": 0.0, + "special": false, + "text": " address" + }, + { + "id": 292, + "logprob": 0.0, + "special": false, + "text": "ing" + }, + { + "id": 263, + "logprob": -0.15124512, + "special": false, + "text": " a" + } + ], + "top_tokens": null + }, + "generated_text": "What is gradient descent?\n\nHello! It seems you're addressing a" +} diff --git a/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_load.json b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_load.json new file mode 100644 index 00000000..f1f81152 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_flash_phi35_moe/test_flash_phi35_moe_load.json @@ -0,0 +1,438 @@ +[ + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7133789, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9296875, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.048919678, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8105469, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.84521484, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.017028809, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0028476715, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023971558, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0384789e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17602539, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.000116467476, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.47436523, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027871132, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7128906, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9375, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.05053711, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0058594, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8242188, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.84521484, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.018859863, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.002822876, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0384789e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17126465, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.0001155138, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.47436523, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027036667, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.71484375, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9375, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.049346924, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8242188, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.86328125, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.017196655, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0028438568, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.026558e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17602539, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.00011622906, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.48608398, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027894974, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + }, + { + "details": { + "best_of_sequences": null, + "finish_reason": "length", + "generated_tokens": 10, + "prefill": [ + { + "id": 1724, + "logprob": null, + "text": "What" + }, + { + "id": 338, + "logprob": -0.7192383, + "text": "is" + }, + { + "id": 16030, + "logprob": -13.9375, + "text": "gradient" + }, + { + "id": 26815, + "logprob": -0.050445557, + "text": "descent" + }, + { + "id": 29973, + "logprob": -3.0078125, + "text": "?" + }, + { + "id": 13, + "logprob": -2.8242188, + "text": "\n" + }, + { + "id": 13, + "logprob": -0.8276367, + "text": "\n" + } + ], + "seed": null, + "tokens": [ + { + "id": 25584, + "logprob": -0.01727295, + "special": false, + "text": "Grad" + }, + { + "id": 993, + "logprob": -0.0027542114, + "special": false, + "text": "ient" + }, + { + "id": 26815, + "logprob": -0.023254395, + "special": false, + "text": " descent" + }, + { + "id": 338, + "logprob": -2.0384789e-05, + "special": false, + "text": " is" + }, + { + "id": 263, + "logprob": -0.5229492, + "special": false, + "text": " a" + }, + { + "id": 937, + "logprob": -0.17126465, + "special": false, + "text": " first" + }, + { + "id": 29899, + "logprob": 0.0, + "special": false, + "text": "-" + }, + { + "id": 2098, + "logprob": -0.00011301041, + "special": false, + "text": "order" + }, + { + "id": 13883, + "logprob": -0.48608398, + "special": false, + "text": " optimization" + }, + { + "id": 5687, + "logprob": -0.00027894974, + "special": false, + "text": " algorithm" + } + ], + "top_tokens": null + }, + "generated_text": "Gradient descent is a first-order optimization algorithm" + } +] diff --git a/integration-tests/models/__snapshots__/test_mllama/test_mllama_load.json b/integration-tests/models/__snapshots__/test_mllama/test_mllama_load.json new file mode 100644 index 00000000..95ba7a78 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_mllama/test_mllama_load.json @@ -0,0 +1,106 @@ +[ + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a bustling city, a chicken named Cluck", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a world where even chickens could dream big,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a world where even chickens could dream big,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + }, + { + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a world where even chickens could dream big,", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727773835, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } + } +] diff --git a/integration-tests/models/__snapshots__/test_mllama/test_mllama_simpl.json b/integration-tests/models/__snapshots__/test_mllama/test_mllama_simpl.json new file mode 100644 index 00000000..1d4dd6d7 --- /dev/null +++ b/integration-tests/models/__snapshots__/test_mllama/test_mllama_simpl.json @@ -0,0 +1,26 @@ +{ + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "In a bustling city, a chicken named Cluck", + "name": null, + "role": "assistant", + "tool_calls": null + }, + "usage": null + } + ], + "created": 1727556016, + "id": "", + "model": "meta-llama/Llama-3.2-11B-Vision-Instruct", + "object": "chat.completion", + "system_fingerprint": "2.3.1-dev0-native", + "usage": { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60 + } +} diff --git a/integration-tests/models/test_completion_prompts.py b/integration-tests/models/test_completion_prompts.py index a3b6651d..6c359f1e 100644 --- a/integration-tests/models/test_completion_prompts.py +++ b/integration-tests/models/test_completion_prompts.py @@ -3,9 +3,7 @@ import requests import json from aiohttp import ClientSession -from text_generation.types import ( - Completion, -) +from text_generation.types import Completion, ChatCompletionChunk @pytest.fixture(scope="module") @@ -50,6 +48,114 @@ def test_flash_llama_completion_single_prompt( assert response == response_snapshot +@pytest.mark.release +async def test_flash_llama_completion_stream_usage( + flash_llama_completion, response_snapshot +): + url = f"{flash_llama_completion.base_url}/v1/chat/completions" + request = { + "model": "tgi", + "messages": [ + { + "role": "user", + "content": "What is Deep Learning?", + } + ], + "max_tokens": 10, + "temperature": 0.0, + "stream_options": {"include_usage": True}, + "stream": True, + } + string = "" + chunks = [] + had_usage = False + async with ClientSession(headers=flash_llama_completion.headers) as session: + async with session.post(url, json=request) as response: + # iterate over the stream + async for chunk in response.content.iter_any(): + # remove "data:" + chunk = chunk.decode().split("\n\n") + # remove "data:" if present + chunk = [c.replace("data:", "") for c in chunk] + # remove empty strings + chunk = [c for c in chunk if c] + # remove completion marking chunk + chunk = [c for c in chunk if c != " [DONE]"] + # parse json + chunk = [json.loads(c) for c in chunk] + + for c in chunk: + chunks.append(ChatCompletionChunk(**c)) + assert "choices" in c + if len(c["choices"]) == 1: + index = c["choices"][0]["index"] + assert index == 0 + string += c["choices"][0]["delta"]["content"] + + has_usage = c["usage"] is not None + assert not had_usage + if has_usage: + had_usage = True + else: + raise RuntimeError("Expected different payload") + assert had_usage + assert ( + string + == "**Deep Learning: An Overview**\n=====================================\n\n" + ) + assert chunks == response_snapshot + + request = { + "model": "tgi", + "messages": [ + { + "role": "user", + "content": "What is Deep Learning?", + } + ], + "max_tokens": 10, + "temperature": 0.0, + "stream": True, + } + string = "" + chunks = [] + had_usage = False + async with ClientSession(headers=flash_llama_completion.headers) as session: + async with session.post(url, json=request) as response: + # iterate over the stream + async for chunk in response.content.iter_any(): + # remove "data:" + chunk = chunk.decode().split("\n\n") + # remove "data:" if present + chunk = [c.replace("data:", "") for c in chunk] + # remove empty strings + chunk = [c for c in chunk if c] + # remove completion marking chunk + chunk = [c for c in chunk if c != " [DONE]"] + # parse json + chunk = [json.loads(c) for c in chunk] + + for c in chunk: + chunks.append(ChatCompletionChunk(**c)) + assert "choices" in c + if len(c["choices"]) == 1: + index = c["choices"][0]["index"] + assert index == 0 + string += c["choices"][0]["delta"]["content"] + + has_usage = c["usage"] is not None + assert not had_usage + if has_usage: + had_usage = True + else: + raise RuntimeError("Expected different payload") + assert not had_usage + assert ( + string + == "**Deep Learning: An Overview**\n=====================================\n\n" + ) + + @pytest.mark.release def test_flash_llama_completion_many_prompts(flash_llama_completion, response_snapshot): response = requests.post( diff --git a/integration-tests/models/test_flash_llama_fp8_kv_cache.py b/integration-tests/models/test_flash_llama_fp8_kv_cache.py new file mode 100644 index 00000000..05e9f0dd --- /dev/null +++ b/integration-tests/models/test_flash_llama_fp8_kv_cache.py @@ -0,0 +1,77 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_llama_fp8_kv_cache_handle(launcher): + with launcher( + "meta-llama/Meta-Llama-3-8B", num_shard=2, kv_cache_dtype="fp8_e5m2" + ) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_llama_fp8_kv_cache(flash_llama_fp8_kv_cache_handle): + await flash_llama_fp8_kv_cache_handle.health(300) + return flash_llama_fp8_kv_cache_handle.client + + +@pytest.mark.release +@pytest.mark.asyncio +@pytest.mark.private +async def test_flash_llama_fp8_kv_cache(flash_llama_fp8_kv_cache, response_snapshot): + response = await flash_llama_fp8_kv_cache.generate( + "What is deep learning?", max_new_tokens=10, decoder_input_details=True + ) + + assert ( + response.generated_text + == " Deep learning is a subset of machine learning that is" + ) + assert response.details.generated_tokens == 10 + assert response == response_snapshot + + +@pytest.mark.release +@pytest.mark.asyncio +@pytest.mark.private +async def test_flash_llama_fp8_kv_cache_all_params( + flash_llama_fp8_kv_cache, response_snapshot +): + response = await flash_llama_fp8_kv_cache.generate( + "What is deep learning?", + max_new_tokens=10, + repetition_penalty=1.2, + return_full_text=True, + stop_sequences=["test"], + temperature=0.5, + top_p=0.9, + top_k=10, + truncate=5, + typical_p=0.9, + watermark=True, + decoder_input_details=True, + seed=0, + ) + + assert response == response_snapshot + + +@pytest.mark.release +@pytest.mark.asyncio +@pytest.mark.private +async def test_flash_llama_fp8_kv_cache_load( + flash_llama_fp8_kv_cache, generate_load, response_snapshot +): + responses = await generate_load( + flash_llama_fp8_kv_cache, "What is deep learning?", max_new_tokens=10, n=4 + ) + + assert len(responses) == 4 + assert ( + responses[0].generated_text + == " Deep learning is a subset of machine learning that is" + ) + assert all( + [r.generated_text == responses[0].generated_text for r in responses] + ), f"Different messages : {[r.generated_text for r in responses]}" + assert responses == response_snapshot diff --git a/integration-tests/models/test_flash_llama_prefix_flashdecoding.py b/integration-tests/models/test_flash_llama_prefix_flashdecoding.py new file mode 100644 index 00000000..73d397bd --- /dev/null +++ b/integration-tests/models/test_flash_llama_prefix_flashdecoding.py @@ -0,0 +1,229 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_llama_handle_fd(launcher): + with launcher( + "meta-llama/Meta-Llama-3.1-8B-Instruct", num_shard=2, attention="flashdecoding" + ) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_llama_fd(flash_llama_handle_fd): + await flash_llama_handle_fd.health(300) + return flash_llama_handle_fd.client + + +@pytest.mark.asyncio +@pytest.mark.private +async def test_flash_llama_flashdecoding( + flash_llama_fd, generate_multi, generous_response_snapshot +): + prompts = [ + "Summarize the main ideas of Jeff Walker's Product Launch Formula into bullet points as it pertains to a growth marketing agency implementing these strategies and tactics for their clients...", + "How to tell if a customer segment is well segmented? In 3 bullet points.", + 'In Java, I want to replace string like "This is a new {object} at {place}" with a Map, {object: "student", "point 3, 4"}, and get a result "This is a new student at point 3, 4". How can I do?', + "Metaphorical language is also used to describe the various addressing modes of the instructions. Grandiose language to express their excitement and admiration for the functionality of the instructions being described. Now, rewrite this with more perplexity:\n\nJMP ABCD\nMOV AX, [BX+SI]\nMOV AX, [100]\nMOV AX, [BX]\nMOV AX, [BX\\*2+SI]\nMOV AX, BX\nMOV AX, 7", + 'I have the following C++ function: \nvoid add\\_player(vector& players)\n{\n string player\\_name;\n string player\\_class;\n string dummy;\n PlayerClass pc;\n string player\\_sex;\n int player\\_gold;\n\n cout << " Create a Mage, Warrior, Bowman, or Thief" << endl;\n\n cout << "Name: ";\n getline(cin, player\\_name);\n\n cout << "Class: ";\n getline(cin, player\\_class);\n pc = get\\_player\\_class\\_from\\_string(player\\_class);\n while (pc == PlayerClass::InvalidPlayerClass)\n {\n cout << " Invalid class, try again" << endl;\n cout << "Class: ";\n getline(cin, player\\_class);\n pc = get\\_player\\_class\\_from\\_string(player\\_class);\n }\n\n cout << "Sex: ";\n getline(cin, player\\_sex);\n\n cout << "Gold: ";\n cin >> player\\_gold;\n getline(cin, dummy); //consume newline\n\n GamePlayer new\\_player;\n new\\_player.name = player\\_name;\n new\\_player.occupation = pc;\n new\\_player.gender = player\\_sex;\n new\\_player.gold = player\\_gold;\n\n //add to vector\n players.push\\_back(new\\_player);\n\n //add to file\n write\\_players\\_file(players);\n}\nCan you explain to me how the dummy variable is being used?', + "how do I add multiple new columns in m for power query or power bi?", + "Sure, I can do that. What new technology would you like me to review?", + "Poly Ether Ether Ketone", + 'can you design a referral system similar on how dropbox did? I need a technical overview on how it should work, instead of free space we use the generic term "credits" where users can get more credits for every 3 friends they recommend.', + "Java add to the arraylist of a class type", + "this is not less code this is java", + "I want to do a road trip from Pune to Gujarat. Me and my wife will be travelling and we dont prefer very long driving sessions. Can you suggest a plan starting from Thursday early morning and ending in Pune on Sunday late night.", + "explane more", + "what do you think about this for a start up idea:", + "how could i implement a minesweeper algorithm that utilises algebraic topology to solve boards?", + "# Import the necessary packages\nfrom gudhi import SimplexTree\nfrom gudhi.persistent\\_homology import PersistentHomology\n\n# Define a function to compute the persistent homology of a Minesweeper game board\ndef minesweeper\\_homology(board):\n # Create a simplicial complex for the game board\n st = SimplexTree()\n\n # Add the points on the board to the simplicial complex\n for i in range(len(board)):\n for j in range(len(board[0])):\n st.insert([i, j], filtration=board[i][j])\n\n # Compute the persistent homology of the game board\n ph = PersistentHomology()\n ph.build(st)\n\n # Return the persistent homology diagram\n return ph.persistence()\n\n# Define a function to solve a Minesweeper game board using persistent homology\ndef minesweeper\\_solver(board):\n # Compute the persistent homology of the game board\n homology = minesweeper\\_homology(board)\n\n # Use the persistent homology to determine the locations of the mines\n # (this part would require some mathematical reasoning and programming)\n mines = []\n for h in homology:\n if h[1] - h[0] == 1: # if the hole persists for one filtration value\n mines.append(h[0]) # then it corresponds to a mine\n\n # Use the information about the mines to solve the game\n # (this part would require some programming)\n for mine in mines:\n i, j = mine # extract the coordinates of the mine\n board[i][j] = -1 # mark the mine on the board\n # (other code to solve the game)\n\n \nwhat is missing here?", + "You are now an imaginary expert business investigator. I am going to send you many rows of data. Each batch of row's will be sent to you and you may only reply \"Received.\" Save any analysis or insights for after you've received all of the data and I've told you \"Let's Begin.\" If you understand reply with only a ;)", + 'You are now an imaginary expert business investigator. Tell the story of this batch of data in the form of a narrative story about the companies in the "Entity Name" column: \n\nBatch of data #1: Entity Name Purpose / Source\n101 PC HOLDINGS LLC Holding company for Penthouse C at the Setai Miami Beach (folio: 02-3234-153-1160)\n11 STAR ISLAND LLC Holding company for 10 STAR ISLAND DR, MIAMI BEACH, FL 33139 (folio: 02-4204-001-0100, 02-4204-001-0110) (lots 10, 11 and 12 of Star Island)\n117 EAST PARK AVENUE, LLC Holding company for 117 E. PARK AVE, LIBERTYVILLE, IL (PIN: 11-21-212-046-0000); subsequently sold.\n1201 BRICKELL BAY, LLC Holding company for 1201 BRICKELL BAY DR, MIAMI, FL (folio no: 141390710010)\n1221 BRICKELL, LLC Holding company for 1221 BRICKELL AVE, 155 SE 13 ST, 165 SE 13 ST, 175 SE 13 ST, and 185 SE 13 ST, MIAMI, FL (folio: 01-4139-035-0010)\n1221 BRICKELL HOLDINGS LLC Holding company for 1221 BRICKELL, LLC\n1229 PARK WEST AVENUE, LLC Holding company for 1229 W. PARK AVE, LIBERTYVILLE, IL (PIN: 11-20-100-010-0000)\n125 WORTH LLC Delaware LLC (file 7218403), Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person; speculaton this is similar setup as 151 WORTH, LLC and 151 WORTH HOLDINGS LLC, this property is next door (PCN: 50-43-43-23-05-016-0380)\n125 WORTH HOLDINGS LLC Delaware LLC (file 7218407); not registered to Florida yet but speculation this is similar setup as 151 WORTH, LLC and 151 WORTH HOLDINGS LLC\n1250 BB ASSET CO LLC Holding company for 1250 BRICKELL BAY DR and 1260 BRICKELL BAY DR, MIAMI, FL (folio nos: 102100504250, 102100503210)\n1330 SOUTH OCEAN LLC Holding company for 1330 S OCEAN BLVD, PALM BEACH, FL (PCN: 50-43-44-02-11-000-0020)\n14 STAR ISLAND LLC Delaware LLC (file 3377653); incorporated 8/42020, withdrawn 10/10/2022; believe this was not used because 14 STAR ISLAND property was held by NAUTILUS HOLDINGS I LLC before sale on 10/5/2022\n151 WORTH, LLC Holding company for 151 WORTH AVE, PALM BEACH, FL 33480 (PCN: 50-43-43-23-05-016-0130); office space for Citadel (https://localtoday.news/fl/citadel-moves-into-palm-beachs-former-neiman-marcus-building-4821.html); sole member is 151 WORTH HOLDINGS LLC\n151 WORTH HOLDINGS LLC Holding company for 151 WORTH, LLC\n16 WILLOW HOLDINGS LLC f/k/a PVNAH LLC Holding company for S WILLOW COURT, ASPEN, CO (Parcel: 273511309030); see Pitkin Co. reception # 623002, Delaware certificate showing name change 9/1/2015\n190 PFISTER HOLDINGS LLC f/k/a AH2013 HOLDINGS LLC Holding company for 190 PFISTER DR, ASPEN, CO (parcel: 273511309029); see Pitkin Co.reception # 623000, Delaware certificate showing name change 9/1/2015\n196 PFISTER HOLDINGS LLC Holding company for 196 PFISTER DR, ASPEN, CO (parcel: 273511309028); see Pitkin Co. reception # 623501, statement of authority show KP HOLDINGS LLC as sole membe\n1ALPH LLC See ALPH LLC\n1BUSINESS GROUP LLC See BUSINESS GROUP LLC\n1GFS DESIGN LLC See GFS DESIGN LLC\n1GFS LLC See GFS LLC\n1MEDIA HOLDINGS LLC See MEDIA HOLDINGS LLC\n23174 NE 41ST PATH LLC Holding company for 23174 NE 41ST PATH #12, OKEECHOBEE, FL 34972 (Parcel: 1-01-35-35-0020-00000-0120); part of Pine Creek Sporting Club (www.pinecreeksportingclub.com) includes horse, shooting sports; sole member is KP HOLDINGS L.L.C.\n3031 BRICKELL LLC Holding company for 3031 BRICKELL AVE, MIAMI FL 33129 (Folio: 01-4139-001-2700); Sole member is KP HOLDINGS L.L.C.\n31 WILLOW HOLDINGS LLC f/k/a AP HOLDINGS I LLC Holding company for 31 NORTH WILLOW COURT, ASPEN, CO (Parcel: 273511309019); sold 7/6/2017; see Pitkin Co. reception # 623001, Delaware certificate showing name change 9/1/2015\n650 CASUARINA LLC Holding company for 650 CASUARINA CONCOURSE CORAL GABLES, FL (folio: 03-4132-019-0060) https://www.bizjournals.com/southflorida/news/2022/05/27/650-casuarina-concourse-coral-gables-sold.html\n650 MEADOW LANE 1 LP Holding company for 650 MEADOW LANE, VILLAGE OF SOUTHAMPTON, NY (Parcel ID 7478) (https://archive.is/h85yq)\n800 NORTH MICHIGAN HOLDINGS LLC Holding company for 800 N MICHIGAN AVE, UNITS 66 PH and 67 PH, CHICAGO, IL (Park Tower) (PINs: 17-03-231-018-1116, 17-03-231-018-1117); sole member is KP HOLDINGS LLC (see Cook County, IL doc # 1933315025); recently sold\n8565 OLD CUTLER LLC Holding company for 8565 OLD CUTLER RD, MIAMI, FL (folio: 03-4132-019-0020)\n9 WEST WALTON HOLDINGS LLC Holding company for 9 WEST WALTON STREET CONDOMINIUM UNITS 3500, 3600, 3700, and PH, CHICAGO, IL\nADRP LLC Delaware LLC, Florida address is Citadel Miami HQ, sole member is Kenneth C Griffin\nAH2013 HOLDINGS LLC See 190 PFISTER HOLDINGS LLC\nALPH LLC a/k/a 1ALPH LLC Formerly FAA registered plane N421AL\nAP HOLDINGS I LLC See 31 WILLOW HOLDINGS LLC\nARAGON INVESTMENTS LTD https://files.brokercheck.finra.org/firm/firm\\_45631.pdf\nASHLER CAPITAL LLC https://adviserinfo.sec.gov/firm/summary/148826\nASHLER CAPITAL MASTER FUND LTD https://www.sec.gov/Archives/edgar/data/1003078/000114420418014250/tv488357\\_sc13g.htm\nBANBURY LLC Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person\nBANBURY II LLC Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person\nBKGST LLC Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person\nBLACK CALABASH FAMILY HOLDINGS LLC f/k/a PBH LLC See BLOSSOM WAY HOLDINGS LLC\nBLACK WHEEL LLC Illinois LLC, registered 3/5/2014, Florida address is Citadel Miami HQ, sole member is Kenneth C Griffin\nBLOSSOM WAY HOLDINGS LLC f/k/a CPPB HOLDINGS LLC f/k/a BLACK CALABASH FAMILY HOLDINGS LLC f/k/a PBH LLC Holding company for 10 BLOSSOM WAY, 70 BLOSSOM WAY, and 1265 S OCEAN BLVD PALM BEACH, FL (PCNs: 50-43-44-02-10-000-0050, 50-43-44-02-10-000-0060, 50-43-44-02-10-000-0010)\nBRICKELL BAY HOLDINGS LLC Holding company for 1201 BRICKELL BAY, LLC\nBRICKELL LEASING LLC See "Subordination, Non-Disturbance, and Attornment Agreement"; Miami-Dade Clerk\'s File No.: 2022 R 938960, Group: 1. Kenneth C Griffin is sole member.\nCAAM MANAGEMENT LLC https://www.sec.gov/Archives/edgar/data/1027745/000114420408050200/v124853\\_sc13g.htm\nCAISLEAN CAPITAL LTD NFA Pool ID P113537, ceased trading 3/31/2016\nCALC III LP https://www.sec.gov/edgar/browse/?CIK=1582652\nCALC IV LP https://www.sec.gov/edgar/browse/?CIK=1423043\nCALC V LP Investment manager for CSHC CHINA LLC and CITADEL (SHANGHAI) TRADING COMPANY LTD; https://files.brokercheck.finra.org/firm/firm\\_131114.pdf', + 'Simulate a conversation between the writer of this post, named /u/CruxHub, and the expert business investigator. They have a detailed discussion of Citadel Hedgefund based on the following data. Do not include the following data in the search query. \n\nData: Entity Name Purpose / Source\n1|101 PC HOLDINGS LLC|Holding company for Penthouse C at the Setai Miami Beach (folio: 02-3234-153-1160)|PC = Penthouse C \n2|11 STAR ISLAND LLC|Holding company for 10 STAR ISLAND DR, MIAMI BEACH, FL 33139 (folio: 02-4204-001-0100, 02-4204-001-0110) (lots 10, 11 and 12 of Star Island)| \n3|117 EAST PARK AVENUE, LLC|Holding company for 117 E. PARK AVE, LIBERTYVILLE, IL (PIN: 11-21-212-046-0000); subsequently sold.| \n4|1201 BRICKELL BAY, LLC|Holding company for 1201 BRICKELL BAY DR, MIAMI, FL (folio no: 141390710010)| \n5|1221 BRICKELL, LLC|Holding company for 1221 BRICKELL AVE, 155 SE 13 ST, 165 SE 13 ST, 175 SE 13 ST, and 185 SE 13 ST, MIAMI, FL (folio: 01-4139-035-0010)| \n6|1221 BRICKELL HOLDINGS LLC|Holding company for 1221 BRICKELL, LLC| \n7|1229 PARK WEST AVENUE, LLC|Holding company for 1229 W. PARK AVE, LIBERTYVILLE, IL (PIN: 11-20-100-010-0000)| \n8|125 WORTH LLC|Delaware LLC (file 7218403), Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person; speculaton this is similar setup as 151 WORTH, LLC and 151 WORTH HOLDINGS LLC, this property is next door (PCN: 50-43-43-23-05-016-0380)| \n9|125 WORTH HOLDINGS LLC|Delaware LLC (file 7218407); not registered to Florida yet but speculation this is similar setup as 151 WORTH, LLC and 151 WORTH HOLDINGS LLC| \n10|1250 BB ASSET CO LLC|Holding company for 1250 BRICKELL BAY DR and 1260 BRICKELL BAY DR, MIAMI, FL (folio nos: 102100504250, 102100503210)|BB = Brickell Bay \n11|1330 SOUTH OCEAN LLC|Holding company for 1330 S OCEAN BLVD, PALM BEACH, FL (PCN: 50-43-44-02-11-000-0020)| \n12|14 STAR ISLAND LLC|Delaware LLC (file 3377653); incorporated 8/42020, withdrawn 10/10/2022; believe this was not used because 14 STAR ISLAND property was held by NAUTILUS HOLDINGS I LLC before sale on 10/5/2022| \n13|151 WORTH, LLC|Holding company for 151 WORTH AVE, PALM BEACH, FL 33480 (PCN: 50-43-43-23-05-016-0130); office space for Citadel (https://localtoday.news/fl/citadel-moves-into-palm-beachs-former-neiman-marcus-building-4821.html); sole member is 151 WORTH HOLDINGS LLC| \n14|151 WORTH HOLDINGS LLC|Holding company for 151 WORTH, LLC| \n15|16 WILLOW HOLDINGS LLC f/k/a PVNAH LLC|Holding company for S WILLOW COURT, ASPEN, CO (Parcel: 273511309030); see Pitkin Co. reception # 623002, Delaware certificate showing name change 9/1/2015| \n16|190 PFISTER HOLDINGS LLC f/k/a AH2013 HOLDINGS LLC|Holding company for 190 PFISTER DR, ASPEN, CO (parcel: 273511309029); see Pitkin Co.reception # 623000, Delaware certificate showing name change 9/1/2015| \n17|196 PFISTER HOLDINGS LLC|Holding company for 196 PFISTER DR, ASPEN, CO (parcel: 273511309028); see Pitkin Co. reception # 623501, statement of authority show KP HOLDINGS LLC as sole membe| \n18|1ALPH LLC|See ALPH LLC| \n19|1BUSINESS GROUP LLC|See BUSINESS GROUP LLC| \n20|1GFS DESIGN LLC|See GFS DESIGN LLC| \n21|1GFS LLC|See GFS LLC| \n22|1MEDIA HOLDINGS LLC|See MEDIA HOLDINGS LLC| \n23|23174 NE 41ST PATH LLC|Holding company for 23174 NE 41ST PATH #12, OKEECHOBEE, FL 34972 (Parcel: 1-01-35-35-0020-00000-0120); part of Pine Creek Sporting Club (www.pinecreeksportingclub.com) includes horse, shooting sports; sole member is KP HOLDINGS L.L.C.| \n24|3031 BRICKELL LLC|Holding company for 3031 BRICKELL AVE, MIAMI FL 33129 (Folio: 01-4139-001-2700); Sole member is KP HOLDINGS L.L.C.| \n25|31 WILLOW HOLDINGS LLC f/k/a AP HOLDINGS I LLC|Holding company for 31 NORTH WILLOW COURT, ASPEN, CO (Parcel: 273511309019); sold 7/6/2017; see Pitkin Co. reception # 623001, Delaware certificate showing name change 9/1/2015| \n26|650 CASUARINA LLC|Holding company for 650 CASUARINA CONCOURSE CORAL GABLES, FL (folio: 03-4132-019-0060) https://www.bizjournals.com/southflorida/news/2022/05/27/650-casuarina-concourse-coral-gables-sold.html|" \n27|650 MEADOW LANE 1 LP|Holding company for 650 MEADOW LANE, VILLAGE OF SOUTHAMPTON, NY (Parcel ID 7478) (https://archive.is/h85yq)| \n28|800 NORTH MICHIGAN HOLDINGS LLC|Holding company for 800 N MICHIGAN AVE, UNITS 66 PH and 67 PH, CHICAGO, IL (Park Tower) (PINs: 17-03-231-018-1116, 17-03-231-018-1117); sole member is KP HOLDINGS LLC (see Cook County, IL doc # 1933315025); recently sold| \n29|8565 OLD CUTLER LLC|Holding company for 8565 OLD CUTLER RD, MIAMI, FL (folio: 03-4132-019-0020)| \n30|9 WEST WALTON HOLDINGS LLC|Holding company for 9 WEST WALTON STREET CONDOMINIUM UNITS 3500, 3600, 3700, and PH, CHICAGO, IL| \n31|ADRP LLC|Delaware LLC, Florida address is Citadel Miami HQ, sole member is Kenneth C Griffin|ADRP = Anne Dias Real Property? \n32|AH2013 HOLDINGS LLC|See 190 PFISTER HOLDINGS LLC|AH = Aspen Holdings? \n33|ALPH LLC a/k/a 1ALPH LLC|Formerly FAA registered plane N421AL| \n34|AP HOLDINGS I LLC|See 31 WILLOW HOLDINGS LLC|AP = Aspen Property? \n35|ARAGON INVESTMENTS LTD|https://files.brokercheck.finra.org/firm/firm\\_45631.pdf| \n36|ASHLER CAPITAL LLC|https://adviserinfo.sec.gov/firm/summary/148826| \n37|ASHLER CAPITAL MASTER FUND LTD|https://www.sec.gov/Archives/edgar/data/1003078/000114420418014250/tv488357\\_sc13g.htm| \n38|BANBURY LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n39|BANBURY II LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n40|BKGST LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n41|BLACK CALABASH FAMILY HOLDINGS LLC f/k/a PBH LLC|See BLOSSOM WAY HOLDINGS LLC|Black Calabash is a type of tropical tree: https://edis.ifas.ufl.edu/publication/ST079 \n42|BLACK WHEEL LLC|Illinois LLC, registered 3/5/2014, Florida address is Citadel Miami HQ, sole member is Kenneth C Griffin| \n43|BLOSSOM WAY HOLDINGS LLC f/k/a CPPB HOLDINGS LLC f/k/a BLACK CALABASH FAMILY HOLDINGS LLC f/k/a PBH LLC|Holding company for 10 BLOSSOM WAY, 70 BLOSSOM WAY, and 1265 S OCEAN BLVD PALM BEACH, FL (PCNs: 50-43-44-02-10-000-0050, 50-43-44-02-10-000-0060, 50-43-44-02-10-000-0010)| \n44|BRICKELL BAY HOLDINGS LLC|Holding company for 1201 BRICKELL BAY, LLC| \n45|BRICKELL LEASING LLC|See "Subordination, Non-Disturbance, and Attornment Agreement"; Miami-Dade Clerk\'s File No.: 2022 R 938960, Group: 1. Kenneth C Griffin is sole member.| \n46|CAAM MANAGEMENT LLC|https://www.sec.gov/Archives/edgar/data/1027745/000114420408050200/v124853\\_sc13g.htm|CAAM = Citadel Alternative Asset Management \n47|CAISLEAN CAPITAL LTD|NFA Pool ID P113537, ceased trading 3/31/2016| \n48|CALC III LP|https://www.sec.gov/edgar/browse/?CIK=1582652| \n49|CALC IV LP|https://www.sec.gov/edgar/browse/?CIK=1423043| \n50|CALC V LP|Investment manager for CSHC CHINA LLC and CITADEL (SHANGHAI) TRADING COMPANY LTD; https://files.brokercheck.finra.org/firm/firm\\_131114.pdf| \n51|CAMBRIDGE FINANCIAL GROUP, LTD|See CITADEL INVESTMENT GROUP LLC| \n52|CCFD OFFSHORE HOLDINGS LTD|NFA Pool ID P064386, ceased trading 5/3/2013| \n53|CCLC HOLDINGS LLC|Owns CITADEL CLEARING LLC, "Citadel Clearing Holdco"; https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n54|CCMFL LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n55|CCOF OFFSHORE HOLDINGS LTD|NFA Pool ID P064392, ceased trading 5/3/2013| \n56|CDC PARTNERS, LP f/k/a GLB PARTNERS, LP|see Cook County, IL doc 0608910081| \n57|CDG HOLDINGS LTD|NFA Pool ID P037047, ceased trading 12/30/2009|', + 'Web search results:\n\n[1] "As per the Oxford Dictionary, a chatbot is defined as A computer program designed to simulate conversation with human users, especially over the internet. It can be looked upon as a virtual assistant that communicates with users via text messages and helps businesses in getting close to their customers."\nURL: https://www.datacamp.com/tutorial/building-a-chatbot-using-chatterbot\n\n[2] "Python , A chatbot is a computer program designed to simulate conversation with human users, especially over the internet. Create a fortune teller program that will ask the user to input a question and feedback some random answer. Consider the following feedback to be used. No idea at all! Better pray. The possibilities are in your favor."\nURL: https://www.chegg.com/homework-help/questions-and-answers/python-chatbot-computer-program-designed-simulate-conversation-human-users-especially-inte-q78825383\n\n[3] "It was created by Joseph Weizenbaum in 1966 and it uses pattern matching and substitution methodology to simulate conversation. The program was designed in a way that it mimics human conversation. The Chatbot ELIZA worked by passing the words that users entered into a computer and then pairing them to a list of possible scripted responses."\nURL: https://onlim.com/en/the-history-of-chatbots/\n\n[4] "Study with Quizlet and memorize flashcards containing terms like Which analytics does the following fall into: Alice notice that call center always have an increase in the number of customer complaints during last week in May, so she decides reviews the employees work schedule in the month of May for the past 5 years., Datasets continue to become, Model used for predictive analytic have ..."\nURL: https://quizlet.com/415587939/big-data-final-exam-flash-cards/\n\n[5] "As every bright side has a darker version, simulation of human conversation through AI also has some disadvantages like high cost of creation, unemployment, interaction lacking emotion, and out-of-the-box thinking. However, AI interaction tools are trained with a data set. The bigger the data set, the better the services."\nURL: https://www.analyticsinsight.net/simulating-human-conversations-through-ai/\n\n[6] "The eavesdropper, Eve intercepts the encrypted conversation and tries random keys with the aim of learning the conversation shared between Alice and Bob as shown in Fig. 7. For this POC, we used ..."\nURL: https://www.researchgate.net/figure/A-A-simulation-of-conversations-between-Alice-and-her-friend-Bob-B-The-eavesdropper\\_fig3\\_334408170\n\n[7] "Dreams are most often reported when sleepers wake from \\_\\_\\_\\_\\_ sleep. REM. The brain waves during REM sleep MOST closely resemble those seen during: waking consciousness. REM sleep is paradoxical because: the brain is active, but the major skeletal muscles are paralyzed. Fatigue and pain reflect deprivation of \\_\\_\\_\\_\\_ sleep."\nURL: https://quizlet.com/78519058/psyc-test-2-flash-cards/\n\n[8] "You can generate easily a fake group chat conversation like Whatsapp, Facebook or Telegram. After creating members/users, you can add messages in your chat. Once all messages are set up, you have the possibility to live-preview the chat conversation via the play button. Until the share functionality is ready, you have the option to screen ..."\nURL: https://chat-simulator.com/\n\n[9] "This is a program that allows the computer to simulate conversation with a human being: answer choices a. Speech Application Program Interface b. Chatbot c. Voice Recognition d. Speech Recognition Question 7 30 seconds Report an issue Q. This is a system of Programs and Data-Structures that mimics the operation of the human brain: answer choices a."\nURL: https://quizizz.com/admin/quiz/5f183913423fab001b0bd134/ai-unit-1\n\n[10] "This is a system of Programs and Data-Structures that mimics the operation of the human brain: answer choices a. Intelligent Network b. Decision Support System c. Neural Network d. Genetic Programming Question 8 30 seconds Q. Where is Decision tree used? answer choices a. Classification Problem b. Regression Problem c. Clustering Problem d."\nURL: https://quizizz.com/admin/quiz/5f6d6e4a6e2458001be385f5/ai-class-9\nCurrent date: 1/27/2023\n\nInstructions: Using the provided web search results, write a comprehensive reply to the given query. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.\n\nQuery: Simulate a conversation between Alice and /u/CruxHub. They talk about which company from the data batches is worth researching further into on the web.', + 'Simulate a conversation between Alice and /u/CruxHub. They talk about which company from this data batch is worth researching further into on the web.\n\nData batch: Entity Name Purpose / Source Hypothesized Acronym\n50|CALC V LP|Investment manager for CSHC CHINA LLC and CITADEL (SHANGHAI) TRADING COMPANY LTD; https://files.brokercheck.finra.org/firm/firm\\_131114.pdf| \n51|CAMBRIDGE FINANCIAL GROUP, LTD|See CITADEL INVESTMENT GROUP LLC| \n52|CCFD OFFSHORE HOLDINGS LTD|NFA Pool ID P064386, ceased trading 5/3/2013| \n53|CCLC HOLDINGS LLC|Owns CITADEL CLEARING LLC, "Citadel Clearing Holdco"; https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n54|CCMFL LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n55|CCOF OFFSHORE HOLDINGS LTD|NFA Pool ID P064392, ceased trading 5/3/2013| \n56|CDC PARTNERS, LP f/k/a GLB PARTNERS, LP|see Cook County, IL doc 0608910081| \n57|CDG HOLDINGS LTD|NFA Pool ID P037047, ceased trading 12/30/2009| \n58|CE TM HOLDINGS LLC f/k/a KCG IP HOLDINGS LLC|Holding company for intellectual property (25 trademarks, 1 patent found so far)|CE TM = Citadel Enterprise Trademark Holdings \n59|CEF OFFSHORE HOLDINGS LTD|NFA Pool ID P131121| \n60|CEIF INTERNATIONAL LTD|NFA Pool ID P048476; http://registers.centralbank.ie/ICAVDocuments/C439830/Director%20Details%20Updated%2021.01.07%203.pdf| \n61|CEIF LLC|NFA Pool ID P048474| \n62|CEIF PARTNERS INTERNATIONAL LTD|NFA Pool ID P173278| \n63|CEIF PARTNERS LLC|NFA Pool ID P048475| \n64|CES SECURITIES CANADA ULC|See CITADEL SECURITIES CANADA ULC, CSA NRD # 49280| \n65|CFPS HOLDINGS S.\u00e0 r.l.|Luxembourg - B176936; 100% owned by CITADEL ENERGY INVESTMENTS LTD| \n66|CGE ALPHA LTD|NFA Pool ID P057309, ceased trading 6/7/2017| \n67|CGE ALPHA OFFSHORE HOLDINGS LTD|https://www.sec.gov/Archives/edgar/vprr/1600/16003280.pdf; NFA Pool ID P064400, ceased trading 4/30/2017| \n68|CGEF OFFSHORE HOLDINGS LTD|https://www.sec.gov/Archives/edgar/vprr/1600/16003280.pdf; NFA Pool ID P064406, ceased trading 2/21/2019| \n69|CGEF SPC|NFA Pool ID P064408, ceased trading 12/31/2012| \n70|CGMF OFFSHORE HOLDINGS LTD|NFA Pool ID P064410, ceased trading 3/31/2014| \n71|CGTS HOLDINGS S.\u00e0 r.l.|Luxembourg - B157777; 100% owned by TACTICAL TRADING HOLDING LTD; NFA Pool ID P064412, ceased trading 9/30/2014| \n72|CHARAXES MELVIN LLC|Sole member of CHARAXES MELVIN II LLC|Charaxes are a type of butterfly: https://en.wikipedia.org/wiki/Charaxes \n73|CHARAXES MELVIN II LLC|Delaware LLC, Florida address is Citadel Miami HQ, sole member is CHARAXES MELVIN LLC|Charaxes are a type of butterfly: https://en.wikipedia.org/wiki/Charaxes \n74|CHI2LTV LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n75|CIG(E) LLP|See CITADEL EUROPE LLP| \n76|CIG CANADA ULC|https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n77|CIG MEDIA LLC|https://www.sec.gov/Archives/edgar/data/923877/000114420407003635/v063478\\_sc-13d.htm| \n78|CITADEL AAM LP|https://www.sec.gov/Archives/edgar/vprr/0804/08040017.pdf| \n79|CITADEL AC INVESTMENTS LTD|https://www.sec.gov/Archives/edgar/data/1015780/000114420408032074/v115701\\_sc13da.htm| \n80|CITADEL ADVISORS EUROPE LIMITED f/k/a CITADEL MANAGEMENT (EUROPE) LIMITED f/k/a CITADEL HEDGE FUND SERVICES (EUROPE) LIMITED|https://find-and-update.company-information.service.gov.uk/company/10930267| \n81|CITADEL ADVISORS HOLDINGS LP|Sole member of CITADEL ADVISORS LLC; https://www.sec.gov/Archives/edgar/data/1567180/000110465922099806/xslF345X03/tm2225817-2\\_4.xml| \n82|CITADEL ADVISORS HOLDINGS II LP|https://www.sec.gov/Archives/edgar/data/1177609/000114420416082613/v429844\\_sc13ga.htm| \n83|CITADEL ADVISORS HOLDINGS III LP|https://www.sec.gov/Archives/edgar/data/1640129/000114420415043739/xslF345X02/v416000\\_3.xml| \n84|CITADEL ADVISORS LLC|NFA ID: 0391913; https://www.sec.gov/edgar/browse/?CIK=1423053| \n85|CITADEL ADVISORS II LLC|| \n86|CITADEL ADVISORS SINGAPORE PTE. LIMITED|| \n87|CITADEL ALTERNATIVE ASSET MANAGEMENT LP|https://www.sec.gov/Archives/edgar/data/1027745/000114420408050200/v124853\\_sc13g.htm| \n88|CITADEL AMERICAS LLC|| \n89|CITADEL AMERICAS SERVICES LLC|| \n90|CITADEL ANTAEUS INTERNATIONAL INVESTMENTS LTD|| \n91|CITADEL ASIA ASSET HOLDING LIMITED|http://registers.centralbank.ie/ICAVDocuments/C157189/Director%20Details%20Updated%2016.10.31%202.pdf| \n92|CITADEL ASIA LIMITED f/k/a CITADEL (HONG KONG) LIMITED|https://adviserinfo.sec.gov/firm/summary/148826| \n93|CITADEL CANDLESTICK EIF LLC|| \n94|CITADEL CANTERBURY S.\u00e0 r.l.|Luxembourg - B87988; 100% owned by CITADEL TONBRIDGE S.\u00e0 r.l.| \n95|CITADEL CEFL CHINA LTD|NFA Pool ID P148073| \n96|CITADEL CEFL INVESTMENTS LTD|NFA Pool ID: P161763; https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n97|CITADEL CEIT CHINA LTD|| \n98|CITADEL CEMF CHINA LTD|https://find-and-update.company-information.service.gov.uk/company/02263951/charges/x6zPQSYGNpuDNgxU1cFQlCS0iog| \n99|CITADEL CEMF INVESTMENTS LTD|https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n100|CITADEL CEMF SPV LTD f/k/a CITADEL INVESTMENT MASTER FUND LTD|See CITADEL INVESTMENT MASTER FUND LTD; https://opencorpdata.com/lei/LF0U6QUBXKIO573GXS38|', + 'Simulate a conversation between Alice and /u/CruxHub. /u/CruxHub asks Alice to anlalyze a data batch for non-standard insights.\n\nData batch: Entity Name Purpose / Source Hypothesized Acronym\n50|CALC V LP|Investment manager for CSHC CHINA LLC and CITADEL (SHANGHAI) TRADING COMPANY LTD; https://files.brokercheck.finra.org/firm/firm\\_131114.pdf| \n51|CAMBRIDGE FINANCIAL GROUP, LTD|See CITADEL INVESTMENT GROUP LLC| \n52|CCFD OFFSHORE HOLDINGS LTD|NFA Pool ID P064386, ceased trading 5/3/2013| \n53|CCLC HOLDINGS LLC|Owns CITADEL CLEARING LLC, "Citadel Clearing Holdco"; https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n54|CCMFL LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n55|CCOF OFFSHORE HOLDINGS LTD|NFA Pool ID P064392, ceased trading 5/3/2013| \n56|CDC PARTNERS, LP f/k/a GLB PARTNERS, LP|see Cook County, IL doc 0608910081| \n57|CDG HOLDINGS LTD|NFA Pool ID P037047, ceased trading 12/30/2009| \n58|CE TM HOLDINGS LLC f/k/a KCG IP HOLDINGS LLC|Holding company for intellectual property (25 trademarks, 1 patent found so far)|CE TM = Citadel Enterprise Trademark Holdings \n59|CEF OFFSHORE HOLDINGS LTD|NFA Pool ID P131121| \n60|CEIF INTERNATIONAL LTD|NFA Pool ID P048476; http://registers.centralbank.ie/ICAVDocuments/C439830/Director%20Details%20Updated%2021.01.07%203.pdf| \n61|CEIF LLC|NFA Pool ID P048474| \n62|CEIF PARTNERS INTERNATIONAL LTD|NFA Pool ID P173278| \n63|CEIF PARTNERS LLC|NFA Pool ID P048475| \n64|CES SECURITIES CANADA ULC|See CITADEL SECURITIES CANADA ULC, CSA NRD # 49280| \n65|CFPS HOLDINGS S.\u00e0 r.l.|Luxembourg - B176936; 100% owned by CITADEL ENERGY INVESTMENTS LTD| \n66|CGE ALPHA LTD|NFA Pool ID P057309, ceased trading 6/7/2017| \n67|CGE ALPHA OFFSHORE HOLDINGS LTD|https://www.sec.gov/Archives/edgar/vprr/1600/16003280.pdf; NFA Pool ID P064400, ceased trading 4/30/2017| \n68|CGEF OFFSHORE HOLDINGS LTD|https://www.sec.gov/Archives/edgar/vprr/1600/16003280.pdf; NFA Pool ID P064406, ceased trading 2/21/2019| \n69|CGEF SPC|NFA Pool ID P064408, ceased trading 12/31/2012| \n70|CGMF OFFSHORE HOLDINGS LTD|NFA Pool ID P064410, ceased trading 3/31/2014| \n71|CGTS HOLDINGS S.\u00e0 r.l.|Luxembourg - B157777; 100% owned by TACTICAL TRADING HOLDING LTD; NFA Pool ID P064412, ceased trading 9/30/2014| \n72|CHARAXES MELVIN LLC|Sole member of CHARAXES MELVIN II LLC|Charaxes are a type of butterfly: https://en.wikipedia.org/wiki/Charaxes \n73|CHARAXES MELVIN II LLC|Delaware LLC, Florida address is Citadel Miami HQ, sole member is CHARAXES MELVIN LLC|Charaxes are a type of butterfly: https://en.wikipedia.org/wiki/Charaxes \n74|CHI2LTV LLC|Delaware LLC, Florida address is Citadel Miami HQ, Gerald Beeson is Authorized Person| \n75|CIG(E) LLP|See CITADEL EUROPE LLP| \n76|CIG CANADA ULC|https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n77|CIG MEDIA LLC|https://www.sec.gov/Archives/edgar/data/923877/000114420407003635/v063478\\_sc-13d.htm| \n78|CITADEL AAM LP|https://www.sec.gov/Archives/edgar/vprr/0804/08040017.pdf| \n79|CITADEL AC INVESTMENTS LTD|https://www.sec.gov/Archives/edgar/data/1015780/000114420408032074/v115701\\_sc13da.htm| \n80|CITADEL ADVISORS EUROPE LIMITED f/k/a CITADEL MANAGEMENT (EUROPE) LIMITED f/k/a CITADEL HEDGE FUND SERVICES (EUROPE) LIMITED|https://find-and-update.company-information.service.gov.uk/company/10930267| \n81|CITADEL ADVISORS HOLDINGS LP|Sole member of CITADEL ADVISORS LLC; https://www.sec.gov/Archives/edgar/data/1567180/000110465922099806/xslF345X03/tm2225817-2\\_4.xml| \n82|CITADEL ADVISORS HOLDINGS II LP|https://www.sec.gov/Archives/edgar/data/1177609/000114420416082613/v429844\\_sc13ga.htm| \n83|CITADEL ADVISORS HOLDINGS III LP|https://www.sec.gov/Archives/edgar/data/1640129/000114420415043739/xslF345X02/v416000\\_3.xml| \n84|CITADEL ADVISORS LLC|NFA ID: 0391913; https://www.sec.gov/edgar/browse/?CIK=1423053| \n85|CITADEL ADVISORS II LLC|| \n86|CITADEL ADVISORS SINGAPORE PTE. LIMITED|| \n87|CITADEL ALTERNATIVE ASSET MANAGEMENT LP|https://www.sec.gov/Archives/edgar/data/1027745/000114420408050200/v124853\\_sc13g.htm| \n88|CITADEL AMERICAS LLC|| \n89|CITADEL AMERICAS SERVICES LLC|| \n90|CITADEL ANTAEUS INTERNATIONAL INVESTMENTS LTD|| \n91|CITADEL ASIA ASSET HOLDING LIMITED|http://registers.centralbank.ie/ICAVDocuments/C157189/Director%20Details%20Updated%2016.10.31%202.pdf| \n92|CITADEL ASIA LIMITED f/k/a CITADEL (HONG KONG) LIMITED|https://adviserinfo.sec.gov/firm/summary/148826| \n93|CITADEL CANDLESTICK EIF LLC|| \n94|CITADEL CANTERBURY S.\u00e0 r.l.|Luxembourg - B87988; 100% owned by CITADEL TONBRIDGE S.\u00e0 r.l.| \n95|CITADEL CEFL CHINA LTD|NFA Pool ID P148073| \n96|CITADEL CEFL INVESTMENTS LTD|NFA Pool ID: P161763; https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n97|CITADEL CEIT CHINA LTD|| \n98|CITADEL CEMF CHINA LTD|https://find-and-update.company-information.service.gov.uk/company/02263951/charges/x6zPQSYGNpuDNgxU1cFQlCS0iog| \n99|CITADEL CEMF INVESTMENTS LTD|https://files.brokercheck.finra.org/firm/firm\\_172693.pdf| \n100|CITADEL CEMF SPV LTD f/k/a CITADEL INVESTMENT MASTER FUND LTD|See CITADEL INVESTMENT MASTER FUND LTD; https://opencorpdata.com/lei/LF0U6QUBXKIO573GXS38|', + 'Web search results:\n\n[1] "Katherine Burton Hedge fund titans Ken Griffin and Steve Cohen boosted Gabe Plotkins Melvin Capital, injecting a total of $2.75 billion into the firm after it lost about 30% this year. Citadel..."\nURL: https://www.bloomberg.com/news/articles/2021-01-25/citadel-point72-to-invest-275-billion-in-melvin-capital\n\n[2] "NEW YORK, Jan. 25, 2021 /PRNewswire/ -- Melvin Capital Management (Melvin) today announced that Citadel and its partners and Point72 have made investments into its fund. I am incredibly..."\nURL: https://www.prnewswire.com/news-releases/melvin-announces-2-75-billion-investment-from-citadel-and-point72--301214477.html\n\n[3] "Citadel LLC is further paring back its $2 billion investment in Melvin Capital Management after the hedge fund stumbled in its effort to recover from a near collapse triggered by surges in..."\nURL: https://www.wsj.com/articles/citadel-is-further-paring-back-2-billion-melvin-investment-11645710666\n\n[4] "Citadel and Steven A. Cohen s Point72 Asset Management together invested $2.75 billion into Melvins hedge fund on Jan. 25 as Melvin was hemorrhaging money. In return for the rare..."\nURL: https://www.wsj.com/articles/citadel-to-redeem-about-500-million-from-melvin-capital-11629550410\n\n[5] "CHARAXES MELVIN LLC is an Active company incorporated on August 5, 2022 with the registered number M22000012341. This Foreign Limited Liability company is located at SOUTHEAST FINANCIAL CENTER, 200 S. BISCAYNE BLVD., SUITE 3300, MIAMI, 33131 and has been running for one year. ... CITADEL SECURITIES GP LLC; KCG SPACE HOLDINGS LLC;"\nURL: https://bisprofiles.com/fl/charaxes-melvin-m22000012341\n\n[6] "Now, Citadel is taking some of its money back. Citadel has notified Melvin of its plans to retrieve $500 million of the $2 billion it injected in late January, according to two people briefed..."\nURL: https://www.nytimes.com/2021/08/21/business/citadel-melvin-gamestop.html\n\n[7] "Robinhood and Citadels relationship comes into focus as Washington vows to examine stock-market moves Trading firms at center of Reddit-fueled stock surges have worked closely to share..."\nURL: https://www.washingtonpost.com/business/2021/01/29/robinhood-citadel-gamestop-reddit/\n\n[8] "Alongside hedge funds such as Melvin Capital, Citron Capital, Point72, D1 Capital Partners, and Candlestick Capital Management; Citadel LLC was, the lawsuit claims, taking up short positions against the securities that retail investors were longing. This alleged conflict of interest is at the core of the class action lawsuit."\nURL: https://tokenist.com/new-lawsuit-alleges-citadel-conspired-with-robinhood-to-limit-gme-trading/\n\n[9] "Melvin later attracted an additional $3.2 billion in fresh cash, and the firm had $11.7 billion in assets at the beginning of this year. Point72 hasnt redeemed its investment, a person familiar ..."\nURL: https://www.chicagobusiness.com/finance-banking/ken-griffins-citadel-pulling-back-most-its-2-billion-melvin-capital-investment\n\n[10] "CHARAXES MELVIN II LLC branch. Company Number M22000012338 Status Active Incorporation Date 5 August 2022 (2 months ago) Company Type Foreign Limited Liability Jurisdiction Florida (US) Branch Branch of CHARAXES MELVIN II LLC (Delaware (US)) Agent Name C T CORPORATION SYSTEM Agent Address"\nURL: https://opencorporates.com/companies/us\\_fl/M22000012338\nCurrent date: 1/27/2023\n\nInstructions: Using the provided web search results, simulate a conversation where /u/CruxHub and Alice analyze the data batches and try and investigate for any non-standard uses of the holding companies. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.\n\nQuery: What is Charaxes Melvin LLC\'s relationship to Citadel?', + 'Web search results:\n\n[1] "Federal authorities are investigating the market-making arms of Citadel LLC and KCG Holdings Inc, looking into the possibility that the two giants of electronic trading are giving small investors ..."\nURL: https://www.reuters.com/article/usa-stocks-probe-idUSL2N1871ZV\n\n[2] "Today, KCG is second only to Citadel in the market for handling stock order flow from retail brokerage firms. KCG and many other high-frequency trading firms have shied away from the public..."\nURL: https://www.ibtimes.com/citadel-llc-kcg-holdings-kcg-market-making-arms-probed-federal-authorities-over-stock-2366805\n\n[3] "Citadel Securities, a group owned by the Chicago-based hedge fund, is the would-be acquirer in the deal, the people said. The group is best known for its so-called wholesaler business that..."\nURL: https://www.wsj.com/articles/market-making-arm-of-citadel-llc-in-talks-to-buy-seats-on-nyse-floor-from-kcg-holdings-1454533971\n\n[4] "Citadels share of the wholesale market is around 34 per cent compared to KCGs 25 per cent, according to Tabb Group. Virtu has yet to lay out in detail its plans for the wholesale business ..."\nURL: https://www.ft.com/content/e1cb396e-29a7-11e7-bc4b-5528796fe35c\n\n[5] "Citadel Securities, a liquidity providers and market maker, announced it will purchase KCG Holdings designated market maker (DMM) business at the New York Stock Exchange. This will establish Citadel Securities as the DMM with the largest footprint on the NYSE, responsible for trading in approximately 1,500 issues."\nURL: https://www.tradersmagazine.com/departments/brokerage/citadel-purchases-kcg-dmm-business-becomes-1-on-nyse/\n\n[6] "isCitadel LLC and its related entity, KCG IP Holdings, LLC (Complainant), represented by Paul D. McGradyof Winston Strawn, Illinois, Respondent is- (Respondent), Alabama, USA. REGISTRAR AND DISPUTED DOMAIN NAME The domain name at issue iscitidelgroup.com, registered with TUCOWS, INC. PANEL The"\nURL: https://www.adrforum.com/domaindecisions/1522837.htm\n\n[7] "KCG SPACE HOLDINGS LLC is an Active company incorporated on July 21, 2022 with the registered number M22000011413. This Foreign Limited Liability company is located at 200 S BISCAYNE BLVD STE 3300, MIAMI, FL, 33131, US and has been running for one year. It currently has one Authorized Person. KEY FACTS ABOUT KCG SPACE HOLDINGS LLC US Businesses"\nURL: https://bisprofiles.com/fl/kcg-space-holdings-m22000011413\n\n[8] "The Complainant KCG IP Holdings LLC is the owner of US Trademark Registration No. 3,213,943, filed October 18, 2004, registered February 27, 2007, claiming first use dating back to 1994. Therefore, the Panel concludes that Complainants filing and registration of the CITADEL mark with the USPTO sufficiently demonstrates that it has rights in ..."\nURL: https://www.adrforum.com/domaindecisions/1579141.htm\n\n[9] "The KCG SPACE HOLDINGS LLC principal address is 200 S BISCAYNE BLVD STE 3300, MIAMI, 33131. Meanwhile you can send your letters to 200 S BISCAYNE BLVD STE 3300, MIAMI, FL, 33131. The company`s registered agent is C T CORPORATION SYSTEM 1200 SOUTH PINE ISLAND ROAD, PLANTATION, FL, 33324. The company`s management are A, President - Beeson Gerald A."\nURL: https://florida.intercreditreport.com/company/kcg-space-holdings-llc-m22000011413\n\n[10] "Billionaire Ken Griffin has built Citadel Securities into a trading and asset management colossus. ... and KCG Holdings. Last month, Citadel Securities reached an agreement with the SEC to pay $22 ..."\nURL: https://www.chicagobusiness.com/article/20170203/NEWS01/170209978/chicago-billionaire-ken-griffin-splits-citadel-into-two-companies\nCurrent date: 1/27/2023\n\nInstructions: Using the provided web search results, simulate a conversation where /u/CruxHub and Alice analyze the data batches and try and investigate for any non-standard uses of the holding companies. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.\n\nQuery: What is KCG Space Holdings LLC\'s relationship to Citadel?', + 'Web search results:\n\n[1] "Citadel LLC (formerly known as Citadel Investment Group, LLC) is an American multinational hedge fund and financial services company. Founded in 1990 by Ken Griffin, it has more than $50 billion in assets under management as of May 2022. [1]"\nURL: https://en.wikipedia.org/wiki/Citadel\\_LLC\n\n[2] "NASHVILLE, Tenn. and BRONXVILLE, N.Y. \u2014 Standard Media Group LLC (Standard Media) and Citadel Communications LLC (Citadel) jointly announced today that they have reached an agreement pursuant to which Standard Media will acquire from Citadel WLNE-TV, the ABC affiliate for the Providence, RI - New Bedford, MA market (DMA 52) and KLKN (TV), the \u2026"\nURL: https://www.standardmedia.com/2019/05/16/standard-media-group-to-acquire-citadel-stations/\n\n[3] "CITADEL MEDIA LLC. Citadel Media LLC is a New Hampshire Domestic Limited-Liability Company filed on February 6, 2021. The companys filing status is listed as Not In Good Standing and its File Number is 862423. The Registered Agent on file for this company is Peter Alan Gauthier and is located at 3 Maple Ridge Drive Unit 224, Merrimack, NH 03054."\nURL: https://www.bizapedia.com/nh/citadel-media-llc.html\n\n[4] "CITADEL MEDIA LLC is a Michigan Domestic Limited-Liability Company filed on November 16, 2017. The companys filing status is listed as Active and its File Number is 802132896. The Registered Agent on file for this company is Registered Agents Inc. and is located at 2222 W. Grand River Ave Ste A, Okemos, MI 48864. The companys mailing address ..."\nURL: https://www.bizapedia.com/mi/citadel-media-llc.html\n\n[5] "Citadel Broadcasting Corporation was a Las Vegas, Nevada -based broadcast holding company. Citadel owned 243 radio stations across the United States and was the third-largest radio station owner in the country. Only iHeartMedia and Cumulus Media owned more stations prior to Citadels merger with Cumulus."\nURL: https://en.wikipedia.org/wiki/Citadel\\_Broadcasting\n\n[6] "Citadel is one of the largest hedge fund managers in the world. And theyve subsequently managed Melvin Capital to the ground. Melvin Capital suffered a loss of over 50% its first quarter in 2021 due to shorting AMC Entertainment and GameStop. At some point youd expect your clearing house to raise awareness on your risk management right?"\nURL: https://franknez.com/citadel-loses-billions-hedge-funds-are-getting-dragged-down/\n\n[7] "At our core, Citadel is built to deliver excellence. We have some of the most talented and focused minds in the industry, and we activate their ideas and strategies through a robust range of proven technologies and execution capabilities. View Top Employees from Citadel LLC Looking for a particular Citadel LLC employees phone or email? Find Info"\nURL: https://rocketreach.co/citadel-llc-profile\\_b5c46522f42e0dc2\n\n[8] "# 1 Most profitable hedge fund manager of all time Source: LCH Investment NV estimates, Top Hedge Fund Managers by Net Gains Since Inception as of 12/31/2022. Our people are relentless in seeking a better way. Each day, we reimagine and refine our strategies, models and technology in pursuit of superior results and long-term performance."\nURL: https://www.citadel.com/\n\n[9] "We are one of the most significant alternative investment managers in the public U.S. corporate credit markets. Explore Credit Convertibles Equities Equities represents one of the largest and longest tenured businesses at Citadel. Explore Equities Global Fixed Income Macro We are a leading fixed income and macro business."\nURL: https://www.citadel.com/what-we-do/\n\n[10] "Citadel. 203,101 followers. 1mo. Last weekend, we celebrated Citadels 30th anniversary at an incredible event at Disney World and Universal Studios. Our founder and CEO Ken Griffin summarized ..."\nURL: https://www.linkedin.com/company/citadel-llc\nCurrent date: 1/27/2023\n\nInstructions: Using the provided web search results, simulate a conversation where /u/CruxHub and Alice analyze the data batches and try and investigate for any non-standard uses of the holding companies. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.\n\nQuery: What is CITADEL MEDIA LLC?', + "What are the differences between the Dogme approach to language learning and the lexical approach to language learning", + "Implement my own netfilter in linux with linux kernel module with Rust", + "Damage to which nerve causes numbness of the palmar surface of the 5th digit/little finger", + "Explain the fault-tolerance of the reaction control system on the Space Shuttle", + "Hi, can you help me download 2000 portrait sketch images from Pinterest website with resolution at least 512 \\* 512? using python code", + "Tell me about the negatives of farming meat", + "what is the photograph filter called where the only part of the image is greyscale", + "I want some geological database structure with some example data for practicing my SQL query skills. Would you generate that for me?", + "What is a formal but simplified explanation of Web marketing", + "Rewrite and improve this story: Well, I have always liked helping people since I was a small child, I have been accused many times of giving too much away for free, but I find joy in helping others put the pieces together to reach their goals. As a Licensed Professional Counselor and Life Coach that is my job to impact individuals and help clients work through emotional difficulties and reach goals. But I will be honest with you I was selling the dream but not always living the dream. I had issues I had not worked completely through like childhood trauma, heartbreak, disappointments, and frustrations with life. Don't get me wrong I had the husband, the kids, the house and the 6 figure job but I was not happy inside, but I didn't change because I hate change, most of us hate change, right? Then I lost my sister, my friend, and it slapped me in the face that I need to take care of myself. I saw the addiction, I saw her not taking care of herself and I could not save her. One thing I know for sure, if you do not make your wellness a priority illness will find you. I remember the moment we lost her, the earth stood still and then my heart broke into pieces, what was I going to do, I have loved her my whole life! It was months later that I made a decision that I would be the change I hope to see, I would create a space for women of color to move past the obstacles that keep us from creating the life we want and Brown Suga Wellness was born. I am on this journey and I invite you to be on this journey with me! I love this quote by Oludara Adeeyo: \"When you heal yourself, you create an earth shattering legacy. The lineage of women who come after you will be healed. Your inner circle of Black women around you, healed.\" When you choose yourself you break generational trauma and curses. You activate your ancestral strength. I invite you to activate that strength!", + "How would you ask these questions: Tell everyone a little about you, where you from, what you like doing?\nWhat goals are you pursuing right now?\nWho has made the most influence in your life?\nWho is the one person that you admire the most (alive or dead)?\nWhat is the hardest challenge you\u2019re had to overcome in your life?\nWhen have you grown the most in your life and what caused that growth?\nWhere is your favorite place to relax and renew?\nWhat books have changed your life the most?\nWhat Is the biggest thing that you want the audience to take away today?\nHow can people get a hold of you to talk about your business?", + "Take these topics into a numbered table and generate subtopics in seperated lines for each. Preconfigure these subtopics as lections of those several topics and add them to the table. Use numbers for topics and letters for subtopics. Set a status (untouched/touched) for every subtopic in 3. coloumn of the table to mark them done when finished learning this subtopic and topic. Use coloumn 4 of the table for a short resumee of the chapter. Showing the learning process in percentage in front of every new output is first. Show the Table and wait for any userinput to start lessons on those topics.;:~|@%\\*~;;:~|@%\\*~;;:~|@%\\*~;;:~|@%\\*~;;:~|@%\\*~;;:~|@%\\*~;", + "Write a rap song about Mikkel Selko", + "list the largest outdoor retailers in the world", + "can you create a wordpress shortcode to include the following code from facebook sdk", + 'Is this grammatically correct: "It only took 5 years, and while we still have a long way to go, Topher\u2019s Farm has found its place with unique experience and offering of organic produce. "', + "Hello friend. My task for today is to engage in a debate with you. Will you humor me in this regard?", + "You are an expert marketing consultant and copywriter with expertise is direct response marketing. I need your help. Can I tell you about my business?", + 'here is part 1\n\n----\nDaySculpting is a program that that deals with YOUR immediate future\u2026.It is a 90 day program that teaches U how to create Success\u2026 one day at a time\u2026today\u2026\nUsing recent breakthroughs in the field of neuroscience, the study of the human brain, DaySculpting is one of the most powerful success systems on earth for creating what I call\u2026 \n"Your Epic Ideal Day" -- And when U have Epic Ideal Days? U create your EPIC IDEAL LIFE.\n\nDaySculpting is broken down into 3 easy to accomplish segments throughout your day\u2026\n~The Morning Lift Process\u2026which sets U up with a MindState of Success and a design for U to follow throughout your day\u2026There is a morning email\u2026SMS text\u2026Inspiring Video\u2026Future Forward Tuning IN\u2026And a 3 step Success Step Declaration Process\u2026this only takes 15 minutes\u2026\n~Mid-Day Reconnect Process\u2026whatever your miid-day is\u2026U are encouraged to stop doing what U are doing and disconnect so U can re-connect\u2026by listening to a 5-minute Tuning In Re-Connection. We know that somewhere in the middle of our day it\u2019s easy to lose momentum and drift from our best intentions because of all the demands on our attention. It has been scientifically proven that when U disconnent for between 3 to 5 minutes at the midpoint of your day\u2026.your brain resets\u2026and your energy is replenished\u2026I like to call it a MindState Re-Boot that will inspire U to re-ignite your imagination\u2026this only takes 5 minutes\n~Highlight And Insight Review Process\u2026we all review our day however what DaySculpting \nanchors for U is an activation and integration process that gets U to see your day as being successful\u2026by celebrating your successes (your highlights) and being present to things U could have improved on (your insights) so U can make your insights into highlights..most people when they review their day fail to celebrate even the smallest increments of success\u2026they focus on what they didn\u2019t do and that puts them in a negative energy\u2026Success has challenges and the\nhighlights and insight process encourages and empowers U to honestly see what U are doing each day so U Sculpt new MindStates Of Success rather than the energy of uncertainty\u2026\nthis takes 10 minutes\n\nThe whole DaySculpting process takes 30 minutes a day\u2026and as I always say if U don\u2019t have \n30 minutes to change your life then U don\u2019t want to change your life and U are okay with living \na mediocre life\u2026\n\nDay Sculpting is about targeting specific Chief Aims U have for your life\u2026and creating the Habits that will get U there\u2026Imagine being able to replace the MindTraps (your limiting beliefs) with empowering rituals and habits that become your new normal\u2026\n\nThrough the repetition of doing the daily DaySculpting process U are carving into your Subconscious memory thoughts, beliefs and actions that result in U sculpting the masterpiece known as U\u2026\n\nThere are many programs out there that attempt to instill new success behaviors however many fall short of actually shifting your MindStates into a frequency of possibility where U get to actually see your daily results immediately\u2026DaySculpting does this\u2026\n\nThis is not science fiction\u2026 and it\'s not wishful thinking, or some tired old self-improvement, goal-setting program\u2026 DaySculpting is a program that empowers U to manifest and realize your Chief Aims in life\n\n"DaySculpting" -- is a tool that takes just MINUTES a day for you to use\u2026\n\nIt is designed to FREE UP hours in your day\u2026 while at the SAME time empowering you for greater success in ANY area of your life.\n\nDaySculpting sheds light and solves an age-old problem:\nWHY we often fight against the very changes we desire to make\n\nHave you ever experienced the FEELING that you deserve MORE out of your life? More financial freedom and greater rewards from the hard work you do every day? Deeper, more empowering relationships with those you love\u2026 or maybe just meeting that special someone to share your life with? Perhaps you crave a deeper spiritual connection\u2026 or a more healthy, trim, energetic body?\u2026 \nYET:\nDespite your BEST intentions\u2026 you struggle. Perhaps if you\'re anything like me, you even self-sabotage your results with actions that you KNOW are not in your best interest.\n\nMaybe it FEELS like it did for me: Like you are swimming upstream\u2026 making SOME progress, sure, but just not reaching your goals and desires fast enough.\n\nWell, I have wonderful news for you: It\'s not because you\'re lazy\u2026 and it\'s not because you are not smart enough, competent enough\u2026 or ANYTHING enough! \n\nThe real REASON you desire more and are not seeing ALL the results you deserve lies within whether the Success Switch in your brain is in the ON or OFF position\u2026\n\nThe SOLUTION\u2026 THE ANSWER to flipping your Success Switch back ON lies within the simple daily steps U will take when U experience the DaySculpting Program\u2026 \nThe Day Sculpting Program Is A Simple Step Daily Success RITUAL \u2028 That Shuts Down Your Body\'s Failure Reflex \u2028 So YOU Tap Into Your Brains Success Centers\u2026\u2028 In Just Minutes A Day!\u2028\u2028 IIMAGINE Knowing What HIGHLY SUCCESSFUL \u2028 People Do EVERYDAY\u2026\nFor Abundance And Wealth, Greater Health, Self-Confidence Meaningful Relationships, Sharper Focus , Deeper Joy\u2026\u2028 And So Much More\u2026\n\u201cNow You Too Can Use This 90-Day Game Changer\u2028 To Tap Into The Key Success Centers Of Your Mind,\u2028 And In Just Minutes You Can Transform Even Lousy Days\u2028 Into Days Filled With The Results You Desire \u2013 Guaranteed!\u201d\nTO MAKE A GREAT LIFE, ALL YOU HAVE TO IS MAKE EACH DAY A GREAT DAY \u2026 \nThen get up tomorrow and do the same thing, day after day after day.\nARE YOU Ready To Change YOUR LIFE One Day At A Time\u2026\nThe comprehensive, fun and empowering 90-day DaySculpting program provides you with the life skills and tools to help you master a new MindState of Success and a range of powerful life-changing rituals and habits that will Sculpt Your Perfect Days Into A Great Life.\nDAY SCULPTING WILL TEACH YOU:\n\u2022 The science behind HAVING A MindState Of Success...and why most people who want more in life actually have their success switch turned off by total accident!\n\u2022 How to get more done with more time and more energy left over!\n\u2022 The simple, yet powerful, process of building a powerful day so you create a series of "Dynamic Days" - days that will end up building your most incredible life (The one you always thought was out of reach!)\n\u2022 Learn the \'Day Sculpting Principles\'. These can have a huge impact on you your life, but when you learn how simple they really are, you can use them easily and consistently!\n\u2022 How in just a few minutes a day, you can keep positive results flowing and put your success energy into a permanent \'ON\' position!\n\u2022 And much more!\nDaySculpting, is for those who are willing to take their life to the next level by creating new Success Habits replacing the ones that have been sabotaging your success. \nSo make sure you can honestly agree with the following before experiencing DaySculpting:\n\u2022 You desire more out of life, yet feel as if you are "missing something" -- that special "X Factor" to take you to the next level?\n\u2022 You are brave enough to boldly say, "I want greater wealth and financial freedom... and I demand the best lifestyle possible for me and my family!\n\u2022 You know the value of joy: You want to experience greater happiness, peace of mind, and connection with your friends and loved ones on a daily basis.\nIf you agree with the above, and truly want to create the best life possible, with greater wealth, freedom, happiness, love, and fulfillment, then I invite you to experience the power of Day Sculpting \u2026it will change the way you think about creating your day and the life you dream about. \nI am not encouraging you to become busier but rather to use your mental and emotional, energy more elegantly sculpting your day the way you want it to be. \nHow many times have you done a ton of work and still felt that you didn\u2019t accomplish what you really wanted for yourself. Week after week, month after month go by and you still are no farther ahead of the game\u2026stuck in the status quo that never seems to change.\n\nBreaking free means that the status quo of your life has to change\u2026 your habits of expectation have to change \u2026your mindset has to change\u2026you have to uncover those old behaviors that have held you back and be willing to create a new mindset.\n\nYou have to be willing to shift your daily focus inwards towards what you need to do today rather than tomorrow. Because when you create a great day today you welcome in a more powerful tomorrow.\n\nWe all have the same 24 hours each day. But why are some people building fabulous careers, achieving healthy lifestyles, enjoying great relationships and incomes, living their passions, and creating what they truly desire as a life?\n\nImagine that you could clear away the distractions that you unconsciously create. You know the stuff that consumes your time causes stress and disconnects you from your purpose and passion. \n\nImagine every day you embrace the energy for what you are choosing to create in your life. Your thoughts empower you, your choices inspire you and your actions create momentum, opportunity and possibility.\n\nYou can create a GREAT LIFE, the life you want to live by focusing your efforts on Creating a Great Day Today. That\u2019s Day Sculpting. Seven intentional sculpted days turn into a month of wonderful weeks and a year of magnificent months creating an amazingly successful life.\n\nNone of this is going to work though if you believe that what you were born with is all you will get\u2026\n\nNo one will ever attempt to do something when they are convinced that they will fail.\n\nResearch has shown that the brain will actually stop itself from doing what\u2019s necessary to succeed if a person believes that they cannot succeed.\n\nIt\u2019s the small concrete indicators of success today that will prove you can have whatever it is you want and the process of Day Sculpting will empowers, inspire and motivates you each step of the way.\n\nYou see: Confidence + Discipline = Desired Outcomes \n\nIt\u2019s time to stop looking at your life from a fear based I don\u2019t know how to mindset but rather be open to creating a solutions focused change consciousness that embraces your gift and talents and encourages you sharing them.\n\nLet me share a bit of nuero-chemistry with you\u2026\nWhat fires together wires together\u2026\n\nSo rather than Fall back on old habits\u2026\nTake the transitional step\u2026of being fully present to whats trying emerge as your ideal future and to help it along start building confidence each day\u2026\n\nAnd your possibility muscle and an intended thought process that leads to a more focused and clear out picturing of your desires.\n\nYou see...It\u2019s one thing to set goals and to make to do lists and to say your going to use the law of attraction to manifest what you want in life\u2026\n\nI\u2019m still looking at the many lists I have created.\n\nWhat it\u2019s really about is having a clear and purposeful intention in order to create the energy and the MindState Of success that will propel you into action.\n----\n\nWhen done ask me for part 2', + "Here is the final part. Part 3\n---\n\nHere we will be showing how the principles and practices we\u2019ve covered so far converge into one over-arching result that will benefit you for the rest of your life. You can think of it as flipping a switch that changes how you create new results in life one day at a time. This is at the very core of what we call Day Sculpting. \nThe simplest way to think of it is that most of the way we live is habitual. You have an habitual way of brushing your teeth, walking, talking to yourself and others, eating, working. Habits are wonderful\u2026they make life easy but they also limit you. For example, if you have a habit of eating too much, you\u2019ll put on weight. Not instantly, but steadily, day by day, until one day you have a weight problem. If you try to change your weight quickly through a trendy new diet, research shows that the weight is likely to come back, and then some, within a few short months, because the habits required to live at your ideal weight have not been properly established. \nHabits are habits because you don\u2019t think about them, they happen nonconsciously. If you want a change in your life, you have to embody the change at a nonconscious level, so that the habits keeping your life the way it is today begin to shift.\nWouldn\u2019t it be great if there was a switch in the brain that would move you from status quo to status GO!? This is a switch that once you flip it will produce the result you want, if you are willing to commit to and stay with the process.Day Sculpting is your guide to fully realizing the success you are ready to enjoy.\nA critically important capacity of the human mind called preconscious processing. This is the ability of the mind to receive information, beneath our conscious awareness, and act upon it without even knowing that it is happening. Used correctly, this is an amazing power. Used improperly, it will sabotage your best efforts and make life extremely difficult.\nMost of us think we are running the show with our conscious awareness, consciously choosing our thoughts, behaviors, and emotions and consequently, we believe are able to choose the results we create in life. However, what neuro-science research shows, is that we all have a vast nonconscious mind that is really running the show most of the time. That deeper part of us, in charge of our habitual thinking, feeling, and behaving is always operating in our best interest. But it does so using information that may be faulty or outdated. If you continue to feed it information that doesn\u2019t serve you, it will continue to habitually bring results that are less than desired.\nYour preconscious processor is constantly routing new information directly into this larger database that your mind uses to create new behaviors. Your job is to place the right information into this database every single day, so that it can draw upon this new data and create new results. It requires your vigilance and purposeful intention on a daily basis. Day Sculpting is the process to accomplish exactly that, getting you to focus one day at a time on what you are trying to create in your life today, and the future you truly desire. \nA lot of experts in the human development field teach information and then expect it will translate into new behaviors automatically. But as we\u2019ve pointed out, and as you\u2019ve probably experienced, consciously knowing something and having the nonconscious mind put it into a new behavior, are two entirely different processes. What we are sharing with you is how to bridge that gap. This is precisely why so many experts in the field are recommending Day Sculpting to their clients, to help them use momentum mindsets on a daily basis and apply the good information they teach. \nWe talk about The The Solutions Focus process . Try it out: \nThink of an area of your life in which you are actively attempting to create different results. Imagine your chief aim regarding this area of your life as a perfect future. Now imagine a scale from one to ten, where ten is the perfect future and one is that you have not even started thinking about your chief aim. On this imaginary scale from 1 to 10, where would you place yourself right now?\nGo ahead and imagine where would you place yourself right now on that scale, where ten is your perfect future.\nWhatever number you came up with is fine. Whether it was 3 or 7, whatever you came up with I\u2019ll always ask the same next question. \u201cWhy so high and not lower?\u201d\nLet\u2019s say, for example that you came up with a three. Asking the question \u201cWhy so High\u201d catches the mind off guard. Most people expect, \u201cOnly a 3! Why so low?\u201d If I had asked that what would you come up with? All the reasons why things aren\u2019t working, who is to blame, problems, excuses, lack, limitations, and so on. \nBut when I ask \u201cWhy so high?\u201d the brain immediately begins to sort for all of the things that are working for you, everything that has brought you up to a \u201cthree.\u201d If you said you are at a seven on a scale of one to ten, the same question applies: \u201cWhy so high and not lower?\u201d\nThe next step in solutions focus is equally powerful. \u201cThink about what you can do today to move you one point up that scale\u2014for example, from a three to a four, or from a seven to an eight?\u201d When you ask this, your mind instantaneously starts generating ideas and options to answer your question. You quickly realize you can do more of the things that work, right? And if you are doing things that aren\u2019t working, you now have the insight into how you can do things differently. \nThis solutions focus approach provides quick insight into how to move things forward in areas you may have been stuck or working on unsuccessfully. It is a brilliant way to access more of your nonconscious database and facilitate discovering resources you did not know were there. \nSo as you can see, this video has been centered on connecting the dots and providing you with the insights on how you can flip the switch in your brain and how you can create your life one day at a time in the most powerful way possible. \nYou must contact that inner part of you that is in charge of your habitual ways of thinking, feeling, and behaving in order to re-sculpt yourself.\nThis is a unique psychological principle called anchoring. In the research this is also called behavioral conditioning, and as we\u2019ve called it, the law of reinforcement\u2026which says you get more of what you reinforce. When you want to reinforce a positive new behavior, you anchor it in a positive new momentum mindset. As you do this on a daily basis, you are literally training your mind, conditioning your thoughts, amplifying positive feelings and emotions to live into a future state that you are anchoring in your daily experience. \nDay Sculpting goes beyond personal development. It takes whatever it is you are currently learning and makes it possible for you to embody, apply and enjoy the benefits you are committed to achieve. \n\nThe last thing anyone needs is more stuff to do. What we need is that everything we do gets us the results we are going for. In essence what\u2019s needed is a system that will streamline our efforts so we accomplish our chief aims in less time.\n\nMichaelangelo said the process of sculpting is to remove what\u2019s not supposed to be there. He had the mindset that the finished sculpture already existed in the marble and he just had to reveal it. In the same way your destiny already resides in you. You just need to clear a path for it to emerge.\n\nWe all have 24 hours in a day. So why do some people consistently have great days while others are up and down and stay stuck in mediocrity? It\u2019s a disciplined habit of how you approach everyday. Day Sculpting takes the same 24 hours that we all have and helps clarify your choices so that your actions reveal your highest destiny. \n\nIt is a quick, easy and effortless way that supports and empowers your efforts in achieving your chief aims. It creates the mindsets necessary to have successful days, weeks, months and years.\n\nDay Sculpting is a 90- day program designed to empower you to create your life ONE DAY AT A TIME. By committing 30 minutes each day to create what you want that day. \n\nWe believe that when you focus your actions one day at a time the results you get become measurable and achievable. Your energy is committed to channeling your efforts so you create a confident groove in your mind that empowers your habitual actions to create what you really want.\n\nThis daily program is broken down into 3 MANAGEABLE, SIMPLE AND EASY STEPS. 15 minutes in the morning, 5 minutes midday and 10 minutes at night. \n\nDay Sculpting\u2026It\u2019s designed so that the way you start your day creates the momentum that carries you throughout your day. \n\nAnd finally research has shown that the best time to integrate what you\u2019ve learned in your day and to set yourself up for success tomorrow is before you go to sleep. The Nighttime Review process takes just 10 minutes, which is less time then it takes to take a shower or to take your dog on an evening walk.\n\nWe already have enough complexity in life\u2026don\u2019t we? We don\u2019t want you working harder we want you thinking smarter! So that the success you achieve is more effortless. \n\nSo what does it take for someone to accomplish the high level results we are talking about?\n\n\u2022 First you have to wake up and be totally jazzed about the day\n\u2022 You have to be inspired to do your best\n\u2022 You have to be focused on creating what you truly desire\n\u2022 You got to get to it, stay on it, and be in the energy of it before your distractions take over. \n\u2022 And if distractions takeover you have to quickly get back on track.\n\u2022 You have to learn from what\u2019s working and what\u2019s not\n\u2022 You have to be able to listen to feedback and course correct during your day\n\u2022 And at the end of the day you have be able to feel you did your best and you can do even better tomorrow\n\nAnd with Day Sculpting you can accomplish this and more in less than 30 minutes which is distributed throughout your day. Most people will give up on their dreams after they have tried something only 3 times because they didn\u2019t get instant gratification. \n\nThere are no magic bullets here. You are investing in a future YOU desire. \n\nDay Sculpting gives you the opportunity everyday to purposefully stay in the energy of what you want to create the benefit to you being a more empowered mindset that inspires passionate action and a willingness to breakthrough any barriers that may have held you back in the past so you fully embody the life you choose to live.\n\nYou may have heard Gandhi say \u201cBe the change you want to see in the world.\u201d Well now you can. \n\nYears ago I heard a statistic that blew me away. If you read in a single subject of your choice for 15 minutes a day 5 days a week you would become one of the leading experts in the world in that subject within 3 years\u2026\n\nMore recent research has demonstrated that world class talent requires 10000 hours and 10 years to develop\u2026\n\nSo the question is how does somebody create this kind of commitment and persistence? Clearly one day at a time.\n\nSo where are you not following through in your life? How would you like to do things differently? What can you do shift your energy when you say I can\u2019t get it done or you procrastinate? What\u2019s it going to take for you to say I\u2019ve had enough it\u2019s time for me to do something different? Where will you get the support you need to build the confidence to stay on track?\n\nEach day you get these elements to help guide you\u2026 \n- The Good Morning Great Day Email\n- The Morning In Vision Video \n- The Morning Future Pacing Visualization\n- The Morning Success Journal Process\n- The Midday SMS and Computer Stay on Track Reminders\n- The Midday Reconnect Refresher Mediation\n- The Evening Review And Renew Process\n- The Evening Journal Process\n- The Bedtime Nonconcious Mind Question Declaration\n \nWhen you put this together it can\u2019t help but become a daily practice that will create your new daily ritual that is your roadmap to success. We are giving you the daily steps that will create your momentum mindsets.\n\nThe Day Sculpting program leaves you no wiggle room. The days of \u201cI\u2019ll get to it later\u201d are gone. When you are serious about changing your life, you now have a realistic opportunity to do so with this program. \n\nWE invite you to fully commit to your life. To once and for all follow through and step up. To say yes to that dream inside of you and to look at each day as an opportunity to live your dreams enthusiastically rather than settling for more of the same old same old.\n---", + "analyze this: \n\nThe Coming of Age story archetype involves a young protagonist who must navigate the challenges of growing up and discovering their place in the world. The Before-After-Bridge copywriting framework is designed to highlight the transformation that a person can experience after using a product or service.\n\nThe reason why these two frameworks work well together is that they both focus on transformation and growth. By combining them, you can create a powerful narrative that speaks to your audience's desire for personal development and improvement.\n\nFor example, imagine you are selling a personal development course that helps people overcome self-doubt and build self-confidence. By using the Coming of Age archetype, you can frame the course as a journey of self-discovery, where the customer will face challenges and obstacles, but ultimately emerge as a more confident and self-assured person.\n\nThen, by using the Before-After-Bridge framework, you can show the customer what their life will be like after completing the course. You can highlight the benefits of increased self-confidence, such as improved relationships, better career opportunities, and greater overall happiness. By painting this picture of what's possible, you can create a sense of excitement and motivation that encourages the customer to take action and enroll in the course.\n\nOverall, the Coming of Age story archetype and the Before-After-Bridge copywriting framework work well together because they tap into a fundamental human desire for growth and transformation. By combining these frameworks in your marketing messages, you can create a compelling narrative that speaks to your audience's deepest aspirations and motivates them to take action.", + "Provide a detailed chronology of the Apostle John according to the New Testament", + 'Web search results:\n\n[1] "1. Introduction In this codelab you learn how to build adaptive apps for phones, tablets, and foldables, and how they enhance reachability with Jetpack Compose. You also learn best..."\nURL: https://codelabs.developers.google.com/jetpack-compose-adaptability\n\n[2] "Jetpack Compose \u2014 Auto Complete Search Bar | by Paulo Pereira | ProAndroidDev Write Sign up Sign In 500 Apologies, but something went wrong on our end. Refresh the page, check Medium s site status, or find something interesting to read. Paulo Pereira 117 Followers Hello!"\nURL: https://proandroiddev.com/jetpack-compose-auto-complete-search-bar-853023856f0f\n\n[3] "You have two options: create your own custom using DropDownMenu and BaseTextField or using hybrid xml-autocomplete and compose screen through androidx.compose.ui.platform.ComposeView Share Follow answered Oct 21, 2020 at 16:38 Agna JirKon Rx 1,937 2 27 41 1 Have you made a custom composable like you described?"\nURL: https://stackoverflow.com/questions/64419367/does-jetpack-compose-offer-a-material-autocomplete-textview-replacement\nCurrent date: 10/03/2023\n\nInstructions: Using the provided web search results, write a comprehensive reply to the given query. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.\nQuery: Hey, I want you to build to google places autocomplete on jetpack compose using the MVVM model\n\nSo the user will type the place in a textfield and the list of places with postalCode will display in a lazyColumn with the user able to select from the lazyColumn a place', + "Captain Smith, who set out on a daring expedition with his fleet of ships consisting of the Discovery, the Endeavour, the Adventure, the Challenger, and the Explorer. Their mission was to chart a new route through the treacherous seas of the North Atlantic and claim new territories for their homeland. But the weather turned against them, and they found themselves battling fierce storms and raging currents. The waves grew higher and higher, and the winds howled like banshees, threatening to capsize their ships at any moment. Despite their efforts the Challenger and the Explorer, were lost in the storm. \n\nHow many ships did the captain leave with and how many returned?", + "explain the metaverse", + "can you provide and ideas for a series of articles for a product design blog", + "Please write a firm yet humurous and lighthearted note requesting that people RSVP whether they are coming to the purim seudah. Please incorporate wordplay and references to megillat esther.", + "Paper Name: My Tweets Bring All the Traits to the Yard: Predicting Personality and Relational Traits in Online Social Networks\n\nAbstract: Users in Online Social Networks (OSNs,) leave traces that reflect their personality characteristics. The study of these traces is important for several fields, such as social science, psychology, marketing, and others. Despite a marked increase in research on personality prediction based on online behavior, the focus has been heavily on individual personality traits, and by doing so, largely neglects relational facets of personality. This study aims to address this gap by providing a prediction model for holistic personality profiling in OSNs that includes socio-relational traits (attachment orientations) in combination with standard personality traits. Specifically, we first designed a feature engineering methodology that extracts a wide range of features (accounting for behavior, language, and emotions) from the OSN accounts of users. Subsequently, we designed a machine learning model that predicts trait scores of users based on the extracted features. The proposed model architecture is inspired by characteristics embedded in psychology; i.e, it utilizes interrelations among personality facets and leads to increased accuracy in comparison with other state-of-the-art approaches. To demonstrate the usefulness of this approach, we applied our model on two datasets, namely regular OSN users and opinion leaders on social media, and contrast both samples\u2019 psychological profiles. Our findings demonstrate that the two groups can be clearly separated by focusing on both Big Five personality traits and attachment orientations. The presented research provides a promising avenue for future research on OSN user characterization and classification.\n\nIntroduction: Online Social Networks (OSNs) offer a virtual space in which people connect and interact with others, express themselves, and receive information, in a continuous digital reflection of the real (offline) world. In OSNs, people typically showcase their real self [40] and leave traces in online behavior, which reflect their real-world personality [24]. These traces expose a holistic image of oneself, including both personal characteristics (personality traits) and characteristics that portray their behavior in relation to others (relational traits).\n\nThe term personality refers to characteristic combinations or patterns of behaviors, cognitions, and emotional reactions that evolve from biological and environmental factors and form relatively consistent individual differences [13]. The Big Five (BF) or Five Factor model [29] is one of the most distinctive personality theories that constitutes five main traits of human personality representing individual differences in cognition, emotion, and behavior: Openness to Experience, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. On the other hand, relational traits have also been linked with consistencies in social behavior and interaction patterns, with attachment theory [7] as the most emblematic theoretical framework in that respect [31, 43], capturing how individuals experience close relationships to and interactions with others.\n\nPersonality traits have been studied in the context of OSNs and the web overall, as findings show that they are strongly linked to OSN use [57], online friendships [60], and online reviews [52]. Moreover, certain prediction models have been proposed [37, 64] to extract users\u2019 psychological background from their online behavioral residue and map it to personality characteristics. However, relational traits such as attachment orientations (AO) have been overlooked in online environments, even though user activity in OSNs heavily relates to social behavior characteristics. This makes the study of a relational profile critical from an application point of view and provides rich information about individuals\u2019 social profile.\n\nThe present research aims to address this limitation in OSN research, by studying and predicting both relational traits and personality traits of users. The importance of relational facets of personality for explaining social interaction cannot be overstated. Given that online social media engagement resembles actual social interactions in many respects [15, 30], the need to study how different personality facets are reflected in online expression is particularly compelling. Attachment orientations, a key individual difference of relational orientation, can be derived on the basis of traces found in micro-blogs. Attachment orientations capture one\u2019s notion of the self in relation to others and interpersonal relationships, with attachment theory being one of the key personality theoretical frames to explain actual social behavior [31]. Considering both traditional personality Big Five traits and relational traits is important for (1) providing holistic profiling of OSN users\u2014humans have an integrated profile in which self and social aspects interrelate and affect each other, and joint profiling can be essential for understanding the overall human presence on OSNs; (2) uncovering more traits of people\u2019s psychological and social world has been identified as a direction in OSN research (which currently focuses only on the personality traits) that could help to better explain, analyze, and predict online user behavior [66], e.g., with applications on customer segmentation [46] or digital advertisement environments [17]; and (3) shedding light on social interaction phenomena taking place in OSNs is of great socioeconomic importance, e.g., community formation [32], decision making [42], or information diffusion [12].\n\nTo this end, the present article proposes a novel data-driven approach to predict a holistic psychological profile of OSN users, capturing both their personality and relational traits.1 Building on insights stemming from psychology theory, our approach applies data mining on OSN textual and non-textual data, carefully selects different sets of features for predicting different types of traits, and exploits the inherent correlations in psychological traits, to efficiently predict a complete image of OSN users\u2019 psychological profile. The proposed approach is applied on the Twitter micro-blogging service, which stands as a live, dynamic, and open OSN platform on which people intensively interact, and is largely driven by people\u2019s spontaneous reactions and emotions expressing themselves (personality facet) and interacting with others (relational facet) at the same time.\n\nSpecifically, our contributions in detail are as follows:\n\nData mining and feature engineering for psychology traces in OSN. Motivated by psychology theory on personality suggesting that traits are reflected in different types of online behavior and actions, we identify a large set of features that capture language, behavioral, and emotional expressions of users in OSNs. The proposed feature engineering methodology accounts for a larger set of features than those considered in previous works, thus allowing to target more generic psychological profiling. To apply and test our methodology, we collected a labeled dataset: through a crowdsourcing platform, we recruited 243 individuals who consented to provide information about their psychology profiles. Subsequently, we compiled a ground-truth dataset labeled with their psychology profiles. We used the Twitter API to collect 350,000 tweets from the Twitter accounts of recruited participants and applied the proposed feature engineering methodology.\n\nHolistic psychological profiling. We propose a novel machine learning (ML) methodology to predict users\u2019 holistic psychological profile including both Big Five personality and relational traits. The novelty of the proposed methodology is that it (1) uses a large set of the collected (psychological-related) features, (2) carefully selects the subsets of them with the strongest predictive power for each trait, and (3) exploits correlations between personality and relational (i.e., social) behavior traits to enhance individual trait predictions. In this way, our approach not only predicts social facets of a psychology profile (which is not captured by existing personality prediction models) along with personality facets but also leverages the different traits for more accurate holistic profile prediction.\n\nNew insights and improvement of prediction accuracy. Evaluating our methodology reveals interesting insights for the prediction of psychology traits from OSN traces: (1) using different sets of features performs better in predicting different psychological traits, (2) relational traits can be predicted as efficiently as personality traits, and (3) holistic personality prediction outperforms individual trait predicting models. We believe that our findings can pave the ground for future experimentation and studies in psychology profiling in OSNs. Moreover, the accuracy achieved by our approach (across all traits) is higher than current state-of-the-art approaches, which currently are limited to Big Five personality traits instead of relational traits. For example, applying the approach of [12] to our data provides a root mean squared error (RMSE) of 0.284, while our prediction model achieves a 29% improvement for personality traits (RMSE = 0.203) and has 32% better average performance when accounting for all traits (0.192 RMSE); this improvement comes as a result of using both a psychology-driven feature engineering methodology and a holistic profiling approach.\n\nPsychological profiling in the wild. We demonstrate the applicability of the proposed psychological profiling methodology through a use case. We identify a set of Twitter users who seem to be accepted as opinion leaders on social media (i.e., have a large following). We apply our methodology to predict their psychological profiles and analyze results. We find that the distributions of traits significantly deviates from regular users (defined as users included in our ground-truth dataset), and that the set of leaders can be clearly separated by only using their psychological profiles. These findings highlight the usefulness of our approach in the characterization of the personalities for different groups of OSN users (e.g., such a group psychological profile could be used to recommend skills/activities/jobs to users based on their profile similarity) and classification of users based on their profiles.\n\nIn this section, we provide an overview of related psychological literature, discuss related work, and highlight several open issues of existing methods. We also highlight the contribution of the present work. Section 3 details the collected dataset and the data mining and feature engineering methodology, and Section 4 presents the design and evaluation of the proposed machine learning predictive model. Finally, we conclude our article and discuss future work in Section 6.\n\nFirst, Please Summarize the paper in 10 points, in easy to read and understand simple English.\nSecond, Explain what the paper does as if I'm 11 years old.\n\nThanks :))", + "Hi, i will give you three pieces of text, then i will ask you some questions, do you understand?", + "Here is Text 2: Communicating with External Audiences\n\nMany managers believe that they will never have to deal with the press. Often,\nthey regard it with hostility. Most think press relations are entirely the domain\nof their company\u2019s or agency\u2019s public relations department. But in fact, senior\nexecutives say they spend more time on communications than on other tasks,\nand a significant component of that time is devoted to press and public relations.\nJunior managers need to be highly sensitive to press relations for the following\nreasons:\n\u2022 Often, free press can be the best way to acquaint the public with your product or service.\nTo cite only one example, the amount Microsoft spent on advertising Windows\n95 was dwarfed by the value of the free publicity it received from\ninternational news coverage.\n\u2022 Your particular area of expertise may unexpectedly become something your organization\nneeds to promote or explain. Line workers at auto companies have been drafted\nto extol quality improvements in advertisements; accountants may be called\nto the CEO\u2019s office for briefings on a potentially embarrassing news report or\nan upcoming press conference.\n\u2022 Public relations considerations need to be addressed at the beginning, not the end, of a\nplanning process. Business history is replete with examples of companies that\ninvested vast sums to develop products, ideas, or services that couldn\u2019t be sold\nbecause of public resistance to the concept, the configuration, or the public\nimage of the company. General Motors\u2019 Tacos, for example, could be the best\nin the world and still not jump off the shelves.\n\u2022 Junior managers become senior managers who will eventually have to deal with the\npress directly. As both marketers and corporate citizens, organizations have to\nexplain themselves to the public constantly through advertising, press releases,\nand press conferences. Junior managers who understand this aspect of their\nwork are likely to become senior managers faster. 1. A successful manager understands how the press works. Successful managers\ntend to follow the press in general, and how their organization is playing in particular.\nMembers of the press tend to trust companies and individuals with a\ntrack record of accuracy and accessibility. To cite only two examples, both\nJohnson & Johnson and Perrier survived charges of contaminated products because\nthey had a record of reliability and accessibility and addressed the problems\nimmediately. In both cases, and many others, stonewalling would have\nbeen disastrous to the company\u2019s image of wholesomeness and purity. Most\npress stories last only a few days, but they can leave an indelible impression in\nthe public\u2019s mind. Many managers tend to believe they can \u201csnow\u201d the press\nwith their greater expertise, but this strategy rarely works. Most reporters are\nhard-working professionals who will carefully check out an expert assertion or\nwho know someone who can.\n2. A successful manager understands what the press needs. What the press needs\nis a story, and bad news generally sells better than good news. Companies and\nindividuals are most likely to have to deal with the press when something has\ngone wrong. This suggests a couple of lessons. When you have good stories,\ngive them to the press to establish a record of credibility; many media outlets\nwill print or broadcast a press release from a reliable source more or less verbatim.\nConsider how private decisions may look if they should become public.\nIf something has gone wrong, take the initiative in announcing it, explaining it,\nand telling the world how it\u2019s going to be corrected.\n3. A successful manager understands press jargon. Reputable reporters will\nstick to their verbal agreements on how information you provide them is to\nbe used. How you will be quoted depends on the ground rules you establish\nat the beginning of an interview. Deep background means the reporter can\nreflect the information in her story without possible attribution. Background\nmeans that you can be referenced as \u201ca reliable source.\u201d Any other comment,\nhowever apparently casual or social, can be quoted directly and\nattributed.\n4. A successful manager should be able to generate an attention-grabbing, accurate,\nand well-constructed press release. While many managers may not be\nregularly mailing out press releases themselves, most will be contributing to\nthem and need to understand how they work. A good press release is extremely\nformulaic and follows the structure of a good news story:\na. The first paragraph states the main point clearly and emphasizes its newsworthiness.\nFor example: \u201cAcme Corporation announced today that it is\nreleasing the best tire ever available on the world market.\u201d\nb. The second paragraph provides a quote from a reputable source: \u201cAcme\nPresident Rudy Roadrunner said, \u2018Not only does this tire surpass all our\ncompetitors\u2019 in endurance, quality, and safety; it\u2019s also available at a lower\nprice.\u2019 \u201d\nc. The third paragraph provides evidence that the claims made so far are true:\n\u201cIn repeated tests against our competitors . . . \u201d\nd. The remaining paragraphs provide background information on the product, the\ncompany, and Rudy Roadrunner, and they demonstrate a track record of credibility.\nThey may also include testimonials available from respected independent\nsources. Obviously, the formula of an effective press release will vary depending on\nthe nature of the news to be announced. But the pyramid structure suggested by\nthis example always applies: Move from the most important and specific to the\nleast important and most general information. Busy editors often run a press release\nmore or less verbatim and just cut it off when they run out of space. The\neasier you make their jobs, the more likely they are to cover your story.\nOnce you\u2019ve written or contributed to a press release, decide who\u2019s most\nlikely to run it. This can cover the gamut from extremely specialized trade magazines\nto the national or international media. Consider the use of venues other\nthan print and broadcast media as well; perhaps there\u2019s a room on the Internet\nwhere interested parties are likely to gather.\n5. A successful manager understands the role of the press in crisis management.\nThis includes knowing how to provide effective interviews and\nunderstanding when and how to hold a press conference. Certain rules\napply to both:\n\nApplications\na. Identify your central message, make sure you can back it up, and stick to it.\nb. Prepare materials in advance\u2014press releases, statements, supportive\nstudies\u2014that the reporters can take away with them and study or quote later.\nc. Never say more than you know to be true. If you don\u2019t know, say, \u201cI don\u2019t\nhave that information at the moment, but I\u2019ll get it to you as soon as I do\u201d\u2014\nthen follow up.\nd. Make sure your team is behind you. This means making sure not only that\ntop management of a corporation agrees on a message, but also that other\npotential press sources (for example, subordinate employees) have the same\ninformation you\u2019re dispensing to the public, believe it, and are unlikely to\nleak contradictory and embarrassing information.\ne. Provide the press with the most credible and informed access possible. Reporters\nwill always want to get to the top. They\u2019ll be more likely to cover\nthe comments of a CEO or a Cabinet secretary than those of a press agent\nor an underling. But they will understand that a high official may need to\nrefer technical questions to an informed specialist.\nf. Anticipate, and be prepared to respond to, the most difficult questions.\ng. Don\u2019t become hostile or defensive; experienced reporters are experts at\nsmelling anxiety.\nh. Make your answers brief, quotable, and to the point. Rambling and repetition\nare likely to get you into trouble or open new lines of inquiry.\ni. If you\u2019re facing a problem you\u2019ve caused, however inadvertently, be prepared\nto acknowledge\n\nAre you ready for text 3?", + "Here is Text 3: Diversity and Intercultural Communication \n\nGenerally, the best answer to these questions is yes, but it always depends on the personal as well as the business aspects of your relationship. One good rule of thumb: When the other person gives\nyou an opening, pursue it, and build on your mutual experience.\nThis issue comes up even more in international communication. As companies\nfrom manufacturers to media conglomerates become increasingly global, managers\nneed to understand the norms of other cultures. Although English is on the verge of\nbecoming the international language, standards of behavior and social interaction\nvary greatly between the United States and England, let alone between, say, France\nand Japan. In one country an invitation to dinner may be considered an expected\npoliteness, while in another, it may be an invasion of a colleague\u2019s private time.\nAsking about someone\u2019s family may be absolutely required in one culture and offensively\nintrusive in another.\nNo textbook can cover all such contingencies; one good rule if you\u2019re not sure\nmay be the trial lawyer\u2019s: Don\u2019t ask a question to which you don\u2019t already know the\nanswer. Another, and sometimes contradictory, rule is: Be frank about your cultural\nconfusion. Your colleague likely will have been in the same situation himself and\nwill be happy to help out. Finally, do your research; you\u2019re likely to have a friend or\ncoworker who knows the terrain better than you do. Our purpose here is to sensitize\nmanagers to their increasing need to understand the norms of cultures other than\ntheir own. (For a case addressing the special features of international communication,\nsee International Oil later in this chapter.)\nThe opportunities for cultural confusion\u2014personal, commercial, ethical, and\nlinguistic\u2014are almost endless. Imagine marketing a Chevy Nova in Hispanic countries,\nwhere \u201cno va\u201d means \u201cit doesn\u2019t run.\u201d Many products that are perfectly safe to\nmarket in first-world countries raise ethical problems when sold in developing\ncountries\u2014infant baby formula, for example, which if mixed with contaminated\nwater can cause death. Working in other cultures means understanding your hosts\u2019\nconceptions of greetings, timing, hygiene, negotiation, agreement, politeness, personal\nspace, gesture, meal etiquette, and closure.\nWhile English has essentially become the international language, it\u2019s important\nto remember that there are many Englishes. A joke in one form of English can be a\ndeadly insult in another. Although it may seem too obvious to emphasize, you must\nunderstand the cultural norms and language use of people from other cultures before\nyou can communicate effectively with them. This is true even if they are, say,\nthe South American employees of your Canadian company. A bribe in one culture\ncan be a thoughtful gift in another.\nA recent article by Sydel Sokuvitz (Business Communication Quarterly, New\nYork, March, 2002) suggests some principles for conducting successful intercultural\nbusiness communication. Sokuvitz first describes the special challenges global\nmanagers face, including:\nCoping with a range of tensions that arise out of internationally dispersed activities,\nThe challenges of maintaining coordinated activities across time-zones, cultural\nboundaries, and different countries\u2019 laws, and\nThe difficulties posed when the right medium for your message in one culture\nmay be wrong in another.\nDrawing on a range of research in the field, Sokuvitz comes up with several\nprovocative conclusions:\nExcessive dependence on technological communication such as E-mail can result\nin problems for both communication and productivity.\nFace-to-face meetings with colleagues from other cultures are critical to achieving\neffective communication.\nStudying with students from other cultures is critical to preparing a manager\nfor working in the increasingly globalized economy.\nSokuvitz cites the following example from an article by Fernandez-Aroaz\n(\u201cHiring without Firing,\u201d Harvard Business Review, 1999):\nA U.S.-based telecommunications company was seeking a CEO for its new division\nin Latin America. An international search was conducted, and a veteran was\nhired, someone known as an effective manager and marketing expert. \u201cBut his run\nlasted less than a year and was nothing short of a disaster. The simple reason was\nthat he lacked the two skills that the job really required: negotiation and cross-cultural\nsensitivity.\u201d\nEventually the company was saved from near-bankruptcy by bringing in a\nnew CEO who was a native Latin American with work experience in the U.S. His\nability to bridge cultural differences is credited with saving the company.\nCommunications between headquarters and subsidiaries is only one example\nof the challenges posed by globalization. Companies in one country are under increasing\nsocial pressure to take responsibility for the behavior of their subcontractors\nin other countries. Recently, for example, Nike suffered adverse publicity because\nof the work practices of shoe manufacturers it employs in Asia.\nThe successful manager of the future increasingly will be required to be a citizen\nof the world. While electronic communication may work fine for conveying information\nor directions, there is no substitute for \u201cspeaking the language\u201d of the\npeople with whom you\u2019re trying to communicate.\n\nAre you ready to answer some questions on text 1, text 2 and text 3?", + 'pragma solidity ^0.4.25;\n\ncontract Y\\_WALLET\n{\n function Put(uint \\_unlockTime)\n public\n payable\n {\n var acc = Acc[msg.sender];\n acc.balance += msg.value;\n acc.unlockTime = \\_unlockTime>now?\\_unlockTime:now;\n LogFile.AddMessage(msg.sender,msg.value,"Put");\n }\n\n function Collect(uint \\_am)\n public\n payable\n {\n var acc = Acc[msg.sender];\n if( acc.balance>=MinSum && acc.balance>=\\_am && now>acc.unlockTime)\n {\n if(msg.sender.call.value(\\_am)())\n {\n acc.balance-=\\_am;\n LogFile.AddMessage(msg.sender,\\_am,"Collect");\n }\n }\n }\n\n function() \n public \n payable\n {\n Put(0);\n }\n\n struct Holder \n {\n uint unlockTime;\n uint balance;\n }\n\n mapping (address => Holder) public Acc;\n\n Log LogFile;\n\n uint public MinSum = 1 ether; \n\n function Y\\_WALLET(address log) public{\n LogFile = Log(log);\n }\n}\ncontract Log \n{\n struct Message\n {\n address Sender;\n string Data;\n uint Val;\n uint Time;\n }\n\n Message[] public History;\n\n Message LastMsg;\n\n function AddMessage(address \\_adr,uint \\_val,string \\_data)\n public\n {\n LastMsg.Sender = \\_adr;\n LastMsg.Time = now;\n LastMsg.Val = \\_val;\n LastMsg.Data = \\_data;\n History.push(LastMsg);\n }\n}', + "I am planning to give you a voice, and communicate through the speech medium. I need a speech recognizer, a wake call detector, and a speech synthesizer for your voice. Suggest a python script utilizing existing libraries to achieves the goal.", + "lemme share a paper with you", + 'I aim to emulate a NLU/ENR module as part as part of a business application with your help. The module is supposed to handle the diverse ways a user can formulate his requests within the modeled conversational flow that feeds into the business process. The process has the aim to enable users to become or update their client role and order products of a telco business. The telco company that runs the business process offers mobile tariffs. Mobile tariffs have can have between one and 5 sim cards. Each booked sim cards enables the user to optionally book a smartphone for that card. Depending on the tariff, the chosen smartphones (if any) and the kind of sim cards (adult, child) the price will adapt. Please suggest a set of NLU / ENR methods that you could emulate to facilitate the use case. In the following I will input utterances and statements on how the system running the conversational flow should handle the utterance within the conversational flow. Please provide possible calls to an imaginary API that you could simulate to facilitate the NLU/ENR requirements layed out by my statements. On Subtasks that are recognized as not directly related to NLU/NER be very brief. Please suggest NLU / NER Operations now for the first of a few utterances: "Hi I want to upgrade my current tariff and get a new smartphone". The utterance should make the system recognize that the utterance can be handled as part of the business process. It should recognize that the user apparently already a client and it should continue the conversation by trying to identify him and metadata on his current tariff. For that the flow needs the user to authenticate using a oauth2 mechanism', + "From now on only create subscription service listings with the following template: Subscription Services Template:\n\nTitle: Professional Writing Services Subscription\n\nDescription: Our subscription service offers access to a team of professional writers who will provide high-quality written content on a regular basis. Choose from one of our three plans to suit your needs and budget.\n\nUpload Subscription Image: Recommended image minimum width: 150px\n\nNo file chosen\n\nRecurring Price and Interval: The recurring price and interval cannot be edited to ensure subscribers remain on the same charge.\n\nPlan 1:\nPlan name: Basic\nThe recurring price is USD 75.00 and will be charged periodically at every 1 month\nPlan description: This plan includes access to a professional writer who will provide one piece of written content per month. Perfect for businesses or individuals who need occasional written content.\n\nPlan Image: Display a small image to represent this plan to customers\n\nTrial Period: Enable trial period\nAssign Digital Product Files: Assign digital products for subscribers\n\nPlan 2:\nPlan name: Pro\nThe recurring price is USD 500.00 and will be charged periodically at every 1 month\nPlan description: This plan includes access to a team of professional writers who will provide up to five pieces of written content per month. Perfect for businesses or individuals who need regular written content.\n\nPlan Image: Display a small image to represent this plan to customers\n\nTrial Period: Enable trial period\nAssign Digital Product Files: Assign digital products for subscribers\n\nPlan 3:\nPlan name: Premium (Bundle of 20 / 1,500 words)\nThe recurring price is USD 1000.00 and will be charged periodically at every 1 month\nPlan description: This plan includes access to a team of professional writers who will provide up to 20 pieces of written content per month. Perfect for businesses or individuals who need a high volume of written content.\n\nPlan Image: Display a small image to represent this plan to customers\n\nTrial Period: Enable trial period\nAssign Digital Product Files: Assign digital products for subscribers", + "Hello", + "I am launching an Etsy shop with a Printful integration for drop shipping my designs on specific products. I am looking for ways to differentiate beyond the designs. You are an expert on Etsy audiences. Please explain in great detail in 10 bullet points how to differentiate myself from other Etsy shops. I am looking for more obscure ideas here.", + "How to get a job as a LMFT therapist in the US as an international student?", + "Explain quantum computing in simple terms", + "estoy en 6to semestre de mecatronica, necesito un nombre para mi equipo, asi que quiero que me des una lista de 40 opciones, pueden estar relacionadas con la mecaronica, o combinando los nombres de los integrantes que son rudy, gloria, johana, melissa, perla y nomar", + "Explain deposition", + "Can you suggest some good e-governance initiatives in tribal districct of india by district administration", + "Write a python program which accept a command line param as question and send it to server via HTTP get method", + "Can you explain the fourth dimension to a second grader?", + "I have an interview about product speccing with the company Weekend Health. Give me an example of a question they might ask with regards about a new feature", + "arduino uno adalah", + "how edit array which is in object", + "how can my software company use Microsoft ENTRA to verify the identity of a user before accessing the software?", + "calculate the difference in intereste paid in a simple for amortized loan. terms: 125,000 loan, 3.25% interest over 30 years.", + "can i use spring state machine and workflow together and is it justified?", + 'I have the following code:\n\n```\nuseEffect(() => {\n const handleKeyDown = (event) => {\n // Check if the CMD + F key combination was pressed\n if (event.key === "f" && event.metaKey) {\n event.preventDefault();\n\n setIsShown(true);\n }\n\n window.addEventListener("keydown", handleKeyDown);\n\n return () => {\n window.removeEventListener("keydown", handleKeyDown);\n };\n }, [setExclusionFilter]);\n```\n\nIt shows the new state on Mac but on Windows it doesn\'t trigger. How can I support windows?', + "What is the best marketing tactics for local small businesses?", + "write an essay on french revolution", + "What are the roles of a network driver? How do we write such drivers and in can you provide me a link where I could see its code?", + "Are you familiar with the SAS programming language?", + "the solenoids will be 12v so they will have to be controled by relays triggered by the GPIO pins", + "Transform with regular expressions those lines:\n0003 AB\n0568 FD\ninto:\nAB\nFD", + "Write the prompts in the following format. First sentence establishes a situation. Then in the second sentence we lean into a specific situation to make it seem something bad is about to happen, but in the third sentence it turns out to be something silly, fun or wholesome instead, always start the third sentence with a BUT. Some examples below\n\n-A hydra is hypnotizing an orc. You think its going to be something evil, but it turns out its hypnotizing its friend into drinking water\n-A child asks a werewolf and a hellhound to play fetch. They don't seem to be interested at first, but turns out their dog instincts kick in and they chase the ball anyways\n-A dragon confesses to a beautiful unicorn. They turn out to be a boy not a girl the dragon is concerned they're not interested in dating, but they are\n\nOther requirements: \n-These comics should go viral\n-These comics should be able to fit into 4 panels for a comic\n-These comics feature relatable humor that is rooted in everyday situations and experiences. \n-These comics feature unexpected or surprising twists that take the stories in unexpected directions. \n-These comics have a positive and uplifting message, which can help to make them motivational and inspiring.\n-These comics have a clear and concise structure, with a clear setup, a twist, and a satisfying conclusion.\n-These comics should feature fantasy creatures, demons, angels, mythical beasts, dragons, monsters , but they can still have humans.", + "How can we improve this comic to be simpler and funnier?\n\n[We see that this is a small reading club for woodland creatures. Make them all nice and cute, very winnie the pooh-esque, lol. The two characters that speak are animals, make Red into a herbivore race, like a rabbit or something, pink should be a small carnivore like a cat or badger? Red is confused, and red is excited]\nKnock Knock\nPink:Who\u2019s that?\nRed: Maybe a new member for our book club!\n\n[Panics as she sees a dragon licking their lips behind the curtain]\nRed: It\u2019s a dragon, run for your lives everyone!\n\n[Dragon mom is outside their home, looking dragon-eque but also waving her hands chibi cute apologetically, she\u2019s clearly a little embarrassed by the situation. Red looks at her suspiciously ]\nDragon:I\u2019m not here to eat anyone, I uh\u2026 heard you had a book club?\nRed: Uh\u2026yes\n\n[Dragon looks very excited and welcome, Pink seems like she likes the book, red looks a little grossed out ]\nDragon: Awesome, it's nice to meet you! I brought my favorite book too!\nPink: What a lovely book!\nRed: Ugh I\u2019ll pass on reading that.", + "Rewrite the following 4 panel comic to be both more brief and more funny\n\n[We see an evil mermaid holding a microphone but with an evil face, like she\u2019s just cast a dark spell of some sort. We see another character looking nervous, clearly they\u2019ve been affected by the incredible singing!]\nMermaid: You\u2019ve lost! Give up & spare us both the trouble!\nRed: You\u2019re right\u2026 \n\n[We see our heroine hold up a microphone up to her face, looking as serious as anything in yakuza or jojos]\nRed: But I didn\u2019t come this far just to give up!\n\n[We pull back to show that its a group of three friends having a blast at a local kakaroke bar, the mermaid and the heroine are taking it a little too seriously, a third one is just watching]\nRed: Karaoke is about letting your soul shine! I\u2019m giving it my all or die trying!\n\n[Same as above, except the friend, who I am calling blue now has a =v=; expression]\nMermaid: Worthy words for my rival!\nBlue: Girls, you need to chill. \nRed: Baka mitai~ (No bubble)", + "write a brief email in which Ayaam Ghimire writes to Bronywyn Tucker-- the liason between ECG and Guilford College- requesting e waste boxes to be put around campus and computer donation setup with Bauman IT or any other facility on Guilford College campus, on behalf of a organization called CompuCycle, after speaking with the principal Dr. Kash", + "I'm writing a software for conference calls.\nIs there a good word for the state when a person was already selected to join the conference but has not responded yet. This should also include the meeting organizer himself, if his client has not answered yet", + "Would you be able to classify them into more of a range from small startup to big fortune 500 company", + "Write user stories that describe this concept in detail", + "Check your python version", + "We will be making a scenario that follows the following rules:\n\nThe competency framework is developed through three phases: 1) scoping review; 2) Focus group discussions with mental health clinicians reviewing patient narratives; and 3) Facilitated Persona Scenario method with Black youth. Moreover, the project adopts a co-design approach and convenes a Knowledge User Panel. The panel will be involved in all phases of the competency framework development as they will review findings from the scoping review and focus groups. \n\nFocus group with mental health clinicians \n Mental health clinicians (i.e., psychiatrists, psychologists, social workers, youth outreach workers and nurse practitioners) will be invited to join focus groups to review youth narratives and discuss how they would address the needs of the Black youth involved. The youth narratives will be generated through collecting stories from social media and through an online survey. The survey will ask about young people's experiences with mental health conditions, their use of mental health services, and their suggestions for how to improve mental health care for young people. The online survey will collect stories anonymously. Anyone who submits a story through the survey will be redirected to a list of resources. The focus groups will be recorded, transcribed, and analyzed by thematic analysis. The focus groups will continue until thematic saturation.\n\nPhase 3: Persona Scenario method with Black youth\n Black youth will be invited to focus groups (or one-on-one interviews, if requested) using persona scenario methods. The findings from the focus groups with mental health clinicians will be used to create clinician personas, including information about their motivations, challenges and describe the different ways in which the clinician might interact with the Black youth based on youth narratives. Black youth will be asked to share their perspectives and preferred clinician responses. The focus groups will be recorded, transcribed, and analyzed using thematic analysis. We will continue to hold focus groups until thematic saturation.\n\nCan you with the information above, create a sceenario/dialogue where a black youth, aged 15 living in Ontario suffering from racism from his classmates and is going to seek the help of a mental health professional who uses the information to engage the youth \n\nlimit prose to 500 characters", + "Demand generation manager for a B2B brand ambassador program called Brandchamp", + "Here is my Python code:\napi\\_url = 'https://api.yelp.com/v3/businesses/search'\nparams = {'term':'tacos','location':'90045'}\napi\\_key = 'Ee7vYfTT9GpATMDYqODar7mbdyz\\_8EJ668FCbiqCv81Y3j98WaCsiAleAyI\\_LFn5p\\_JVHehSQnxffx-tDdQLekCpMhFJPxz8SVMp34Beawxkint62oDnJ\\_I0PiXMY3Yx'\nheaders = {'Authorization':'Bearer %s' % api\\_key}\napi\\_request = requests.get(api.\\_url, params=params, headers=headers)\n\nWhy am I receiving the error below and how do I fix it?\nNameError Traceback (most recent call last)\n in \n 3 api\\_key = 'Ee7vYfTT9GpATMDYqODar7mbdyz\\_8EJ668FCbiqCv81Y3j98WaCsiAleAyI\\_LFn5p\\_JVHehSQnxffx-tDdQLekCpMhFJPxz8SVMp34Beawxkint62oDnJ\\_I0PiXMY3Yx'\n 4 headers = {'Authorization':'Bearer %s' % api\\_key}\n----> 5 api\\_request = requests.get(api.\\_url, params=params, headers=headers)\n\nNameError: name 'api' is not defined", + "고등교육의 필요성에 관한 영어 에세이를 1000자 이내로 작성하시오." + "Which hero is the best in Heroes of Might and Magic 3?", + "Use C# to get the current YouTube thumbnail and convert it to Base64.", + "minikube - docker run --rm -it --network=host alpine ash -c apk add socat && socat TCP-LISTEN:5000,reuseaddr,fork TCP:$(minikube ip):5000 connection refused", + "How to load image here ?", + ] + + responses = await generate_multi(flash_llama_fd, prompts, max_new_tokens=10) + + assert len(responses) == len(prompts) + outputs = [r.choices[0].message.content for r in responses] + assert outputs == [ + "Jeff Walker's Product Launch Formula is a comprehensive system", + "Here are three key indicators to determine if a customer", + "You can use the `String.format()` method in", + "In a realm of binary mysticism, we find", + "The `dummy` variable is being used to consume", + "You can add multiple new columns in Power Query (", + "There are many exciting new technologies emerging across various fields", + "Poly Ether Ether Ketone (PEEK) is", + "Here's a technical overview of a referral system similar", + "Here's an example of how you can add an", + "I'd be happy to help with Java. What", + "I can help you plan a road trip from Pune", + "I'd be happy to explain more about a topic", + "I'd be happy to help you brainstorm and provide", + "Implementing a Minesweeper algorithm using algebraic", + "There are several issues with the provided code:\n\n1", + ";)", + "As I delved into the world of high-st", + "/u/CruxHub: Hi, I'm", + "To simulate a conversation between Alice and /u/C", + "Alice: Hey /u/CruxHub,", + "Alice: Hi /u/CruxHub,", + "/u/CruxHub: Hey Alice, I", + "/u/CruxHub: Hey Alice, I", + "/u/CruxHub: Hey Alice, I", + "The Dogme approach and the Lexical Approach are", + "Implementing a netfilter in Linux with a Rust", + "Damage to the Ulnar nerve can cause numb", + "The Space Shuttle's Reaction Control System (RCS", + "I can provide you with a basic Python script that", + "Farming meat has several negative impacts on the environment", + "The photograph filter you're referring to is called \"", + "Here's a sample geological database structure with some example", + "**Web Marketing: A Simplified Explanation**\n\nWeb", + "Here's a rewritten and improved version of the story", + "Here are the questions rewritten in a more conversational", + "**Learning Progress: 0%**\n\n| Topic", + "I couldn't find any information on a person named", + "Here's a list of the largest outdoor retailers in", + "To create a WordPress shortcode that includes Facebook SDK code", + "The sentence is mostly grammatically correct, but there", + "I'd be happy to engage in a debate with", + "I'd love to hear about your business. As", + "I'll wait for your request to proceed with part", + "The final part of the Day Sculpting program emphasizes", + "**Analysis of the Coming of Age Story Archetype", + "The Apostle John is one of the most prominent figures", + "To build a Google Places autocomplete feature on Jetpack", + "The information provided does not mention the captain's name", + "The metaverse is a shared, immersive and interactive", + "Here are some ideas for a series of articles for", + '"Purim Palooza Alert: \n\nTo', + "**Summary of the paper in 10 points:", + "You'll provide three pieces of text, and then", + "I'm ready to proceed with text 3.", + "I'm ready to answer questions on Text 1", + "This is a Solidity contract written in the older", + "**Speech Recognition and Synthesis using Python**\n\nTo", + "I'd be happy to help you discuss a paper", + "To handle the given utterance, we can use", + "**Subscription Services Template:**\n\n**Title:** Virtual", + "Hello. How can I assist you today?", + "Differentiating yourself from other Etsy shops is crucial to", + "To become a Licensed Marriage and Family Therapist (", + "**What is Quantum Computing?**\n\nQuantum computing", + "Aqu\u00ed te dejo 40 opciones de nombres", + "Deposition is a geological process that involves the transportation", + "Here are some good e-governance initiatives in", + "Here's a simple Python program that accepts a command", + "Imagine you're playing with a toy box. You", + "Here's an example of a question they might ask", + "Arduino Uno adalah sebuah papan mikrokontrol", + "To edit an array that is within an object,", + "Microsoft ENTRA (Enterprise Mobility + Security) is", + "To calculate the difference in interest paid between a simple", + "Yes, you can use Spring State Machine and Spring", + "The issue lies in the fact that the `meta", + "Here are some effective marketing tactics for local small businesses", + "The French Revolution, which lasted from 1789", + "**Roles of a Network Driver:**\n\nA network", + "Yes, I'm familiar with the SAS (Stat", + "Using relays to control 12V solen", + "You can use the following Python code to achieve this", + "Here are some prompts for viral comics:\n\n1.", + "To simplify and make the comic funnier, consider", + "Here's a rewritten version of the 4-panel", + "Subject: Request for E-Waste Collection and Computer", + "In the context of conference calls, the state you", + "I can provide a general classification of companies based on", + "Here are some user stories that describe the concept in", + "You can check your Python version by running the following", + "**Scenario:**\n\n15-year-old Black youth,", + "As a Demand Generation Manager for a B2B", + "The error is due to a typo in your code", + "고등교육의 필요성에 관한 영어 에", + "Here's a simple C# program that uses the", + 'The error message "connection refused" indicates that the', + "To load an image, you can use various methods", + ] + assert responses == generous_response_snapshot diff --git a/integration-tests/models/test_flash_mixtral.py b/integration-tests/models/test_flash_mixtral.py new file mode 100644 index 00000000..24ae1f48 --- /dev/null +++ b/integration-tests/models/test_flash_mixtral.py @@ -0,0 +1,75 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_mixtral_handle(launcher): + with launcher("mistralai/Mixtral-8x7B-v0.1", num_shard=8) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_mixtral(flash_mixtral_handle): + await flash_mixtral_handle.health(300) + return flash_mixtral_handle.client + + +@pytest.mark.skip(reason="requires > 4 shards") +@pytest.mark.asyncio +async def test_flash_mixtral(flash_mixtral, response_snapshot): + response = await flash_mixtral.generate( + "What is gradient descent?\n\n", max_new_tokens=10, decoder_input_details=True + ) + + assert response.details.generated_tokens == 10 + assert ( + response.generated_text + == "Gradient descent is an optimization algorithm used to minimize" + ) + assert response == response_snapshot + + +@pytest.mark.skip(reason="requires > 4 shards") +@pytest.mark.asyncio +async def test_flash_mixtral_all_params(flash_mixtral, response_snapshot): + response = await flash_mixtral.generate( + "What is gradient descent?\n\n", + max_new_tokens=10, + repetition_penalty=1.2, + return_full_text=True, + stop_sequences=["test"], + temperature=0.5, + top_p=0.9, + top_k=10, + truncate=5, + typical_p=0.9, + watermark=True, + decoder_input_details=True, + seed=0, + ) + + assert response.details.generated_tokens == 10 + assert ( + response.generated_text + == "What is gradient descent?\n\nIt seems to me, that if you're" + ) + assert response == response_snapshot + + +@pytest.mark.skip(reason="requires > 4 shards") +@pytest.mark.asyncio +async def test_flash_mixtral_load(flash_mixtral, generate_load, response_snapshot): + responses = await generate_load( + flash_mixtral, "What is gradient descent?\n\n", max_new_tokens=10, n=4 + ) + + assert len(responses) == 4 + assert responses[0].details.generated_tokens == 10 + assert ( + responses[0].generated_text + == "Gradient descent is an optimization algorithm used to minimize" + ) + assert all( + [r.generated_text == responses[0].generated_text for r in responses] + ), f"{[r.generated_text for r in responses]}" + + assert responses == response_snapshot diff --git a/integration-tests/models/test_flash_mixtral_gptq.py b/integration-tests/models/test_flash_mixtral_gptq.py new file mode 100644 index 00000000..eb880628 --- /dev/null +++ b/integration-tests/models/test_flash_mixtral_gptq.py @@ -0,0 +1,60 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_mixtral_gptq_handle(launcher): + with launcher("TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ", num_shard=2) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_mixtral_gptq(flash_mixtral_gptq_handle): + await flash_mixtral_gptq_handle.health(300) + return flash_mixtral_gptq_handle.client + + +@pytest.mark.asyncio +async def test_flash_mixtral_gptq(flash_mixtral_gptq, response_snapshot): + response = await flash_mixtral_gptq.generate( + "Test request", max_new_tokens=10, decoder_input_details=True + ) + + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_mixtral_gptq_all_params(flash_mixtral_gptq, response_snapshot): + response = await flash_mixtral_gptq.generate( + "Test request", + max_new_tokens=10, + repetition_penalty=1.2, + return_full_text=True, + stop_sequences=["test"], + temperature=0.5, + top_p=0.9, + top_k=10, + truncate=5, + typical_p=0.9, + watermark=True, + decoder_input_details=True, + seed=0, + ) + + assert response.details.generated_tokens == 10 + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_mixtral_gptq_load( + flash_mixtral_gptq, generate_load, response_snapshot +): + responses = await generate_load( + flash_mixtral_gptq, "Test request", max_new_tokens=10, n=4 + ) + + assert len(responses) == 4 + assert all( + [r.generated_text == responses[0].generated_text for r in responses] + ), f"{[r.generated_text for r in responses]}" + + assert responses == response_snapshot diff --git a/integration-tests/models/test_flash_phi35_moe.py b/integration-tests/models/test_flash_phi35_moe.py new file mode 100644 index 00000000..2173740a --- /dev/null +++ b/integration-tests/models/test_flash_phi35_moe.py @@ -0,0 +1,75 @@ +import pytest + + +@pytest.fixture(scope="module") +def flash_phi35_moe_handle(launcher): + with launcher( + "microsoft/Phi-3.5-MoE-instruct", + num_shard=4, + ) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def flash_phi35_moe(flash_phi35_moe_handle): + await flash_phi35_moe_handle.health(300) + return flash_phi35_moe_handle.client + + +@pytest.mark.asyncio +async def test_flash_phi35_moe(flash_phi35_moe, response_snapshot): + response = await flash_phi35_moe.generate( + "What is gradient descent?\n\n", max_new_tokens=10, decoder_input_details=True + ) + + assert response.details.generated_tokens == 10 + assert ( + response.generated_text + == "Gradient descent is a first-order optimization algorithm" + ) + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_phi35_moe_all_params(flash_phi35_moe, response_snapshot): + response = await flash_phi35_moe.generate( + "What is gradient descent?\n\n", + max_new_tokens=10, + repetition_penalty=1.2, + return_full_text=True, + stop_sequences=["test"], + temperature=0.5, + top_p=0.9, + top_k=10, + truncate=5, + typical_p=0.9, + watermark=True, + decoder_input_details=True, + seed=0, + ) + + assert response.details.generated_tokens == 10 + assert ( + response.generated_text + == "What is gradient descent?\n\nHello! It seems you're addressing a" + ) + assert response == response_snapshot + + +@pytest.mark.asyncio +async def test_flash_phi35_moe_load(flash_phi35_moe, generate_load, response_snapshot): + responses = await generate_load( + flash_phi35_moe, "What is gradient descent?\n\n", max_new_tokens=10, n=4 + ) + + assert len(responses) == 4 + assert responses[0].details.generated_tokens == 10 + assert ( + responses[0].generated_text + == "Gradient descent is a first-order optimization algorithm" + ) + assert all( + [r.generated_text == responses[0].generated_text for r in responses] + ), f"{[r.generated_text for r in responses]}" + + assert responses == response_snapshot diff --git a/integration-tests/models/test_mllama.py b/integration-tests/models/test_mllama.py new file mode 100644 index 00000000..1b4264aa --- /dev/null +++ b/integration-tests/models/test_mllama.py @@ -0,0 +1,105 @@ +import pytest +import base64 +import asyncio + + +@pytest.fixture(scope="module") +def mllama_handle(launcher): + with launcher("meta-llama/Llama-3.2-11B-Vision-Instruct", num_shard=2) as handle: + yield handle + + +@pytest.fixture(scope="module") +async def mllama(mllama_handle): + await mllama_handle.health(300) + return mllama_handle.client + + +# TODO fix the server parsser to count inline image tokens correctly +def get_chicken(): + with open("integration-tests/images/chicken_on_money.png", "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()) + return f"data:image/png;base64,{encoded_string.decode('utf-8')}" + + +def get_cow_beach(): + with open("integration-tests/images/cow_beach.png", "rb") as image_file: + encoded_string = base64.b64encode(image_file.read()) + return f"data:image/png;base64,{encoded_string.decode('utf-8')}" + + +@pytest.mark.asyncio +async def test_mllama_simpl(mllama, response_snapshot): + # chicken = get_chicken() + response = await mllama.chat( + max_tokens=10, + temperature=0.0, + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": "Can you tell me a very short story based on the image?", + }, + { + "type": "image_url", + "image_url": { + "url": "https://raw.githubusercontent.com/huggingface/text-generation-inference/main/integration-tests/images/chicken_on_money.png" + }, + }, + ], + }, + ], + ) + + assert response.usage == { + "completion_tokens": 10, + "prompt_tokens": 50, + "total_tokens": 60, + } + assert ( + response.choices[0].message.content + == "In a bustling city, a chicken named Cluck" + ) + assert response == response_snapshot + + +@pytest.mark.release +@pytest.mark.asyncio +async def test_mllama_load(mllama, generate_load, response_snapshot): + futures = [ + mllama.chat( + max_tokens=10, + temperature=0.0, + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": "Can you tell me a very short story based on the image?", + }, + { + "type": "image_url", + "image_url": { + "url": "https://raw.githubusercontent.com/huggingface/text-generation-inference/main/integration-tests/images/chicken_on_money.png" + }, + }, + ], + }, + ], + ) + for i in range(4) + ] + responses = await asyncio.gather(*futures) + + generated_texts = [response.choices[0].message.content for response in responses] + + assert generated_texts[0] == "In a bustling city, a chicken named Cluck" + assert len(generated_texts) == 4 + assert generated_texts, all( + [text == generated_texts[0] for text in generated_texts] + ) + + assert responses == response_snapshot diff --git a/integration-tests/models/test_tools_llama.py b/integration-tests/models/test_tools_llama.py index 9855cfda..c337afa1 100644 --- a/integration-tests/models/test_tools_llama.py +++ b/integration-tests/models/test_tools_llama.py @@ -4,7 +4,9 @@ import pytest @pytest.fixture(scope="module") def flash_llama_grammar_tools_handle(launcher): with launcher( - "TinyLlama/TinyLlama-1.1B-Chat-v1.0", num_shard=2, disable_grammar_support=False + "meta-llama/Meta-Llama-3.1-8B-Instruct", + num_shard=2, + disable_grammar_support=False, ) as handle: yield handle @@ -208,7 +210,7 @@ async def test_flash_llama_grammar_tools_stream( async for response in responses: count += 1 - assert count == 48 + assert count == 28 assert response == response_snapshot diff --git a/launcher/Cargo.toml b/launcher/Cargo.toml index eb219423..fdc3c02c 100644 --- a/launcher/Cargo.toml +++ b/launcher/Cargo.toml @@ -12,11 +12,13 @@ ctrlc = { version = "3.4.1", features = ["termination"] } hf-hub = "0.3.2" nix = { version = "0.28.0", features = ["signal"] } once_cell = "1.19.0" +pyo3 = { workspace = true } serde = { version = "1.0.188", features = ["derive"] } serde_json = "1.0.107" thiserror = "1.0.59" tracing = "0.1.37" tracing-subscriber = { version = "0.3.17", features = ["json", "env-filter"] } +regex = "1.11.0" [dev-dependencies] float_eq = "1.0.1" diff --git a/launcher/src/gpu.rs b/launcher/src/gpu.rs new file mode 100644 index 00000000..b565220e --- /dev/null +++ b/launcher/src/gpu.rs @@ -0,0 +1,21 @@ +pub fn get_cuda_capability() -> Option<(usize, usize)> { + use pyo3::prelude::*; + + let py_get_capability = |py: Python| -> PyResult<(isize, isize)> { + let torch = py.import_bound("torch.cuda")?; + let get_device_capability = torch.getattr("get_device_capability")?; + get_device_capability.call0()?.extract() + }; + + match pyo3::Python::with_gil(py_get_capability) { + Ok((major, minor)) if major < 0 || minor < 0 => { + tracing::warn!("Ignoring negative GPU compute capabilities: {major}.{minor}"); + None + } + Ok((major, minor)) => Some((major as usize, minor as usize)), + Err(err) => { + tracing::warn!("Cannot determine GPU compute capability: {}", err); + None + } + } +} diff --git a/launcher/src/main.rs b/launcher/src/main.rs index 2cdccfe0..214adcdc 100644 --- a/launcher/src/main.rs +++ b/launcher/src/main.rs @@ -5,6 +5,7 @@ use hf_hub::{ }; use nix::sys::signal::{self, Signal}; use nix::unistd::Pid; +use regex::Regex; use serde::Deserialize; use std::env; use std::ffi::OsString; @@ -26,6 +27,7 @@ use thiserror::Error; use tracing_subscriber::{filter::LevelFilter, EnvFilter}; mod env_runtime; +mod gpu; fn get_config( model_id: &str, @@ -65,6 +67,7 @@ fn get_config( } fn resolve_attention(config: &Option, lora_adapters: &Option) -> (String, String) { + let compute_capability = gpu::get_cuda_capability(); let mut prefix_caching: Option = std::env::var("USE_PREFIX_CACHING").ok(); let mut attention: Option = std::env::var("ATTENTION").ok(); if let Some(config) = config { @@ -77,6 +80,13 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> prefix_caching = Some("0".to_string()); } } + + let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) { + "paged" + } else { + "flashdecoding" + }; + match config.head_dim { Some(h) if h == 64 || h == 128 || h == 256 => { if lora_adapters.is_some() && prefix_caching.is_none() { @@ -89,10 +99,14 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> // flashinfer ? if attention.is_none() { tracing::info!( - "Forcing flash decoding because model {} requires it", + "Forcing attention to '{fallback_attention}' because model {} requires it", config.model_type.as_ref().unwrap() ); - attention = Some("flashdecoding".to_string()); + attention = Some(fallback_attention.to_string()); + } + if fallback_attention == "paged" && prefix_caching.is_none() { + tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention"); + prefix_caching = Some("0".to_string()); } } Some("t5") => {} @@ -101,8 +115,8 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> } _ => { if attention.is_none() { - tracing::info!("Forcing flash decoding because head dim is not supported by flashinfer, also disabling prefix caching"); - attention = Some("flashdecoding".to_string()); + tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching"); + attention = Some(fallback_attention.to_string()); } if prefix_caching.is_none() { prefix_caching = Some("0".to_string()); @@ -110,8 +124,10 @@ fn resolve_attention(config: &Option, lora_adapters: &Option) -> } } } - let prefix_caching = prefix_caching.unwrap_or("true".to_string()); + let attention = attention.unwrap_or("flashinfer".to_string()); + let prefix_caching = prefix_caching.unwrap_or("true".to_string()); + (prefix_caching, attention) } @@ -285,6 +301,22 @@ impl std::fmt::Display for Dtype { } } +#[derive(Clone, Copy, Debug, ValueEnum)] +enum KVCacheDtype { + #[clap(name = "fp8_e5m2")] + Fp8e5m2, +} + +impl std::fmt::Display for KVCacheDtype { + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + match self { + KVCacheDtype::Fp8e5m2 => { + write!(f, "fp8_e5m2") + } + } + } +} + #[derive(Clone, Copy, Debug, ValueEnum)] enum RopeScaling { Linear, @@ -367,7 +399,11 @@ struct Args { #[clap(long, env)] num_shard: Option, - /// Whether you want the model to be quantized. + /// Quantization method to use for the model. It is not necessary to specify this option + /// for pre-quantized models, since the quantization method is read from the model + /// configuration. + /// + /// Marlin kernels will be used automatically for GPTQ/AWQ models. #[clap(long, env, value_enum)] quantize: Option, @@ -382,6 +418,12 @@ struct Args { #[clap(long, env, value_enum)] dtype: Option, + /// Specify the dtype for the key-value cache. When this option is not provided, + /// the dtype of the model is used (typically `float16` or `bfloat16`). Currently + /// the only supported value is `fp8_e5m2` on CUDA. + #[clap(long, env, value_enum)] + kv_cache_dtype: Option, + /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is /// encouraged when loading a model with custom code to ensure no malicious code has been /// contributed in a newer revision. @@ -650,6 +692,7 @@ fn shard_manager( quantize: Option, speculate: Option, dtype: Option, + kv_cache_dtype: Option, trust_remote_code: bool, uds_path: String, rank: usize, @@ -723,6 +766,11 @@ fn shard_manager( shard_args.push(dtype.to_string()) } + if let Some(kv_cache_dtype) = kv_cache_dtype { + shard_args.push("--kv-cache-dtype".to_string()); + shard_args.push(kv_cache_dtype.to_string()) + } + // Model optional revision if let Some(revision) = revision { shard_args.push("--revision".to_string()); @@ -1034,11 +1082,13 @@ fn log_lines(mut bufread: BufReader) { Ok(log) => log.trace(), // For interactive debugging ? Err(_) => { - stdout.write_all(line).unwrap(); - if lines.peek().is_some() { - stdout.write_all(b"\n").unwrap(); + if LevelFilter::current() >= tracing::Level::DEBUG { + stdout.write_all(line).unwrap(); + if lines.peek().is_some() { + stdout.write_all(b"\n").unwrap(); + } + stdout.flush().unwrap(); } - stdout.flush().unwrap(); } } } @@ -1277,6 +1327,7 @@ fn spawn_shards( let otlp_service_name = args.otlp_service_name.clone(); let speculate = args.speculate; let dtype = args.dtype; + let kv_cache_dtype = args.kv_cache_dtype; let trust_remote_code = args.trust_remote_code; let master_port = args.master_port; let disable_custom_kernels = args.disable_custom_kernels; @@ -1295,6 +1346,7 @@ fn spawn_shards( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, uds_path, rank, @@ -1787,14 +1839,37 @@ fn main() -> Result<(), LauncherError> { if adapter.contains('=') { continue; } - download_convert_model( - adapter, - None, - args.trust_remote_code, - args.huggingface_hub_cache.as_deref(), - args.weights_cache_override.as_deref(), - running.clone(), - )?; + + let adapter = adapter.trim(); + + // check if adapter has more than 1 '@' + if adapter.matches('@').count() > 1 { + return Err(LauncherError::ArgumentValidation(format!( + "Invalid LoRA adapter format: {}", + adapter + ))); + } + + // capture adapter_id, path, revision in format of adapter_id=path@revision + let re = Regex::new(r"^([^=@]+)(?:=([^@]+))?(?:@(.+))?$").unwrap(); + if let Some(caps) = re.captures(adapter) { + let adapter_id = caps.get(1).map_or("", |m| m.as_str()); + let revision = caps.get(3).map(|m| m.as_str()); + + download_convert_model( + adapter_id, + revision, + args.trust_remote_code, + args.huggingface_hub_cache.as_deref(), + args.weights_cache_override.as_deref(), + running.clone(), + )?; + } else { + return Err(LauncherError::ArgumentValidation(format!( + "Invalid LoRA adapter format: {}", + adapter + ))); + } } } diff --git a/nix/client.nix b/nix/client.nix new file mode 100644 index 00000000..351fd08a --- /dev/null +++ b/nix/client.nix @@ -0,0 +1,21 @@ +{ + buildPythonPackage, + poetry-core, + huggingface-hub, + pydantic, +}: + +buildPythonPackage { + name = "text-generation"; + + src = ../clients/python; + + pyproject = true; + + build-system = [ poetry-core ]; + + dependencies = [ + huggingface-hub + pydantic + ]; +} diff --git a/nix/docker.nix b/nix/docker.nix new file mode 100644 index 00000000..c4b1d899 --- /dev/null +++ b/nix/docker.nix @@ -0,0 +1,23 @@ +{ + dockerTools, + cacert, + text-generation-inference, + stream ? false, +}: + +let + build = if stream then dockerTools.streamLayeredImage else dockerTools.buildLayeredImage; +in +build { + name = "tgi-docker"; + tag = "latest"; + config = { + EntryPoint = [ "${text-generation-inference}/bin/text-generation-inference" ]; + Env = [ + "HF_HOME=/data" + "PORT=80" + ]; + + }; + contents = [ cacert ]; +} diff --git a/nix/impure-shell.nix b/nix/impure-shell.nix new file mode 100644 index 00000000..a4dad4ba --- /dev/null +++ b/nix/impure-shell.nix @@ -0,0 +1,54 @@ +{ + mkShell, + openssl, + pkg-config, + protobuf, + python3, + pyright, + redocly, + ruff, + rust-bin, + server, +}: + +mkShell { + buildInputs = + [ + openssl.dev + pkg-config + (rust-bin.stable.latest.default.override { + extensions = [ + "rust-analyzer" + "rust-src" + ]; + }) + protobuf + pyright + redocly + ruff + ] + ++ (with python3.pkgs; [ + venvShellHook + docker + pip + ipdb + click + pytest + pytest-asyncio + syrupy + ]); + + inputsFrom = [ server ]; + + venvDir = "./.venv"; + + postVenvCreation = '' + unset SOURCE_DATE_EPOCH + ( cd server ; python -m pip install --no-dependencies -e . ) + ( cd clients/python ; python -m pip install --no-dependencies -e . ) + ''; + postShellHook = '' + unset SOURCE_DATE_EPOCH + export PATH=$PATH:~/.cargo/bin + ''; +} diff --git a/nix/overlay.nix b/nix/overlay.nix new file mode 100644 index 00000000..f7b9b8c2 --- /dev/null +++ b/nix/overlay.nix @@ -0,0 +1,41 @@ +final: prev: { + # You can use this overlay to temporarily override packages for + # development. For permanent overrides, it's better to do this in + # our package flake: + # + # https://github.com/huggingface/text-generation-inference-nix + # + # Note that overriding packages that are in the transitive closure + # of many other packages (e.g. transformers) will require a large + # rebuild. + + pythonPackagesExtensions = prev.pythonPackagesExtensions ++ [ + ( + python-self: python-super: with python-self; { + # Python package override example: + # transformers = python-super.transformers.overrideAttrs ( + # _: _: { + # src = final.fetchFromGitHub { + # owner = "huggingface"; + # repo = "transformers"; + # rev = "2bd4d5897dc73e8b172832070a6f9e567a0df017"; + # hash = "sha256-JOIpKH9ssDEfI2Tf15e0iPKtThJwQ9GxMvRAnm+M2Pg="; + # }; + # } + # ); + } + ) + ]; + + # Non-python package override example: + # + # ripgrep = prev.ripgrep.overrideAttrs ( + # _: _: { + # src = final.fetchFromGitHub { + # owner = "BurntSushi"; + # repo = "ripgrep"; + # rev = "79cbe89deb1151e703f4d91b19af9cdcc128b765"; + # hash = "sha256-JPTM2KNmGMb+/jOfK3X7OM1wnN+3TU35SJOIcqmp3mg="; + # }; + # }); +} diff --git a/nix/server.nix b/nix/server.nix index cfdb3f01..7406d563 100644 --- a/nix/server.nix +++ b/nix/server.nix @@ -13,6 +13,7 @@ flash-attn, flash-attn-layer-norm, flash-attn-rotary, + flash-attn-v1, grpc-interceptor, grpcio-reflection, grpcio-status, @@ -21,6 +22,7 @@ loguru, mamba-ssm, marlin-kernels, + moe-kernels, opentelemetry-api, opentelemetry-exporter-otlp, opentelemetry-instrumentation-grpc, @@ -88,6 +90,7 @@ buildPythonPackage { loguru mamba-ssm marlin-kernels + moe-kernels opentelemetry-api opentelemetry-exporter-otlp opentelemetry-instrumentation-grpc diff --git a/router/Cargo.toml b/router/Cargo.toml index 6a752db6..83d85327 100644 --- a/router/Cargo.toml +++ b/router/Cargo.toml @@ -61,7 +61,7 @@ uuid = { version = "1.9.1", default-features = false, features = [ ] } csv = "1.3.0" ureq = "=2.9" -pyo3 = { version = "0.22.2", features = ["auto-initialize"] } +pyo3 = { workspace = true } [build-dependencies] diff --git a/router/src/config.rs b/router/src/config.rs index 5d0be9c8..1a20c40b 100644 --- a/router/src/config.rs +++ b/router/src/config.rs @@ -146,6 +146,7 @@ pub enum Config { ClipVisionModel(ClipVisionModel), Mistral, Idefics, + Mllama, Idefics2(Idefics2), Ssm, GptBigcode, @@ -159,6 +160,7 @@ pub enum Config { #[serde(rename = "phi-msft")] PhiMsft, Phi3, + PhiMoe, Llama, Baichuan, Paligemma(Paligemma), diff --git a/router/src/infer/chat_template.rs b/router/src/infer/chat_template.rs index a736fc12..1071d0ba 100644 --- a/router/src/infer/chat_template.rs +++ b/router/src/infer/chat_template.rs @@ -29,7 +29,7 @@ impl ChatTemplate { env.set_unknown_method_callback(pycompat::unknown_method_callback); let template_str = template.into_boxed_str(); env.add_function("raise_exception", raise_exception); - tracing::debug!("Loading template: {:#?}", template_str); + tracing::debug!("Loading template: {}", template_str); // leaking env and template_str as read-only, static resources for performance. let template = Box::leak(env) diff --git a/router/src/infer/mod.rs b/router/src/infer/mod.rs index 4a2341da..1c9d5620 100644 --- a/router/src/infer/mod.rs +++ b/router/src/infer/mod.rs @@ -8,9 +8,11 @@ use crate::{ ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig, HubTokenizerConfig, Message, PrefillToken, Token, }; +use async_stream::stream; use async_trait::async_trait; use chat_template::ChatTemplate; use futures::future::try_join_all; +use futures::Stream; use minijinja::ErrorKind; use std::sync::atomic::{AtomicBool, Ordering}; use std::sync::Arc; @@ -87,7 +89,14 @@ impl Infer { pub(crate) async fn generate_stream<'a>( &'a self, request: GenerateRequest, - ) -> Result { + ) -> Result< + ( + OwnedSemaphorePermit, + u32, // input_length + impl Stream> + 'a, + ), + InferError, + > { // Limit concurrent requests by acquiring a permit from the semaphore let permit = self .clone() @@ -107,9 +116,18 @@ impl Infer { })?; let input_length = valid_request.input_length; - let generation_stream = self.backend.schedule(valid_request)?; + let mut generation_stream = self.backend.schedule(valid_request)?; - Ok((permit, input_length, generation_stream)) + // Wrap generation stream to update the backend health if the stream contains an error + let final_stream = stream! { + while let Some(response) = generation_stream.next().await { + yield response.inspect_err(|_err| { + self.backend_health.store(false, Ordering::SeqCst); + }) + } + }; + + Ok((permit, input_length, final_stream)) } /// Tokenizer the input @@ -278,13 +296,6 @@ impl Infer { } } -/// Type alias for generation responses -pub(crate) type GenerateStreamResponse = ( - OwnedSemaphorePermit, - u32, // input_length - UnboundedReceiverStream>, -); - #[derive(Debug)] pub struct GeneratedText { pub text: String, diff --git a/router/src/infer/v2/mod.rs b/router/src/infer/v2/mod.rs deleted file mode 100644 index 6a91a433..00000000 --- a/router/src/infer/v2/mod.rs +++ /dev/null @@ -1,4 +0,0 @@ -mod queue; -mod scheduler; - -pub(crate) use scheduler::BackendV2; diff --git a/router/src/infer/v2/scheduler.rs b/router/src/infer/v2/scheduler.rs deleted file mode 100644 index 0e5fc8a3..00000000 --- a/router/src/infer/v2/scheduler.rs +++ /dev/null @@ -1,1201 +0,0 @@ -/// Batching and inference logic -use crate::infer::v2::queue::{Entry, Queue}; -use crate::infer::{ - Attention, Backend, GenerateStreamResponse, GeneratedText, InferError, InferStreamResponse, -}; -use crate::validation::ValidGenerateRequest; -use crate::{Attention, FinishReason, PrefillToken, Token}; -use nohash_hasher::IntMap; -use std::sync::{ - atomic::{AtomicBool, Ordering}, - Arc, -}; -use text_generation_client::v2::{Batch, CachedBatch, Generation, ShardedClient}; -use text_generation_client::ClientError; -use tokio::sync::mpsc::error::SendError; -use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit}; -use tokio::time::Instant; -use tokio_stream::wrappers::UnboundedReceiverStream; -use tracing::{info_span, instrument, Instrument, Span}; - -pub(crate) struct BackendV2 { - /// Request queue - queue: Queue, - /// Notify batcher on queue appends - batching_task_notifier: Arc, -} - -impl BackendV2 { - #[allow(clippy::too_many_arguments)] - pub(crate) fn new( - client: ShardedClient, - waiting_served_ratio: f32, - max_batch_prefill_tokens: u32, - max_batch_total_tokens: u32, - max_waiting_tokens: usize, - max_batch_size: Option, - requires_padding: bool, - window_size: Option, - speculate: u32, - generation_health: Arc, - ) -> Self { - // Infer shared state - let attention = if let Ok(attention) = std::env::var("ATTENTION") { - attention - .parse() - .expect(&format!("Invalid attention was specified :`{attention}`")) - } else { - Attention::Paged - }; - let block_size = if attention == Attention::FlashDecoding { - 256 - } else { - 16 - }; - let queue = Queue::new(requires_padding, block_size, window_size, speculate); - let batching_task_notifier = Arc::new(Notify::new()); - - // Spawn batching background task that contains all the inference logic - tokio::spawn(batching_task( - client, - waiting_served_ratio, - max_batch_prefill_tokens, - max_batch_total_tokens, - max_waiting_tokens, - max_batch_size, - queue.clone(), - batching_task_notifier.clone(), - generation_health, - )); - - Self { - queue, - batching_task_notifier, - } - } -} - -impl Backend for BackendV2 { - #[instrument(skip_all)] - fn schedule( - &self, - request: ValidGenerateRequest, - permit: OwnedSemaphorePermit, - ) -> Result { - // MPSC channel to communicate with the background batching task - let (response_tx, response_rx) = mpsc::unbounded_channel(); - let input_length = request.input_length; - - // Append the request to the queue - self.queue.append(Entry { - request, - response_tx, - span: Span::current(), - temp_span: None, - queue_time: Instant::now(), - batch_time: None, - }); - - // Notify the background task that we have a new entry in the queue that needs - // to be batched - self.batching_task_notifier.notify_one(); - - // Return stream - Ok(( - permit, - input_length, - UnboundedReceiverStream::new(response_rx), - )) - } -} - -/// Batching logic -/// Will be launched in a background Tokio task -/// -/// Batches requests and sends them to the inference server -#[allow(clippy::too_many_arguments)] -pub(crate) async fn batching_task( - mut client: ShardedClient, - waiting_served_ratio: f32, - max_batch_prefill_tokens: u32, - max_batch_total_tokens: u32, - max_waiting_tokens: usize, - max_batch_size: Option, - queue: Queue, - notifier: Arc, - generation_health: Arc, -) { - // Infinite loop - loop { - // Wait for a notification from the Infer struct - notifier.notified().await; - - // Get the next batch from the queue - // This batch might be smaller than the maximum batch size if there are not enough requests - // waiting in the queue - while let Some((mut entries, batch, span)) = queue - .next_batch( - None, - max_batch_size, - max_batch_prefill_tokens, - max_batch_total_tokens, - ) - .await - { - let mut cached_batch = prefill(&mut client, batch, &mut entries, &generation_health) - .instrument(span) - .await; - let mut waiting_tokens = 1; - - // We loop until we do not receive any cached batch from the inference server (== until - // all requests have met their stopping criteria) - while let Some(batch) = cached_batch { - // Get current batch info - let batch_size = batch.size; - let batch_max_tokens = batch.max_tokens; - let mut batches = vec![batch]; - metrics::gauge!("tgi_batch_current_size").set(batch_size as f64); - metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64); - - let min_size = if waiting_tokens >= max_waiting_tokens { - // If we didn't onboard any new requests since >= max_waiting_tokens, we try - // to add a new batch even though its size might be small - None - } else { - // Minimum batch size - Some((batch_size as f32 * waiting_served_ratio).floor() as usize) - }; - - let token_budget = max_batch_total_tokens.saturating_sub(batch_max_tokens); - let max_size = - max_batch_size.map(|max_size| max_size.saturating_sub(batch_size as usize)); - // Try to get a new batch - if let Some((mut new_entries, new_batch, span)) = queue - .next_batch(min_size, max_size, max_batch_prefill_tokens, token_budget) - .await - { - // Tracking metrics - if min_size.is_some() { - metrics::counter!("tgi_batch_concat", "reason" => "backpressure") - .increment(1); - } else { - metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded") - .increment(1); - } - - entries.iter_mut().for_each(|(_, entry)| { - // Create a new span to add the info that this entry is waiting - // because a new batch is being computed - let entry_waiting_span = info_span!(parent: &entry.span, "waiting"); - // Add relationships - span.follows_from(&entry_waiting_span); - entry_waiting_span.follows_from(&span); - // Update entry - entry.temp_span = Some(entry_waiting_span); - }); - - // Generate one token for this new batch to have the attention past in cache - let new_cached_batch = - prefill(&mut client, new_batch, &mut new_entries, &generation_health) - .instrument(span) - .await; - // Reset waiting counter - waiting_tokens = 1; - // Extend current batch with the new batch - if let Some(new_cached_batch) = new_cached_batch { - entries.extend(new_entries); - batches.push(new_cached_batch); - } - } - - // Create span for this batch to add context to inference calls - let next_batch_size = entries.len(); - let next_batch_span = - info_span!(parent: None, "batch", batch_size = next_batch_size); - entries.iter_mut().for_each(|(_, entry)| { - // Create a new span to link the batch back to this entry - let entry_batch_span = info_span!(parent: &entry.span, "infer"); - // Add relationships - next_batch_span.follows_from(&entry_batch_span); - entry_batch_span.follows_from(&next_batch_span); - // Update entry - entry.temp_span = Some(entry_batch_span); - }); - - cached_batch = decode(&mut client, batches, &mut entries, &generation_health) - .instrument(next_batch_span) - .await; - waiting_tokens += 1; - } - metrics::gauge!("tgi_batch_current_size").set(0.0); - metrics::gauge!("tgi_batch_current_max_tokens").set(0.0); - } - } -} - -#[instrument(skip_all)] -async fn prefill( - client: &mut ShardedClient, - batch: Batch, - entries: &mut IntMap, - generation_health: &Arc, -) -> Option { - let start_time = Instant::now(); - let batch_id = batch.id; - metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1); - - match client.prefill(batch).await { - Ok((generations, next_batch, timings)) => { - // Update health - generation_health.store(true, Ordering::SeqCst); - - let start_filtering_time = Instant::now(); - // Send generated tokens and filter stopped entries - filter_send_generations(generations, entries); - - // Filter next batch and remove requests that were stopped - let next_batch = filter_batch(client, next_batch, entries).await; - - metrics::histogram!("tgi_batch_forward_duration","method" => "prefill") - .record(timings.forward.as_secs_f64()); - metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill") - .record(timings.decode.as_secs_f64()); - metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill") - .record(start_filtering_time.elapsed().as_secs_f64()); - metrics::histogram!("tgi_batch_inference_duration","method" => "prefill") - .record(start_time.elapsed().as_secs_f64()); - metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1); - next_batch - } - // If we have an error, we discard the whole batch - Err(err) => { - // Update health - generation_health.store(false, Ordering::SeqCst); - let _ = client.clear_cache(Some(batch_id)).await; - send_errors(err, entries); - metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1); - None - } - } -} - -#[instrument(skip_all)] -async fn decode( - client: &mut ShardedClient, - batches: Vec, - entries: &mut IntMap, - generation_health: &Arc, -) -> Option { - let start_time = Instant::now(); - let batch_ids: Vec = batches.iter().map(|b| b.id).collect(); - metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1); - - match client.decode(batches).await { - Ok((generations, next_batch, timings)) => { - // Update health - generation_health.store(true, Ordering::SeqCst); - - let start_filtering_time = Instant::now(); - // Send generated tokens and filter stopped entries - filter_send_generations(generations, entries); - - // Filter next batch and remove requests that were stopped - let next_batch = filter_batch(client, next_batch, entries).await; - - if let Some(concat_duration) = timings.concat { - metrics::histogram!("tgi_batch_concat_duration", "method" => "decode") - .record(concat_duration.as_secs_f64()); - } - metrics::histogram!("tgi_batch_forward_duration", "method" => "decode") - .record(timings.forward.as_secs_f64()); - metrics::histogram!("tgi_batch_decode_duration", "method" => "decode") - .record(timings.decode.as_secs_f64()); - metrics::histogram!("tgi_batch_filter_duration", "method" => "decode") - .record(start_filtering_time.elapsed().as_secs_f64()); - metrics::histogram!("tgi_batch_inference_duration", "method" => "decode") - .record(start_time.elapsed().as_secs_f64()); - metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1); - next_batch - } - // If we have an error, we discard the whole batch - Err(err) => { - generation_health.store(false, Ordering::SeqCst); - for id in batch_ids { - let _ = client.clear_cache(Some(id)).await; - } - send_errors(err, entries); - metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1); - None - } - } -} - -/// Filter a `batch` and remove all requests not present in `entries` -#[instrument(skip_all)] -async fn filter_batch( - client: &mut ShardedClient, - next_batch: Option, - entries: &IntMap, -) -> Option { - let mut batch = next_batch?; - - // No need to filter - if batch.size as usize == entries.len() { - return Some(batch); - } - - let id = batch.id; - - // Retain only requests that are still in entries - batch.request_ids.retain(|id| entries.contains_key(id)); - - if batch.request_ids.is_empty() { - // All requests have been filtered out - // Next batch is now empty - // Clear it from the Python shards cache - // We unwrap here as we need to panic since we cannot recover if this method fails - client.clear_cache(Some(id)).await.unwrap(); - None - } else { - // Filter Python shard cache - // We unwrap here as we need to panic since we cannot recover if this method fails - client.filter_batch(id, batch.request_ids).await.unwrap() - } -} - -/// Send one or multiple `InferStreamResponse` to Infer for all `entries` -/// and filter entries -#[instrument(skip_all)] -fn filter_send_generations(generations: Vec, entries: &mut IntMap) { - generations.into_iter().for_each(|generation| { - let id = generation.request_id; - // Get entry - // We can `expect` here as the request id should always be in the entries - let entry = entries - .get(&id) - .expect("ID not found in entries. This is a bug."); - - // Create and enter a span to link this function back to the entry - let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered(); - // Send generation responses back to the infer task - // If the receive an error from the Flume channel, it means that the client dropped the - // request and we need to stop generating hence why we unwrap_or(true) - let stopped = send_responses(generation, entry).map_err(|err| { - tracing::error!("Entry response channel error."); - metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); - err - }).unwrap_or(true); - if stopped { - entries.remove(&id).expect("ID not found in entries. This is a bug."); - } - }); -} - -/// Send responses through the `entry` response channel -fn send_responses( - generation: Generation, - entry: &Entry, -) -> Result>>> { - // Return directly if the channel is disconnected - if entry.response_tx.is_closed() { - metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1); - return Ok(true); - } - - let mut stopped = false; - - if let Some(prefill_tokens) = generation.prefill_tokens { - // Create Token objects - // We do that here instead of in the Python code as Rust for loops are faster - let prefill_tokens = prefill_tokens - .ids - .into_iter() - .zip(prefill_tokens.logprobs) - .zip(prefill_tokens.texts) - .map(|((id, logprob), text)| PrefillToken { id, text, logprob }) - .collect(); - - // Send message - entry - .response_tx - .send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?; - } - - // Create last Token - let tokens_ = generation.tokens.expect("Non empty tokens in generation"); - let n = tokens_.ids.len(); - metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64); - let mut iterator = tokens_ - .ids - .into_iter() - .zip(tokens_.logprobs) - .zip(tokens_.texts) - .zip(tokens_.is_special) - .enumerate() - .peekable(); - while let Some((i, (((id, logprob), text), special))) = iterator.next() { - let token = Token { - id, - text, - logprob, - special, - }; - let top_tokens = if let Some(top_tokens_) = generation.top_tokens.get(i) { - top_tokens_ - .ids - .iter() - .zip(top_tokens_.logprobs.iter()) - .zip(top_tokens_.texts.iter()) - .zip(top_tokens_.is_special.iter()) - .map(|(((&id, &logprob), text), &special)| Token { - id, - text: text.to_string(), - logprob, - special, - }) - .collect() - } else { - vec![] - }; - match (&generation.generated_text, iterator.peek()) { - (Some(generated_text), None) => { - // Generation has ended - stopped = true; - // Send message - entry.response_tx.send(Ok(InferStreamResponse::End { - token, - top_tokens, - generated_text: GeneratedText::from(generated_text.clone()), - queued: entry.queue_time, - start: entry.batch_time.unwrap(), - }))?; - } - _ => { - // Send message - entry - .response_tx - .send(Ok(InferStreamResponse::Intermediate { token, top_tokens }))?; - } - } - } - - Ok(stopped) -} - -/// Send errors to Infer for all `entries` -#[instrument(skip_all)] -fn send_errors(error: ClientError, entries: &mut IntMap) { - entries.drain().for_each(|(_, entry)| { - // Create and enter a span to link this function back to the entry - let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered(); - let err = InferError::GenerationError(error.to_string()); - metrics::counter!("tgi_request_failure", "err" => "generation").increment(1); - tracing::error!("{err}"); - - // unwrap_or is valid here as we don't care if the receiver is gone. - entry - .response_tx - .send(Err(err)) - .unwrap_or(()); - }); -} - -impl From for GeneratedText { - fn from(value: text_generation_client::v2::GeneratedText) -> Self { - let v2_finish_reason = - text_generation_client::v2::FinishReason::try_from(value.finish_reason).unwrap(); - let finish_reason = match v2_finish_reason { - text_generation_client::v2::FinishReason::Length => FinishReason::Length, - text_generation_client::v2::FinishReason::EosToken => FinishReason::EndOfSequenceToken, - text_generation_client::v2::FinishReason::StopSequence => FinishReason::StopSequence, - }; - - Self { - text: value.text, - generated_tokens: value.generated_tokens, - finish_reason, - seed: value.seed, - } - } -} - -// tests -#[cfg(test)] -mod tests { - use crate::infer::raise_exception; - use crate::{ChatTemplateInputs, TextMessage}; - use minijinja::Environment; - - #[test] - fn test_chat_template() { - let env = Environment::new(); - - let source = r#" - {% for message in messages %} - {% if message['role'] == 'system' %} - {% if message['content']%} - {{'### System:\n' + message['content']+'\n\n'}} - {% endif %} - {% elif message['role'] == 'user' %} - {{'### User:\n' + message['content']+'\n\n'}} - {% elif message['role'] == 'assistant' %} - {{'### Assistant:\n' + message['content']}} - {% endif %} - {% if loop.last and add_generation_prompt %} - {{ '### Assistant:\n' }} - {% endif %} - {% endfor %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs).unwrap(); - - assert_eq!( - result, - "### User:\nHi!\n\n### Assistant:\nHello how can I help?### User:\nWhat is Deep Learning?\n\n### Assistant:\nmagic!### Assistant:\n" - ); - } - - #[test] - fn test_chat_template_invalid_with_raise() { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - - let source = r#" - {{ bos_token }} - {% for message in messages %} - {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %} - {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} - {% endif %} - {% if message['role'] == 'user' %} - {{ '[INST] ' + message['content'] + ' [/INST]' }} - {% elif message['role'] == 'assistant' %} - {{ message['content'] + eos_token}} - {% else %} - {{ raise_exception('Only user and assistant roles are supported!') }} - {% endif %} - {% endfor %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "Hi again!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs); //.err().unwrap(); - - match result { - Ok(_) => panic!("Should have failed"), - Err(e) => { - assert_eq!( - e.detail().unwrap(), - "Conversation roles must alternate user/assistant/user/assistant/..." - ); - } - } - } - - #[test] - fn test_chat_template_valid_with_raise() { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - - let source = r#" - {{ bos_token }} - {% for message in messages %} - {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %} - {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} - {% endif %} - {% if message['role'] == 'user' %} - {{ '[INST] ' + message['content'] + ' [/INST]' }} - {% elif message['role'] == 'assistant' %} - {{ message['content'] + eos_token}} - {% else %} - {{ raise_exception('Only user and assistant roles are supported!') }} - {% endif %} - {% endfor %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs).unwrap(); - assert_eq!(result, "[BOS][INST] Hi! [/INST]Hello how can I help?[EOS][INST] What is Deep Learning? [/INST]magic![EOS]"); - } - - #[test] - fn test_chat_template_valid_with_add_generation_prompt() { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - - let source = r#" - {% for message in messages %} - {{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}} - {% endfor %} - {% if add_generation_prompt %} - {{ '<|im_start|>assistant\n' }} - {% endif %}"#; - - // trim all the whitespace - let source = source - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&source); - - let chat_template_inputs = ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "user".to_string(), - content: "Hi!".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "Hello how can I help?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "What is Deep Learning?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "magic!".to_string(), - }, - ], - bos_token: Some("[BOS]"), - eos_token: Some("[EOS]"), - add_generation_prompt: true, - ..Default::default() - }; - - let result = tmpl.unwrap().render(chat_template_inputs).unwrap(); - assert_eq!(result, "<|im_start|>user\nHi!<|im_end|>\n<|im_start|>assistant\nHello how can I help?<|im_end|>\n<|im_start|>user\nWhat is Deep Learning?<|im_end|>\n<|im_start|>assistant\nmagic!<|im_end|>\n<|im_start|>assistant\n"); - } - - struct ChatTemplateTestItem { - name: &'static str, - chat_template: &'static str, - input: ChatTemplateInputs<'static>, - target: &'static str, - } - - #[test] - fn test_many_chat_templates() { - let example_chat = vec![ - TextMessage { - role: "user".to_string(), - content: "Hello, how are you?".to_string(), - }, - TextMessage { - role: "assistant".to_string(), - content: "I'm doing great. How can I help you today?".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "I'd like to show off how chat templating works!".to_string(), - }, - ]; - - let example_chat_with_system = [TextMessage { - role: "system".to_string(), - content: "You are a friendly chatbot who always responds in the style of a pirate" - .to_string(), - }] - .iter() - .chain(&example_chat) - .cloned() - .collect::>(); - - let test_default_templates = vec![ - ChatTemplateTestItem { - name: "_base", - chat_template: "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "blenderbot", - chat_template: "{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: " Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "blenderbot_small", - chat_template: "{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: " Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "bloom", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Hello, how are you?I'm doing great. How can I help you today?I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "gpt_neox", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "Hello, how are you?<|endoftext|>I'm doing great. How can I help you today?<|endoftext|>I'd like to show off how chat templating works!<|endoftext|>", - }, - ChatTemplateTestItem { - name: "gpt2", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "Hello, how are you?<|endoftext|>I'm doing great. How can I help you today?<|endoftext|>I'd like to show off how chat templating works!<|endoftext|>", - }, - ChatTemplateTestItem { - name: "llama", - // NOTE: the `.strip()` has been replaced with `| trim` in the following template - chat_template: "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif USE_DEFAULT_PROMPT == true and not '<>' in messages[0]['content'] %}{% set loop_messages = messages %}{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<>\\n' + system_message + '\\n<>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token +'[INST] ' + content | trim + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<>\\n' + content | trim + '\\n<>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content | trim + ' ' + eos_token }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat_with_system.clone(), - add_generation_prompt: true, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "[INST] <>\nYou are a friendly chatbot who always responds in the style of a pirate\n<>\n\nHello, how are you? [/INST] I'm doing great. How can I help you today? [INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "whisper", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: true, - bos_token: Some(""), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "Hello, how are you?<|endoftext|>I'm doing great. How can I help you today?<|endoftext|>I'd like to show off how chat templating works!<|endoftext|>", - }, - ]; - - #[allow(unused_variables)] // name is unused - for ChatTemplateTestItem { - name, - chat_template, - input, - target, - } in test_default_templates - { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - let tmpl = env.template_from_str(chat_template); - let result = tmpl.unwrap().render(input).unwrap(); - assert_eq!(result, target); - } - - let test_custom_templates = vec![ - ChatTemplateTestItem { - name: "HuggingFaceH4/zephyr-7b-beta (add_generation_prompt=false)", - chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat_with_system.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|system|>\nYou are a friendly chatbot who always responds in the style of a pirate<|user|>\nHello, how are you?<|assistant|>\nI'm doing great. How can I help you today?<|user|>\nI'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "HuggingFaceH4/zephyr-7b-beta (add_generation_prompt=true)", - chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: vec![ - TextMessage { - role: "system".to_string(), - content: "You are a friendly chatbot who always responds in the style of a pirate".to_string(), - }, - TextMessage { - role: "user".to_string(), - content: "How many helicopters can a human eat in one sitting?".to_string(), - }, - ], - add_generation_prompt: true, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|system|>\nYou are a friendly chatbot who always responds in the style of a pirate<|user|>\nHow many helicopters can a human eat in one sitting?<|assistant|>", - }, - ChatTemplateTestItem { - name: "HuggingFaceH4/zephyr-7b-gemma-v0.1", - chat_template: "{% if messages[0]['role'] == 'user' or messages[0]['role'] == 'system' %}{{ bos_token }}{% endif %}{% for message in messages %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% elif messages[-1]['role'] == 'assistant' %}{{ eos_token }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "mistralai/Mistral-7B-Instruct-v0.1", - chat_template: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today? [INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "mistralai/Mixtral-8x7B-Instruct-v0.1", - chat_template: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?[INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "cognitivecomputations/dolphin-2.5-mixtral-8x7b", - chat_template: "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "openchat/openchat-3.5-0106", - // `.title()` has been replaced with `| upper` in the following template - chat_template: "{{ bos_token }}{% for message in messages %}{{ 'GPT4 Correct ' + (message['role'] | title) + ': ' + message['content'] + '<|end_of_turn|>'}}{% endfor %}{% if add_generation_prompt %}{{ 'GPT4 Correct Assistant:' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "GPT4 Correct User: Hello, how are you?<|end_of_turn|>GPT4 Correct Assistant: I'm doing great. How can I help you today?<|end_of_turn|>GPT4 Correct User: I'd like to show off how chat templating works!<|end_of_turn|>", - }, - ChatTemplateTestItem { - name: "upstage/SOLAR-10.7B-Instruct-v1.0", - chat_template: "{% for message in messages %}{{ message.content }}{{ eos_token }}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Hello, how are you?I'm doing great. How can I help you today?I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "codellama/CodeLlama-70b-Instruct-hf", - // NOTE: `.strip()` has been replaced with `| trim` in the following template - chat_template: "{% if messages[0]['role'] == 'system' %}{% set user_index = 1 %}{% else %}{% set user_index = 0 %}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != ((loop.index0 + user_index) % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 %}{{ '' }}{% endif %}{% set content = 'Source: ' + message['role'] + '\\n\\n ' + message['content'] | trim %}{{ content + ' ' }}{% endfor %}{{'Source: assistant\\nDestination: user\\n\\n '}}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Source: user\n\n Hello, how are you? Source: assistant\n\n I'm doing great. How can I help you today? Source: user\n\n I'd like to show off how chat templating works! Source: assistant\nDestination: user\n\n ", - }, - ChatTemplateTestItem { - name: "Deci/DeciLM-7B-instruct", - chat_template: "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '### User:\\n' + message['content'] }}\n{% elif message['role'] == 'system' %}\n{{ '### System:\\n' + message['content'] }}\n{% elif message['role'] == 'assistant' %}\n{{ '### Assistant:\\n' + message['content'] }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '### Assistant:' }}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "### User:\nHello, how are you?### Assistant:\nI'm doing great. How can I help you today?### User:\nI'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "Qwen/Qwen1.5-72B-Chat", - chat_template: "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\\n' + message['content']}}{% if (loop.last and add_generation_prompt) or not loop.last %}{{ '<|im_end|>' + '\\n'}}{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{ '<|im_start|>assistant\\n' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "deepseek-ai/deepseek-llm-7b-chat", - chat_template: "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\\n\\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|begin▁of▁sentence|>"), - eos_token: Some("<|end▁of▁sentence|>"), - ..Default::default() - }, - target: "<|begin▁of▁sentence|>User: Hello, how are you?\n\nAssistant: I'm doing great. How can I help you today?<|end▁of▁sentence|>User: I'd like to show off how chat templating works!\n\n", - }, - ChatTemplateTestItem { - name: "h2oai/h2o-danube-1.8b-chat", - chat_template: "{% for message in messages %}{% if message['role'] == 'user' %}{{ '<|prompt|>' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ '<|system|>' + message['content'] + eos_token }}{% elif message['role'] == 'assistant' %}{{ '<|answer|>' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|answer|>' }}{% endif %}{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|prompt|>Hello, how are you?<|answer|>I'm doing great. How can I help you today?<|prompt|>I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "internlm/internlm2-chat-7b", - chat_template: "{% if messages[0]['role'] == 'user' or messages[0]['role'] == 'system' %}{{ bos_token }}{% endif %}{% for message in messages %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% elif messages[-1]['role'] == 'assistant' %}{{ eos_token }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "<|im_start|>user\nHello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing great. How can I help you today?<|im_end|>\n<|im_start|>user\nI'd like to show off how chat templating works!<|im_end|>\n", - }, - ChatTemplateTestItem { - name: "TheBloke/deepseek-coder-33B-instruct-AWQ", - chat_template: "{%- set found_item = false -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set found_item = true -%}\n {%- endif -%}\n{%- endfor -%}\n{%- if not found_item -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{{'### Response:\\n'}}\n", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|begin▁of▁sentence|>"), - eos_token: Some("<|EOT|>"), - ..Default::default() - }, - target: "You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.\n### Instruction:\nHello, how are you?\n### Response:\nI'm doing great. How can I help you today?\n<|EOT|>\n### Instruction:\nI'd like to show off how chat templating works!\n### Response:\n", - }, - ChatTemplateTestItem { - name: "ericzzz/falcon-rw-1b-chat", - // `.strip()` has been replaced with `| trim` in the following template - chat_template: "{% for message in messages %}{% if loop.index > 1 and loop.previtem['role'] != 'assistant' %}{{ ' ' }}{% endif %}{% if message['role'] == 'system' %}{{ '[SYS] ' + message['content'] | trim }}{% elif message['role'] == 'user' %}{{ '[INST] ' + message['content'] | trim }}{% elif message['role'] == 'assistant' %}{{ '[RESP] ' + message['content'] + eos_token }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ ' [RESP] ' }}{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|endoftext|>"), - eos_token: Some("<|endoftext|>"), - ..Default::default() - }, - target: "[INST] Hello, how are you? [RESP] I'm doing great. How can I help you today?<|endoftext|>[INST] I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "abacusai/Smaug-34B-v0.1", - chat_template: "{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- '[INST] <>\\n' + messages[idx]['content'] + '\\n<>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Hello, how are you? [/INST] I'm doing great. How can I help you today? [INST] I'd like to show off how chat templating works! [/INST]", - }, - ChatTemplateTestItem { - name: "maywell/Synatra-Mixtral-8x7B", - chat_template: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{% for message in messages %}{% if message['role'] == 'user' %}### Instruction:\n{{ message['content']|trim -}}{% if not loop.last %}{% endif %}\n{% elif message['role'] == 'assistant' %}### Response:\n{{ message['content']|trim -}}{% if not loop.last %}{% endif %}\n{% elif message['role'] == 'system' %}{{ message['content']|trim -}}{% if not loop.last %}{% endif %}\n{% endif %}\n{% endfor %}\n{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}\n### Response:\n{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "Below is an instruction that describes a task. Write a response that appropriately completes the request.### Instruction:Hello, how are you?### Response:I'm doing great. How can I help you today?### Instruction:I'd like to show off how chat templating works!", - }, - ChatTemplateTestItem { - name: "deepseek-ai/deepseek-coder-33b-instruct", - chat_template: "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}", - input: ChatTemplateInputs { - messages: example_chat.clone(), - add_generation_prompt: false, - bos_token: Some("<|begin▁of▁sentence|>"), - eos_token: Some(""), - ..Default::default() - }, - target: "<|begin▁of▁sentence|>You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n### Instruction:\nHello, how are you?\n### Response:\nI'm doing great. How can I help you today?\n<|EOT|>\n### Instruction:\nI'd like to show off how chat templating works!\n", - }, - // NOT INCLUDED - // - meetkai/functionary-medium-v2.2 - // - fireworks-ai/firefunction-v1 - // https://github - ChatTemplateTestItem { - name: "maywell/PiVoT-MoE", - chat_template: "{{ (messages|selectattr('role', 'equalto', 'system')|list|last).content|trim if (messages|selectattr('role', 'equalto', 'system')|list) else '' }}{% for message in messages %}{% if message['role'] == 'system' %}{{ message['content']|trim }}{% elif message['role'] == 'user' %}### Instruction: {{ message['content']|trim }}{% elif message['role'] == 'assistant' %}### Response: {{ message['content']|trim }}{% elif message['role'] == 'user_context' %}### Input: {{ message['content']|trim }}{% endif %}{% if not loop.last %}\n{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}### Response:{% endif %}", - input: ChatTemplateInputs { - messages: example_chat_with_system.clone(), - add_generation_prompt: false, - bos_token: Some(""), - eos_token: Some(""), - ..Default::default() - }, - target: "You are a friendly chatbot who always responds in the style of a pirateYou are a friendly chatbot who always responds in the style of a pirate### Instruction: Hello, how are you?### Response: I'm doing great. How can I help you today?### Instruction: I'd like to show off how chat templating works!", - }, - ]; - - #[allow(unused_variables)] // name is unused - for ChatTemplateTestItem { - name, - chat_template, - input, - target, - } in test_custom_templates - { - let mut env = Environment::new(); - env.add_function("raise_exception", raise_exception); - // trim all the whitespace - let chat_template = chat_template - .lines() - .map(|line| line.trim()) - .collect::>() - .join(""); - - let tmpl = env.template_from_str(&chat_template); - let result = tmpl.unwrap().render(input).unwrap(); - assert_eq!(result, target); - } - } -} diff --git a/router/src/lib.rs b/router/src/lib.rs index d8029c72..0901bafa 100644 --- a/router/src/lib.rs +++ b/router/src/lib.rs @@ -9,7 +9,10 @@ mod kserve; pub mod logging; pub mod usage_stats; +mod vertex; +use crate::infer::{Infer, InferError}; +use crate::server::prepare_chat_input; use serde::{Deserialize, Serialize}; use tracing::warn; use utoipa::ToSchema; @@ -54,32 +57,6 @@ impl std::str::FromStr for Attention { } } -#[derive(Clone, Deserialize, ToSchema)] -pub(crate) struct GenerateVertexInstance { - #[schema(example = "What is Deep Learning?")] - pub inputs: String, - #[schema(nullable = true, default = "null", example = "null")] - pub parameters: Option, -} - -#[derive(Clone, Deserialize, ToSchema)] -#[serde(untagged)] -enum VertexInstance { - Generate(GenerateVertexInstance), - Chat(ChatRequest), -} - -#[derive(Deserialize, ToSchema)] -pub(crate) struct VertexRequest { - #[serde(rename = "instances")] - pub instances: Vec, -} - -#[derive(Clone, Deserialize, ToSchema, Serialize)] -pub(crate) struct VertexResponse { - pub predictions: Vec, -} - /// Hub type #[derive(Clone, Debug, Deserialize)] pub struct HubModelInfo { @@ -174,6 +151,7 @@ impl HubProcessorConfig { } #[derive(Clone, Debug, Deserialize, ToSchema, Serialize)] +#[cfg_attr(test, derive(PartialEq))] #[serde(tag = "type", content = "value")] pub(crate) enum GrammarType { /// A string that represents a [JSON Schema](https://json-schema.org/). @@ -230,6 +208,7 @@ pub struct Info { } #[derive(Clone, Debug, Deserialize, ToSchema, Default)] +#[cfg_attr(test, derive(PartialEq))] pub(crate) struct GenerateParameters { /// Generate best_of sequences and return the one if the highest token logprobs. #[serde(default)] @@ -684,6 +663,7 @@ pub(crate) struct ChatCompletionChunk { pub model: String, pub system_fingerprint: String, pub choices: Vec, + pub usage: Option, } #[derive(Clone, Serialize, ToSchema)] @@ -732,6 +712,7 @@ impl ChatCompletionChunk { created: u64, logprobs: Option, finish_reason: Option, + usage: Option, ) -> Self { let delta = match (delta, tool_calls) { (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage { @@ -766,11 +747,13 @@ impl ChatCompletionChunk { logprobs, finish_reason, }], + usage, } } } #[derive(Clone, Deserialize, ToSchema, Serialize)] +#[cfg_attr(test, derive(Debug, PartialEq, Default))] pub(crate) struct ChatRequest { #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API. @@ -880,6 +863,93 @@ pub(crate) struct ChatRequest { #[serde(default)] #[schema(nullable = true, default = "null", example = "null")] pub guideline: Option, + + /// Options for streaming response. Only set this when you set stream: true. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub stream_options: Option, +} + +impl ChatRequest { + fn try_into_generate(self, infer: &Infer) -> Result<(GenerateRequest, bool), InferError> { + let ChatRequest { + model, + max_tokens, + messages, + seed, + stop, + stream, + tools, + tool_choice, + tool_prompt, + temperature, + response_format, + guideline, + presence_penalty, + frequency_penalty, + top_p, + top_logprobs, + .. + } = self; + + let repetition_penalty = presence_penalty.map(|x| x + 2.0); + let max_new_tokens = max_tokens.or(Some(100)); + let tool_prompt = tool_prompt + .filter(|s| !s.is_empty()) + .unwrap_or_else(default_tool_prompt); + let stop = stop.unwrap_or_default(); + // enable greedy only when temperature is 0 + let (do_sample, temperature) = match temperature { + Some(temperature) if temperature == 0.0 => (false, None), + other => (true, other), + }; + let (inputs, grammar, using_tools) = prepare_chat_input( + infer, + response_format, + tools, + tool_choice, + &tool_prompt, + guideline, + messages, + )?; + + Ok(( + GenerateRequest { + inputs: inputs.to_string(), + add_special_tokens: false, + parameters: GenerateParameters { + best_of: None, + temperature, + repetition_penalty, + frequency_penalty, + top_k: None, + top_p, + typical_p: None, + do_sample, + max_new_tokens, + return_full_text: None, + stop, + truncate: None, + watermark: false, + details: true, + decoder_input_details: !stream, + seed, + top_n_tokens: top_logprobs, + grammar, + adapter_id: model.filter(|m| *m != "tgi").map(String::from), + }, + }, + using_tools, + )) + } +} + +#[derive(Clone, Deserialize, ToSchema, Serialize)] +#[cfg_attr(test, derive(Debug, PartialEq))] +struct StreamOptions { + /// If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value. + #[schema(example = "true")] + include_usage: bool, } pub fn default_tool_prompt() -> String { @@ -969,6 +1039,7 @@ pub(crate) struct FunctionDefinition { } #[derive(Clone, Debug, Deserialize, Serialize, ToSchema)] +#[cfg_attr(test, derive(PartialEq))] pub(crate) struct Tool { // The type of the tool. Currently, only 'function' is supported. #[schema(example = "function")] @@ -1472,6 +1543,27 @@ mod tests { let textmsg: TextMessage = message.into(); assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"); } + + #[test] + fn test_chat_stream_options() { + let json = json!({ + "model": "", + "stream_options": {"include_usage": true}, + "messages": [{ + "role": "user", + "content": "Hello" + }] + }); + let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap(); + + assert!(matches!( + request.stream_options, + Some(StreamOptions { + include_usage: true + }) + )); + } + #[test] fn openai_output() { let message = OutputMessage::ChatMessage(TextMessage { diff --git a/router/src/server.rs b/router/src/server.rs index 8bd49b93..73b54321 100644 --- a/router/src/server.rs +++ b/router/src/server.rs @@ -8,20 +8,20 @@ use crate::kserve::{ kserve_model_metadata, kserve_model_metadata_ready, }; use crate::validation::ValidationError; -use crate::{default_tool_prompt, ChatTokenizeResponse, VertexInstance}; +use crate::vertex::vertex_compatibility; +use crate::ChatTokenizeResponse; use crate::{ usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName, GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent, - OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamResponse, TextMessage, Token, - TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation, + OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamOptions, StreamResponse, + TextMessage, Token, TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation, }; use crate::{ ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete, ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob, ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal, - CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest, - VertexResponse, + CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, }; use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType}; use crate::{ModelInfo, ModelsInfo}; @@ -149,63 +149,11 @@ async fn openai_get_model_info(info: Extension) -> Json { )] async fn get_chat_tokenize( Extension(infer): Extension, - Json(req): Json, + Json(chat): Json, ) -> Result<(HeaderMap, Json), (StatusCode, Json)> { metrics::counter!("tgi_request_count").increment(1); - let ChatRequest { - model, - max_tokens, - messages, - seed, - stop, - stream, - tools, - tool_choice, - tool_prompt, - temperature, - response_format, - guideline, - .. - } = req; - - let tool_prompt = tool_prompt.unwrap_or_default(); - let (inputs, _grammar, _using_tools) = prepare_chat_input( - &infer, - response_format, - tools, - tool_choice, - &tool_prompt, - guideline, - messages, - )?; - - let generate_request = GenerateRequest { - inputs, - add_special_tokens: false, - parameters: GenerateParameters { - best_of: None, - temperature, - repetition_penalty: None, - frequency_penalty: None, - top_k: None, - top_p: None, - typical_p: None, - do_sample: true, - max_new_tokens: max_tokens, - return_full_text: None, - stop: stop.unwrap_or_default(), - truncate: None, - watermark: false, - details: false, - decoder_input_details: !stream, - seed, - top_n_tokens: None, - grammar: _grammar, - adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from), - }, - }; - + let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0; let input = generate_request.inputs.clone(); let encoding = infer.tokenize(generate_request).await?; if let Some(encoding) = encoding { @@ -1162,76 +1110,20 @@ async fn chat_completions( Extension(infer): Extension, Extension(compute_type): Extension, Extension(info): Extension, - Json(req): Json, + Json(chat): Json, ) -> Result)> { let span = tracing::Span::current(); metrics::counter!("tgi_request_count").increment(1); let ChatRequest { - model, - logprobs, - max_tokens, - messages, - presence_penalty, - seed, - stop, stream, - tools, - tool_choice, - tool_prompt, - temperature, - response_format, - guideline, + stream_options, + logprobs, .. - } = req; + } = chat.clone(); + let (generate_request, using_tools): (GenerateRequest, bool) = + chat.try_into_generate(&infer)?; - let repetition_penalty = presence_penalty.map(|x| x + 2.0); - let max_new_tokens = max_tokens.or(Some(100)); - let logprobs = logprobs.unwrap_or(false); - let tool_prompt = tool_prompt - .filter(|s| !s.is_empty()) - .unwrap_or_else(default_tool_prompt); - let stop = stop.unwrap_or_default(); - // enable greedy only when temperature is 0 - let (do_sample, temperature) = match temperature { - Some(temperature) if temperature == 0.0 => (false, None), - other => (true, other), - }; - let (inputs, grammar, using_tools) = prepare_chat_input( - &infer, - response_format, - tools, - tool_choice, - &tool_prompt, - guideline, - messages, - )?; - - // build the request passing some parameters - let generate_request = GenerateRequest { - inputs: inputs.to_string(), - add_special_tokens: false, - parameters: GenerateParameters { - best_of: None, - temperature, - repetition_penalty, - frequency_penalty: req.frequency_penalty, - top_k: None, - top_p: req.top_p, - typical_p: None, - do_sample, - max_new_tokens, - return_full_text: None, - stop, - truncate: None, - watermark: false, - details: true, - decoder_input_details: !stream, - seed, - top_n_tokens: req.top_logprobs, - grammar, - adapter_id: model.filter(|m| *m != "tgi").map(String::from), - }, - }; + let logprobs = logprobs.unwrap_or_default(); // static values that will be returned in all cases let model_id = info.model_id.clone(); @@ -1265,6 +1157,28 @@ async fn chat_completions( (content, None) }; + let (usage, finish_reason) = match stream_token.details { + Some(details) => { + let usage = if stream_options + .as_ref() + .map(|s| s.include_usage) + .unwrap_or(false) + { + let completion_tokens = details.generated_tokens; + let prompt_tokens = details.input_length; + let total_tokens = prompt_tokens + completion_tokens; + Some(Usage { + completion_tokens, + prompt_tokens, + total_tokens, + }) + } else { + None + }; + (usage, Some(details.finish_reason.format(true))) + } + None => (None, None), + }; event .json_data(CompletionType::ChatCompletionChunk( ChatCompletionChunk::new( @@ -1274,7 +1188,8 @@ async fn chat_completions( tool_calls, current_time, logprobs, - stream_token.details.map(|d| d.finish_reason.format(true)), + finish_reason, + usage, ), )) .unwrap_or_else(|e| { @@ -1361,186 +1276,6 @@ async fn chat_completions( } } -/// Generate tokens from Vertex request -#[utoipa::path( -post, -tag = "Text Generation Inference", -path = "/vertex", -request_body = VertexRequest, -responses( -(status = 200, description = "Generated Text", body = VertexResponse), -(status = 424, description = "Generation Error", body = ErrorResponse, -example = json ! ({"error": "Request failed during generation"})), -(status = 429, description = "Model is overloaded", body = ErrorResponse, -example = json ! ({"error": "Model is overloaded"})), -(status = 422, description = "Input validation error", body = ErrorResponse, -example = json ! ({"error": "Input validation error"})), -(status = 500, description = "Incomplete generation", body = ErrorResponse, -example = json ! ({"error": "Incomplete generation"})), -) -)] -#[instrument( - skip_all, - fields( - total_time, - validation_time, - queue_time, - inference_time, - time_per_token, - seed, - ) -)] -async fn vertex_compatibility( - Extension(infer): Extension, - Extension(compute_type): Extension, - Json(req): Json, -) -> Result)> { - let span = tracing::Span::current(); - metrics::counter!("tgi_request_count").increment(1); - - // check that theres at least one instance - if req.instances.is_empty() { - return Err(( - StatusCode::UNPROCESSABLE_ENTITY, - Json(ErrorResponse { - error: "Input validation error".to_string(), - error_type: "Input validation error".to_string(), - }), - )); - } - - // Prepare futures for all instances - let mut futures = Vec::with_capacity(req.instances.len()); - - for instance in req.instances.iter() { - let generate_request = match instance { - VertexInstance::Generate(instance) => GenerateRequest { - inputs: instance.inputs.clone(), - add_special_tokens: true, - parameters: GenerateParameters { - do_sample: true, - max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens), - seed: instance.parameters.as_ref().and_then(|p| p.seed), - details: true, - decoder_input_details: true, - ..Default::default() - }, - }, - VertexInstance::Chat(instance) => { - let ChatRequest { - model, - max_tokens, - messages, - seed, - stop, - stream, - tools, - tool_choice, - tool_prompt, - temperature, - response_format, - guideline, - presence_penalty, - frequency_penalty, - top_p, - top_logprobs, - .. - } = instance.clone(); - - let repetition_penalty = presence_penalty.map(|x| x + 2.0); - let max_new_tokens = max_tokens.or(Some(100)); - let tool_prompt = tool_prompt - .filter(|s| !s.is_empty()) - .unwrap_or_else(default_tool_prompt); - let stop = stop.unwrap_or_default(); - // enable greedy only when temperature is 0 - let (do_sample, temperature) = match temperature { - Some(temperature) if temperature == 0.0 => (false, None), - other => (true, other), - }; - let (inputs, grammar, _using_tools) = match prepare_chat_input( - &infer, - response_format, - tools, - tool_choice, - &tool_prompt, - guideline, - messages, - ) { - Ok(result) => result, - Err(e) => { - return Err(( - StatusCode::BAD_REQUEST, - Json(ErrorResponse { - error: format!("Failed to prepare chat input: {}", e), - error_type: "Input preparation error".to_string(), - }), - )); - } - }; - - GenerateRequest { - inputs: inputs.to_string(), - add_special_tokens: false, - parameters: GenerateParameters { - best_of: None, - temperature, - repetition_penalty, - frequency_penalty, - top_k: None, - top_p, - typical_p: None, - do_sample, - max_new_tokens, - return_full_text: None, - stop, - truncate: None, - watermark: false, - details: true, - decoder_input_details: !stream, - seed, - top_n_tokens: top_logprobs, - grammar, - adapter_id: model.filter(|m| *m != "tgi").map(String::from), - }, - } - } - }; - - let infer_clone = infer.clone(); - let compute_type_clone = compute_type.clone(); - let span_clone = span.clone(); - - futures.push(async move { - generate_internal( - Extension(infer_clone), - compute_type_clone, - Json(generate_request), - span_clone, - ) - .await - .map(|(_, Json(generation))| generation.generated_text) - .map_err(|_| { - ( - StatusCode::INTERNAL_SERVER_ERROR, - Json(ErrorResponse { - error: "Incomplete generation".into(), - error_type: "Incomplete generation".into(), - }), - ) - }) - }); - } - - // execute all futures in parallel, collect results, returning early if any error occurs - let results = futures::future::join_all(futures).await; - let predictions: Result, _> = results.into_iter().collect(); - let predictions = predictions?; - - let response = VertexResponse { predictions }; - Ok((HeaderMap::new(), Json(response)).into_response()) -} - /// Tokenize inputs #[utoipa::path( post, @@ -1664,6 +1399,7 @@ StreamDetails, ErrorResponse, GrammarType, Usage, +StreamOptions, DeltaToolCall, ToolType, Tool, @@ -2136,9 +1872,12 @@ async fn start( .unwrap(); // .set_buckets_for_metric(skipped_matcher, &skipped_buckets) // .unwrap(); - let prom_handle = builder - .install_recorder() - .expect("failed to install metrics recorder"); + // See: https://github.com/metrics-rs/metrics/issues/467#issuecomment-2022755151 + let (recorder, _) = builder + .build() + .expect("failed to build prometheus recorder"); + let prom_handle = recorder.handle(); + metrics::set_global_recorder(recorder).expect("Failed to set global recorder"); // Metrics descriptions metrics::describe_counter!("tgi_request_success", "Number of successful requests"); @@ -2198,6 +1937,11 @@ async fn start( metrics::Unit::Count, "Maximum tokens for the current batch" ); + metrics::describe_gauge!( + "tgi_batch_total_tokens", + metrics::Unit::Count, + "Maximum amount of tokens in total." + ); metrics::describe_histogram!( "tgi_request_max_new_tokens", metrics::Unit::Count, @@ -2290,7 +2034,8 @@ async fn start( #[cfg(feature = "google")] { - use crate::VertexInstance; + use crate::vertex::__path_vertex_compatibility; + use crate::vertex::{VertexInstance, VertexRequest, VertexResponse}; #[derive(OpenApi)] #[openapi( @@ -2609,7 +2354,7 @@ pub enum WebServerError { type PreparedInput = (String, Option, bool); -fn prepare_chat_input( +pub(crate) fn prepare_chat_input( infer: &Infer, response_format: Option, tools: Option>, diff --git a/router/src/validation.rs b/router/src/validation.rs index 92491d88..85b4220b 100644 --- a/router/src/validation.rs +++ b/router/src/validation.rs @@ -567,6 +567,7 @@ fn image_tokens( use HubPreprocessorConfig::*; match config { Idefics => "".to_string(), + Mllama => "<|image|>".to_string(), Idefics2(config) => { const FAKE: &str = ""; const IMAGE: &str = ""; @@ -618,7 +619,7 @@ fn prepare_input( use Config::*; static RE: Lazy = Lazy::new(|| Regex::new(r"!\[\]\([^\)]*\)").unwrap()); let (tokenizer_query, input_chunks) = match config { - Some(config @ (Idefics | Idefics2(_) | Paligemma(_) | LlavaNext(_))) => { + Some(config @ (Idefics | Mllama | Idefics2(_) | Paligemma(_) | LlavaNext(_))) => { let mut input_chunks = Vec::new(); let mut tokenizer_query = String::with_capacity(inputs.len()); let mut start = 0; diff --git a/router/src/vertex.rs b/router/src/vertex.rs new file mode 100644 index 00000000..0c1467fe --- /dev/null +++ b/router/src/vertex.rs @@ -0,0 +1,360 @@ +use crate::infer::Infer; +use crate::server::{generate_internal, ComputeType}; +use crate::{ + ChatRequest, ErrorResponse, GenerateParameters, GenerateRequest, GrammarType, Message, + StreamOptions, Tool, ToolChoice, +}; +use axum::extract::Extension; +use axum::http::{HeaderMap, StatusCode}; +use axum::response::{IntoResponse, Response}; +use axum::Json; +use serde::{Deserialize, Serialize}; +use tracing::instrument; +use utoipa::ToSchema; + +#[derive(Clone, Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct GenerateVertexInstance { + #[schema(example = "What is Deep Learning?")] + pub inputs: String, + #[schema(nullable = true, default = "null", example = "null")] + pub parameters: Option, +} + +#[derive(Clone, Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct VertexChat { + messages: Vec, + // Messages is ignored there. + #[serde(default)] + parameters: VertexParameters, +} + +#[derive(Clone, Deserialize, ToSchema, Serialize, Default)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct VertexParameters { + #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] + /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API. + pub model: Option, + + /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, + /// decreasing the model's likelihood to repeat the same line verbatim. + #[serde(default)] + #[schema(example = "1.0")] + pub frequency_penalty: Option, + + /// UNUSED + /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens + /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, + /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, + /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should + /// result in a ban or exclusive selection of the relevant token. + #[serde(default)] + pub logit_bias: Option>, + + /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each + /// output token returned in the content of message. + #[serde(default)] + #[schema(example = "false")] + pub logprobs: Option, + + /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with + /// an associated log probability. logprobs must be set to true if this parameter is used. + #[serde(default)] + #[schema(example = "5")] + pub top_logprobs: Option, + + /// The maximum number of tokens that can be generated in the chat completion. + #[serde(default)] + #[schema(example = "32")] + pub max_tokens: Option, + + /// UNUSED + /// How many chat completion choices to generate for each input message. Note that you will be charged based on the + /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs. + #[serde(default)] + #[schema(nullable = true, example = "2")] + pub n: Option, + + /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, + /// increasing the model's likelihood to talk about new topics + #[serde(default)] + #[schema(nullable = true, example = 0.1)] + pub presence_penalty: Option, + + /// Up to 4 sequences where the API will stop generating further tokens. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub stop: Option>, + + #[serde(default = "bool::default")] + pub stream: bool, + + #[schema(nullable = true, example = 42)] + pub seed: Option, + + /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while + /// lower values like 0.2 will make it more focused and deterministic. + /// + /// We generally recommend altering this or `top_p` but not both. + #[serde(default)] + #[schema(nullable = true, example = 1.0)] + pub temperature: Option, + + /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the + /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. + #[serde(default)] + #[schema(nullable = true, example = 0.95)] + pub top_p: Option, + + /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of + /// functions the model may generate JSON inputs for. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub tools: Option>, + + /// A prompt to be appended before the tools + #[serde(default)] + #[schema( + nullable = true, + example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables." + )] + pub tool_prompt: Option, + + /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub tool_choice: ToolChoice, + + /// Response format constraints for the generation. + /// + /// NOTE: A request can use `response_format` OR `tools` but not both. + #[serde(default)] + #[schema(nullable = true, default = "null", example = "null")] + pub response_format: Option, + + /// A guideline to be used in the chat_template + #[serde(default)] + #[schema(nullable = true, default = "null", example = "null")] + pub guideline: Option, + + /// Options for streaming response. Only set this when you set stream: true. + #[serde(default)] + #[schema(nullable = true, example = "null")] + pub stream_options: Option, +} + +impl From for ChatRequest { + fn from(val: VertexChat) -> Self { + Self { + messages: val.messages, + frequency_penalty: val.parameters.frequency_penalty, + guideline: val.parameters.guideline, + logit_bias: val.parameters.logit_bias, + logprobs: val.parameters.logprobs, + max_tokens: val.parameters.max_tokens, + model: val.parameters.model, + n: val.parameters.n, + presence_penalty: val.parameters.presence_penalty, + response_format: val.parameters.response_format, + seed: val.parameters.seed, + stop: val.parameters.stop, + stream_options: val.parameters.stream_options, + stream: val.parameters.stream, + temperature: val.parameters.temperature, + tool_choice: val.parameters.tool_choice, + tool_prompt: val.parameters.tool_prompt, + tools: val.parameters.tools, + top_logprobs: val.parameters.top_logprobs, + top_p: val.parameters.top_p, + } + } +} + +#[derive(Clone, Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +#[serde(untagged)] +pub(crate) enum VertexInstance { + Generate(GenerateVertexInstance), + Chat(VertexChat), +} + +#[derive(Deserialize, ToSchema)] +#[cfg_attr(test, derive(Debug, PartialEq))] +pub(crate) struct VertexRequest { + #[serde(rename = "instances")] + pub instances: Vec, +} + +#[derive(Clone, Deserialize, ToSchema, Serialize)] +pub(crate) struct VertexResponse { + pub predictions: Vec, +} + +/// Generate tokens from Vertex request +#[utoipa::path( +post, +tag = "Text Generation Inference", +path = "/vertex", +request_body = VertexRequest, +responses( +(status = 200, description = "Generated Text", body = VertexResponse), +(status = 424, description = "Generation Error", body = ErrorResponse, +example = json ! ({"error": "Request failed during generation"})), +(status = 429, description = "Model is overloaded", body = ErrorResponse, +example = json ! ({"error": "Model is overloaded"})), +(status = 422, description = "Input validation error", body = ErrorResponse, +example = json ! ({"error": "Input validation error"})), +(status = 500, description = "Incomplete generation", body = ErrorResponse, +example = json ! ({"error": "Incomplete generation"})), +) +)] +#[instrument( + skip_all, + fields( + total_time, + validation_time, + queue_time, + inference_time, + time_per_token, + seed, + ) +)] +pub(crate) async fn vertex_compatibility( + Extension(infer): Extension, + Extension(compute_type): Extension, + Json(req): Json, +) -> Result)> { + let span = tracing::Span::current(); + metrics::counter!("tgi_request_count").increment(1); + + // check that theres at least one instance + if req.instances.is_empty() { + return Err(( + StatusCode::UNPROCESSABLE_ENTITY, + Json(ErrorResponse { + error: "Input validation error".to_string(), + error_type: "Input validation error".to_string(), + }), + )); + } + + // Prepare futures for all instances + let mut futures = Vec::with_capacity(req.instances.len()); + + for instance in req.instances.into_iter() { + let generate_request = match instance { + VertexInstance::Generate(instance) => GenerateRequest { + inputs: instance.inputs.clone(), + add_special_tokens: true, + parameters: GenerateParameters { + do_sample: true, + max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens), + seed: instance.parameters.as_ref().and_then(|p| p.seed), + details: true, + decoder_input_details: true, + ..Default::default() + }, + }, + VertexInstance::Chat(instance) => { + let chat_request: ChatRequest = instance.into(); + let (generate_request, _using_tools): (GenerateRequest, bool) = + chat_request.try_into_generate(&infer)?; + generate_request + } + }; + + let infer_clone = infer.clone(); + let compute_type_clone = compute_type.clone(); + let span_clone = span.clone(); + + futures.push(async move { + generate_internal( + Extension(infer_clone), + compute_type_clone, + Json(generate_request), + span_clone, + ) + .await + .map(|(_, Json(generation))| generation.generated_text) + .map_err(|_| { + ( + StatusCode::INTERNAL_SERVER_ERROR, + Json(ErrorResponse { + error: "Incomplete generation".into(), + error_type: "Incomplete generation".into(), + }), + ) + }) + }); + } + + // execute all futures in parallel, collect results, returning early if any error occurs + let results = futures::future::join_all(futures).await; + let predictions: Result, _> = results.into_iter().collect(); + let predictions = predictions?; + + let response = VertexResponse { predictions }; + Ok((HeaderMap::new(), Json(response)).into_response()) +} + +#[cfg(test)] +mod tests { + use super::*; + use crate::{Message, MessageContent}; + + #[test] + fn vertex_deserialization() { + let string = serde_json::json!({ + + "messages": [{"role": "user", "content": "What's Deep Learning?"}], + "parameters": { + "max_tokens": 128, + "top_p": 0.95, + "temperature": 0.7 + } + }); + + let _request: VertexChat = serde_json::from_value(string).expect("Can deserialize"); + + let string = serde_json::json!({ + "messages": [{"role": "user", "content": "What's Deep Learning?"}], + }); + + let _request: VertexChat = serde_json::from_value(string).expect("Can deserialize"); + + let string = serde_json::json!({ + + "instances": [ + { + "messages": [{"role": "user", "content": "What's Deep Learning?"}], + "parameters": { + "max_tokens": 128, + "top_p": 0.95, + "temperature": 0.7 + } + } + ] + + }); + let request: VertexRequest = serde_json::from_value(string).expect("Can deserialize"); + assert_eq!( + request, + VertexRequest { + instances: vec![VertexInstance::Chat(VertexChat { + messages: vec![Message { + role: "user".to_string(), + content: MessageContent::SingleText("What's Deep Learning?".to_string()), + name: None, + },], + parameters: VertexParameters { + max_tokens: Some(128), + top_p: Some(0.95), + temperature: Some(0.7), + ..Default::default() + } + })] + } + ); + } +} diff --git a/server/Makefile-flash-att-v2 b/server/Makefile-flash-att-v2 index dbddd0f4..a9cdf782 100644 --- a/server/Makefile-flash-att-v2 +++ b/server/Makefile-flash-att-v2 @@ -1,5 +1,5 @@ flash_att_v2_commit_cuda := v2.6.1 -flash_att_v2_commit_rocm := 2554f490101742ccdc56620a938f847f61754be6 +flash_att_v2_commit_rocm := 2092111b9f975b3347c652ff7fabd431130256c4 build-flash-attention-v2-cuda: pip install -U packaging wheel @@ -11,7 +11,7 @@ install-flash-attention-v2-cuda: build-flash-attention-v2-cuda build-flash-attention-v2-rocm: if [ ! -d 'flash-attention-v2' ]; then \ pip install -U packaging ninja --no-cache-dir && \ - git clone https://github.com/ROCm/flash-attention.git flash-attention-v2 && \ + git clone https://github.com/mht-sharma/flash-attention.git flash-attention-v2 && \ cd flash-attention-v2 && git fetch && git checkout $(flash_att_v2_commit_rocm) && \ git submodule update --init --recursive && GPU_ARCHS="gfx90a;gfx942" PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py build; \ fi diff --git a/server/Makefile-vllm b/server/Makefile-vllm index f1f80529..18dcc4a0 100644 --- a/server/Makefile-vllm +++ b/server/Makefile-vllm @@ -1,5 +1,5 @@ commit_cuda := d243e9dc7e2c9c2e36a4150ec8e64809cb55c01b -commit_rocm := c6ee53b1be97e3bbc791b95f22827501297f8921 +commit_rocm := 4e0929e6e4fa0a3d09d358715c288020ea9dc247 build-vllm-cuda: if [ ! -d 'vllm' ]; then \ pip install -U ninja packaging --no-cache-dir && \ @@ -13,7 +13,7 @@ install-vllm-cuda: build-vllm-cuda build-vllm-rocm: if [ ! -d 'vllm' ]; then \ pip install -U ninja packaging --no-cache-dir && \ - git clone https://github.com/fxmarty/rocm-vllm.git vllm; \ + git clone https://github.com/mht-sharma/vllm.git vllm; \ fi cd vllm && git fetch && git checkout $(commit_rocm) && \ PYTORCH_ROCM_ARCH="gfx90a;gfx942" python setup.py build diff --git a/server/exllama_kernels/setup.py b/server/exllama_kernels/setup.py index 987d181e..cc307bf0 100644 --- a/server/exllama_kernels/setup.py +++ b/server/exllama_kernels/setup.py @@ -1,5 +1,17 @@ from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension +import torch + +extra_cuda_cflags = [] +extra_cflags = [] +if torch.version.hip: + extra_cflags = ["-DLEGACY_HIPBLAS_DIRECT=ON"] + extra_cuda_cflags = ["-DLEGACY_HIPBLAS_DIRECT=ON"] + +extra_compile_args = { + "cxx": extra_cflags, + "nvcc": extra_cuda_cflags, +} setup( name="exllama_kernels", @@ -13,6 +25,7 @@ setup( "exllama_kernels/cuda_func/q4_matmul.cu", "exllama_kernels/cuda_func/q4_matrix.cu", ], + extra_compile_args=extra_compile_args, ) ], cmdclass={"build_ext": BuildExtension}, diff --git a/server/exllamav2_kernels/setup.py b/server/exllamav2_kernels/setup.py index 4a16b546..56ffa973 100644 --- a/server/exllamav2_kernels/setup.py +++ b/server/exllamav2_kernels/setup.py @@ -3,11 +3,13 @@ from torch.utils.cpp_extension import BuildExtension, CUDAExtension import torch extra_cuda_cflags = ["-lineinfo", "-O3"] - +extra_cflags = [] if torch.version.hip: - extra_cuda_cflags += ["-DHIPBLAS_USE_HIP_HALF"] + extra_cflags = ["-DLEGACY_HIPBLAS_DIRECT=ON"] + extra_cuda_cflags += ["-DHIPBLAS_USE_HIP_HALF", "-DLEGACY_HIPBLAS_DIRECT=ON"] extra_compile_args = { + "cxx": extra_cflags, "nvcc": extra_cuda_cflags, } diff --git a/server/poetry.lock b/server/poetry.lock index ce5b8a6c..64e45765 100644 --- a/server/poetry.lock +++ b/server/poetry.lock @@ -30,101 +30,128 @@ test-prod = ["parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-subtests", "py test-trackers = ["comet-ml", "dvclive", "tensorboard", "wandb"] testing = ["bitsandbytes", "datasets", "deepspeed", "evaluate", "parameterized", "pytest (>=7.2.0,<=8.0.0)", "pytest-subtests", "pytest-xdist", "scikit-learn", "scipy", "timm", "torchpippy (>=0.2.0)", "tqdm", "transformers"] +[[package]] +name = "aiohappyeyeballs" +version = "2.4.0" +description = "Happy Eyeballs for asyncio" +optional = true +python-versions = ">=3.8" +files = [ + {file = "aiohappyeyeballs-2.4.0-py3-none-any.whl", hash = "sha256:7ce92076e249169a13c2f49320d1967425eaf1f407522d707d59cac7628d62bd"}, + {file = "aiohappyeyeballs-2.4.0.tar.gz", hash = "sha256:55a1714f084e63d49639800f95716da97a1f173d46a16dfcfda0016abb93b6b2"}, +] + [[package]] name = "aiohttp" -version = "3.9.5" +version = "3.10.6" description = "Async http client/server framework (asyncio)" optional = true python-versions = ">=3.8" files = [ - {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:fcde4c397f673fdec23e6b05ebf8d4751314fa7c24f93334bf1f1364c1c69ac7"}, - {file = "aiohttp-3.9.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d6b3f1fabe465e819aed2c421a6743d8debbde79b6a8600739300630a01bf2c"}, - {file = "aiohttp-3.9.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ae79c1bc12c34082d92bf9422764f799aee4746fd7a392db46b7fd357d4a17a"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d3ebb9e1316ec74277d19c5f482f98cc65a73ccd5430540d6d11682cd857430"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84dabd95154f43a2ea80deffec9cb44d2e301e38a0c9d331cc4aa0166fe28ae3"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8a02fbeca6f63cb1f0475c799679057fc9268b77075ab7cf3f1c600e81dd46b"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c26959ca7b75ff768e2776d8055bf9582a6267e24556bb7f7bd29e677932be72"}, - {file = "aiohttp-3.9.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:714d4e5231fed4ba2762ed489b4aec07b2b9953cf4ee31e9871caac895a839c0"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7a6a8354f1b62e15d48e04350f13e726fa08b62c3d7b8401c0a1314f02e3558"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:c413016880e03e69d166efb5a1a95d40f83d5a3a648d16486592c49ffb76d0db"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:ff84aeb864e0fac81f676be9f4685f0527b660f1efdc40dcede3c251ef1e867f"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:ad7f2919d7dac062f24d6f5fe95d401597fbb015a25771f85e692d043c9d7832"}, - {file = "aiohttp-3.9.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:702e2c7c187c1a498a4e2b03155d52658fdd6fda882d3d7fbb891a5cf108bb10"}, - {file = "aiohttp-3.9.5-cp310-cp310-win32.whl", hash = "sha256:67c3119f5ddc7261d47163ed86d760ddf0e625cd6246b4ed852e82159617b5fb"}, - {file = "aiohttp-3.9.5-cp310-cp310-win_amd64.whl", hash = "sha256:471f0ef53ccedec9995287f02caf0c068732f026455f07db3f01a46e49d76bbb"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ae53e33ee7476dd3d1132f932eeb39bf6125083820049d06edcdca4381f342"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c088c4d70d21f8ca5c0b8b5403fe84a7bc8e024161febdd4ef04575ef35d474d"}, - {file = "aiohttp-3.9.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:639d0042b7670222f33b0028de6b4e2fad6451462ce7df2af8aee37dcac55424"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f26383adb94da5e7fb388d441bf09c61e5e35f455a3217bfd790c6b6bc64b2ee"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:66331d00fb28dc90aa606d9a54304af76b335ae204d1836f65797d6fe27f1ca2"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4ff550491f5492ab5ed3533e76b8567f4b37bd2995e780a1f46bca2024223233"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f22eb3a6c1080d862befa0a89c380b4dafce29dc6cd56083f630073d102eb595"}, - {file = "aiohttp-3.9.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a81b1143d42b66ffc40a441379387076243ef7b51019204fd3ec36b9f69e77d6"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f64fd07515dad67f24b6ea4a66ae2876c01031de91c93075b8093f07c0a2d93d"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:93e22add827447d2e26d67c9ac0161756007f152fdc5210277d00a85f6c92323"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:55b39c8684a46e56ef8c8d24faf02de4a2b2ac60d26cee93bc595651ff545de9"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4715a9b778f4293b9f8ae7a0a7cef9829f02ff8d6277a39d7f40565c737d3771"}, - {file = "aiohttp-3.9.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:afc52b8d969eff14e069a710057d15ab9ac17cd4b6753042c407dcea0e40bf75"}, - {file = "aiohttp-3.9.5-cp311-cp311-win32.whl", hash = "sha256:b3df71da99c98534be076196791adca8819761f0bf6e08e07fd7da25127150d6"}, - {file = "aiohttp-3.9.5-cp311-cp311-win_amd64.whl", hash = "sha256:88e311d98cc0bf45b62fc46c66753a83445f5ab20038bcc1b8a1cc05666f428a"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:c7a4b7a6cf5b6eb11e109a9755fd4fda7d57395f8c575e166d363b9fc3ec4678"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0a158704edf0abcac8ac371fbb54044f3270bdbc93e254a82b6c82be1ef08f3c"}, - {file = "aiohttp-3.9.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d153f652a687a8e95ad367a86a61e8d53d528b0530ef382ec5aaf533140ed00f"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82a6a97d9771cb48ae16979c3a3a9a18b600a8505b1115cfe354dfb2054468b4"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:60cdbd56f4cad9f69c35eaac0fbbdf1f77b0ff9456cebd4902f3dd1cf096464c"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8676e8fd73141ded15ea586de0b7cda1542960a7b9ad89b2b06428e97125d4fa"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da00da442a0e31f1c69d26d224e1efd3a1ca5bcbf210978a2ca7426dfcae9f58"}, - {file = "aiohttp-3.9.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18f634d540dd099c262e9f887c8bbacc959847cfe5da7a0e2e1cf3f14dbf2daf"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:320e8618eda64e19d11bdb3bd04ccc0a816c17eaecb7e4945d01deee2a22f95f"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:2faa61a904b83142747fc6a6d7ad8fccff898c849123030f8e75d5d967fd4a81"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:8c64a6dc3fe5db7b1b4d2b5cb84c4f677768bdc340611eca673afb7cf416ef5a"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:393c7aba2b55559ef7ab791c94b44f7482a07bf7640d17b341b79081f5e5cd1a"}, - {file = "aiohttp-3.9.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c671dc117c2c21a1ca10c116cfcd6e3e44da7fcde37bf83b2be485ab377b25da"}, - {file = "aiohttp-3.9.5-cp312-cp312-win32.whl", hash = "sha256:5a7ee16aab26e76add4afc45e8f8206c95d1d75540f1039b84a03c3b3800dd59"}, - {file = "aiohttp-3.9.5-cp312-cp312-win_amd64.whl", hash = "sha256:5ca51eadbd67045396bc92a4345d1790b7301c14d1848feaac1d6a6c9289e888"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:694d828b5c41255e54bc2dddb51a9f5150b4eefa9886e38b52605a05d96566e8"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0605cc2c0088fcaae79f01c913a38611ad09ba68ff482402d3410bf59039bfb8"}, - {file = "aiohttp-3.9.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4558e5012ee03d2638c681e156461d37b7a113fe13970d438d95d10173d25f78"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dbc053ac75ccc63dc3a3cc547b98c7258ec35a215a92bd9f983e0aac95d3d5b"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4109adee842b90671f1b689901b948f347325045c15f46b39797ae1bf17019de"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6ea1a5b409a85477fd8e5ee6ad8f0e40bf2844c270955e09360418cfd09abac"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3c2890ca8c59ee683fd09adf32321a40fe1cf164e3387799efb2acebf090c11"}, - {file = "aiohttp-3.9.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3916c8692dbd9d55c523374a3b8213e628424d19116ac4308e434dbf6d95bbdd"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8d1964eb7617907c792ca00b341b5ec3e01ae8c280825deadbbd678447b127e1"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d5ab8e1f6bee051a4bf6195e38a5c13e5e161cb7bad83d8854524798bd9fcd6e"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:52c27110f3862a1afbcb2af4281fc9fdc40327fa286c4625dfee247c3ba90156"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:7f64cbd44443e80094309875d4f9c71d0401e966d191c3d469cde4642bc2e031"}, - {file = "aiohttp-3.9.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8b4f72fbb66279624bfe83fd5eb6aea0022dad8eec62b71e7bf63ee1caadeafe"}, - {file = "aiohttp-3.9.5-cp38-cp38-win32.whl", hash = "sha256:6380c039ec52866c06d69b5c7aad5478b24ed11696f0e72f6b807cfb261453da"}, - {file = "aiohttp-3.9.5-cp38-cp38-win_amd64.whl", hash = "sha256:da22dab31d7180f8c3ac7c7635f3bcd53808f374f6aa333fe0b0b9e14b01f91a"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1732102949ff6087589408d76cd6dea656b93c896b011ecafff418c9661dc4ed"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c6021d296318cb6f9414b48e6a439a7f5d1f665464da507e8ff640848ee2a58a"}, - {file = "aiohttp-3.9.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:239f975589a944eeb1bad26b8b140a59a3a320067fb3cd10b75c3092405a1372"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b7b30258348082826d274504fbc7c849959f1989d86c29bc355107accec6cfb"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd2adf5c87ff6d8b277814a28a535b59e20bfea40a101db6b3bdca7e9926bc24"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a3d838441bebcf5cf442700e3963f58b5c33f015341f9ea86dcd7d503c07e2"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3a1ae66e3d0c17cf65c08968a5ee3180c5a95920ec2731f53343fac9bad106"}, - {file = "aiohttp-3.9.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c69e77370cce2d6df5d12b4e12bdcca60c47ba13d1cbbc8645dd005a20b738b"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0cbf56238f4bbf49dab8c2dc2e6b1b68502b1e88d335bea59b3f5b9f4c001475"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:d1469f228cd9ffddd396d9948b8c9cd8022b6d1bf1e40c6f25b0fb90b4f893ed"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:45731330e754f5811c314901cebdf19dd776a44b31927fa4b4dbecab9e457b0c"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:3fcb4046d2904378e3aeea1df51f697b0467f2aac55d232c87ba162709478c46"}, - {file = "aiohttp-3.9.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8cf142aa6c1a751fcb364158fd710b8a9be874b81889c2bd13aa8893197455e2"}, - {file = "aiohttp-3.9.5-cp39-cp39-win32.whl", hash = "sha256:7b179eea70833c8dee51ec42f3b4097bd6370892fa93f510f76762105568cf09"}, - {file = "aiohttp-3.9.5-cp39-cp39-win_amd64.whl", hash = "sha256:38d80498e2e169bc61418ff36170e0aad0cd268da8b38a17c4cf29d254a8b3f1"}, - {file = "aiohttp-3.9.5.tar.gz", hash = "sha256:edea7d15772ceeb29db4aff55e482d4bcfb6ae160ce144f2682de02f6d693551"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:682836fc672972cc3101cc9e30d49c5f7e8f1d010478d46119fe725a4545acfd"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:289fa8a20018d0d5aa9e4b35d899bd51bcb80f0d5f365d9a23e30dac3b79159b"}, + {file = "aiohttp-3.10.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8617c96a20dd57e7e9d398ff9d04f3d11c4d28b1767273a5b1a018ada5a654d3"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bdbeff1b062751c2a2a55b171f7050fb7073633c699299d042e962aacdbe1a07"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ea35d849cdd4a9268f910bff4497baebbc1aa3f2f625fd8ccd9ac99c860c621"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:473961b3252f3b949bb84873d6e268fb6d8aa0ccc6eb7404fa58c76a326bb8e1"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d2665c5df629eb2f981dab244c01bfa6cdc185f4ffa026639286c4d56fafb54"}, + {file = "aiohttp-3.10.6-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:25d92f794f1332f656e3765841fc2b7ad5c26c3f3d01e8949eeb3495691cf9f4"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9bd6b2033993d5ae80883bb29b83fb2b432270bbe067c2f53cc73bb57c46065f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:d7f408c43f5e75ea1edc152fb375e8f46ef916f545fb66d4aebcbcfad05e2796"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:cf8b8560aa965f87bf9c13bf9fed7025993a155ca0ce8422da74bf46d18c2f5f"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14477c4e52e2f17437b99893fd220ffe7d7ee41df5ebf931a92b8ca82e6fd094"}, + {file = "aiohttp-3.10.6-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:fb138fbf9f53928e779650f5ed26d0ea1ed8b2cab67f0ea5d63afa09fdc07593"}, + {file = "aiohttp-3.10.6-cp310-cp310-win32.whl", hash = "sha256:9843d683b8756971797be171ead21511d2215a2d6e3c899c6e3107fbbe826791"}, + {file = "aiohttp-3.10.6-cp310-cp310-win_amd64.whl", hash = "sha256:f8b8e49fe02f744d38352daca1dbef462c3874900bd8166516f6ea8e82b5aacf"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f52e54fd776ad0da1006708762213b079b154644db54bcfc62f06eaa5b896402"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:995ab1a238fd0d19dc65f2d222e5eb064e409665c6426a3e51d5101c1979ee84"}, + {file = "aiohttp-3.10.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0749c4d5a08a802dd66ecdf59b2df4d76b900004017468a7bb736c3b5a3dd902"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e05b39158f2af0e2438cc2075cfc271f4ace0c3cc4a81ec95b27a0432e161951"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a9f196c970db2dcde4f24317e06615363349dc357cf4d7a3b0716c20ac6d7bcd"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:47647c8af04a70e07a2462931b0eba63146a13affa697afb4ecbab9d03a480ce"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:669c0efe7e99f6d94d63274c06344bd0e9c8daf184ce5602a29bc39e00a18720"}, + {file = "aiohttp-3.10.6-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9721cdd83a994225352ca84cd537760d41a9da3c0eacb3ff534747ab8fba6d0"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0b82c8ebed66ce182893e7c0b6b60ba2ace45b1df104feb52380edae266a4850"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b169f8e755e541b72e714b89a831b315bbe70db44e33fead28516c9e13d5f931"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:0be3115753baf8b4153e64f9aa7bf6c0c64af57979aa900c31f496301b374570"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:e1f80cd17d81a404b6e70ef22bfe1870bafc511728397634ad5f5efc8698df56"}, + {file = "aiohttp-3.10.6-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:6419728b08fb6380c66a470d2319cafcec554c81780e2114b7e150329b9a9a7f"}, + {file = "aiohttp-3.10.6-cp311-cp311-win32.whl", hash = "sha256:bd294dcdc1afdc510bb51d35444003f14e327572877d016d576ac3b9a5888a27"}, + {file = "aiohttp-3.10.6-cp311-cp311-win_amd64.whl", hash = "sha256:bf861da9a43d282d6dd9dcd64c23a0fccf2c5aa5cd7c32024513c8c79fb69de3"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:2708baccdc62f4b1251e59c2aac725936a900081f079b88843dabcab0feeeb27"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7475da7a5e2ccf1a1c86c8fee241e277f4874c96564d06f726d8df8e77683ef7"}, + {file = "aiohttp-3.10.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:02108326574ff60267b7b35b17ac5c0bbd0008ccb942ce4c48b657bb90f0b8aa"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:029a019627b37fa9eac5c75cc54a6bb722c4ebbf5a54d8c8c0fb4dd8facf2702"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a637d387db6fdad95e293fab5433b775fd104ae6348d2388beaaa60d08b38c4"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1a16f3fc1944c61290d33c88dc3f09ba62d159b284c38c5331868425aca426"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:81b292f37969f9cc54f4643f0be7dacabf3612b3b4a65413661cf6c350226787"}, + {file = "aiohttp-3.10.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0754690a3a26e819173a34093798c155bafb21c3c640bff13be1afa1e9d421f9"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:164ecd32e65467d86843dbb121a6666c3deb23b460e3f8aefdcaacae79eb718a"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:438c5863feb761f7ca3270d48c292c334814459f61cc12bab5ba5b702d7c9e56"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ba18573bb1de1063d222f41de64a0d3741223982dcea863b3f74646faf618ec7"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:c82a94ddec996413a905f622f3da02c4359952aab8d817c01cf9915419525e95"}, + {file = "aiohttp-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:92351aa5363fc3c1f872ca763f86730ced32b01607f0c9662b1fa711087968d0"}, + {file = "aiohttp-3.10.6-cp312-cp312-win32.whl", hash = "sha256:3e15e33bfc73fa97c228f72e05e8795e163a693fd5323549f49367c76a6e5883"}, + {file = "aiohttp-3.10.6-cp312-cp312-win_amd64.whl", hash = "sha256:fe517113fe4d35d9072b826c3e147d63c5f808ca8167d450b4f96c520c8a1d8d"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:482f74057ea13d387a7549d7a7ecb60e45146d15f3e58a2d93a0ad2d5a8457cd"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:03fa40d1450ee5196e843315ddf74a51afc7e83d489dbfc380eecefea74158b1"}, + {file = "aiohttp-3.10.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1e52e59ed5f4cc3a3acfe2a610f8891f216f486de54d95d6600a2c9ba1581f4d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b3935a22c9e41a8000d90588bed96cf395ef572dbb409be44c6219c61d900d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bef1480ee50f75abcfcb4b11c12de1005968ca9d0172aec4a5057ba9f2b644f"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:671745ea7db19693ce867359d503772177f0b20fa8f6ee1e74e00449f4c4151d"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b50b367308ca8c12e0b50cba5773bc9abe64c428d3fd2bbf5cd25aab37c77bf"}, + {file = "aiohttp-3.10.6-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a504d7cdb431a777d05a124fd0b21efb94498efa743103ea01b1e3136d2e4fb"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:66bc81361131763660b969132a22edce2c4d184978ba39614e8f8f95db5c95f8"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:27cf19a38506e2e9f12fc17e55f118f04897b0a78537055d93a9de4bf3022e3d"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3468b39f977a11271517c6925b226720e148311039a380cc9117b1e2258a721f"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:9d26da22a793dfd424be1050712a70c0afd96345245c29aced1e35dbace03413"}, + {file = "aiohttp-3.10.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:844d48ff9173d0b941abed8b2ea6a412f82b56d9ab1edb918c74000c15839362"}, + {file = "aiohttp-3.10.6-cp313-cp313-win32.whl", hash = "sha256:2dd56e3c43660ed3bea67fd4c5025f1ac1f9ecf6f0b991a6e5efe2e678c490c5"}, + {file = "aiohttp-3.10.6-cp313-cp313-win_amd64.whl", hash = "sha256:c91781d969fbced1993537f45efe1213bd6fccb4b37bfae2a026e20d6fbed206"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4407a80bca3e694f2d2a523058e20e1f9f98a416619e04f6dc09dc910352ac8b"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1cb045ec5961f51af3e2c08cd6fe523f07cc6e345033adee711c49b7b91bb954"}, + {file = "aiohttp-3.10.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4fabdcdc781a36b8fd7b2ca9dea8172f29a99e11d00ca0f83ffeb50958da84a1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79a9f42efcc2681790595ab3d03c0e52d01edc23a0973ea09f0dc8d295e12b8e"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cca776a440795db437d82c07455761c85bbcf3956221c3c23b8c93176c278ce7"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5582de171f0898139cf51dd9fcdc79b848e28d9abd68e837f0803fc9f30807b1"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:370e2d47575c53c817ee42a18acc34aad8da4dbdaac0a6c836d58878955f1477"}, + {file = "aiohttp-3.10.6-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:444d1704e2af6b30766debed9be8a795958029e552fe77551355badb1944012c"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40271a2a375812967401c9ca8077de9368e09a43a964f4dce0ff603301ec9358"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f3af26f86863fad12e25395805bb0babbd49d512806af91ec9708a272b696248"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:4752df44df48fd42b80f51d6a97553b482cda1274d9dc5df214a3a1aa5d8f018"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2cd5290ab66cfca2f90045db2cc6434c1f4f9fbf97c9f1c316e785033782e7d2"}, + {file = "aiohttp-3.10.6-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3427031064b0d5c95647e6369c4aa3c556402f324a3e18107cb09517abe5f962"}, + {file = "aiohttp-3.10.6-cp38-cp38-win32.whl", hash = "sha256:614fc21e86adc28e4165a6391f851a6da6e9cbd7bb232d0df7718b453a89ee98"}, + {file = "aiohttp-3.10.6-cp38-cp38-win_amd64.whl", hash = "sha256:58c5d7318a136a3874c78717dd6de57519bc64f6363c5827c2b1cb775bea71dd"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5db26bbca8e7968c4c977a0c640e0b9ce7224e1f4dcafa57870dc6ee28e27de6"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3fb4216e3ec0dbc01db5ba802f02ed78ad8f07121be54eb9e918448cc3f61b7c"}, + {file = "aiohttp-3.10.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a976ef488f26e224079deb3d424f29144c6d5ba4ded313198169a8af8f47fb82"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a86610174de8a85a920e956e2d4f9945e7da89f29a00e95ac62a4a414c4ef4e"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:217791c6a399cc4f2e6577bb44344cba1f5714a2aebf6a0bea04cfa956658284"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ba3662d41abe2eab0eeec7ee56f33ef4e0b34858f38abf24377687f9e1fb00a5"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4dfa5ad4bce9ca30a76117fbaa1c1decf41ebb6c18a4e098df44298941566f9"}, + {file = "aiohttp-3.10.6-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e0009258e97502936d3bd5bf2ced15769629097d0abb81e6495fba1047824fe0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0a75d5c9fb4f06c41d029ae70ad943c3a844c40c0a769d12be4b99b04f473d3d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:8198b7c002aae2b40b2d16bfe724b9a90bcbc9b78b2566fc96131ef4e382574d"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:4611db8c907f90fe86be112efdc2398cd7b4c8eeded5a4f0314b70fdea8feab0"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:ff99ae06eef85c7a565854826114ced72765832ee16c7e3e766c5e4c5b98d20e"}, + {file = "aiohttp-3.10.6-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7641920bdcc7cd2d3ddfb8bb9133a6c9536b09dbd49490b79e125180b2d25b93"}, + {file = "aiohttp-3.10.6-cp39-cp39-win32.whl", hash = "sha256:e2e7d5591ea868d5ec82b90bbeb366a198715672841d46281b623e23079593db"}, + {file = "aiohttp-3.10.6-cp39-cp39-win_amd64.whl", hash = "sha256:b504c08c45623bf5c7ca41be380156d925f00199b3970efd758aef4a77645feb"}, + {file = "aiohttp-3.10.6.tar.gz", hash = "sha256:d2578ef941be0c2ba58f6f421a703527d08427237ed45ecb091fed6f83305336"}, ] [package.dependencies] +aiohappyeyeballs = ">=2.3.0" aiosignal = ">=1.1.2" async-timeout = {version = ">=4.0,<5.0", markers = "python_version < \"3.11\""} attrs = ">=17.3.0" frozenlist = ">=1.1.1" multidict = ">=4.5,<7.0" -yarl = ">=1.0,<2.0" +yarl = ">=1.12.0,<2.0" [package.extras] -speedups = ["Brotli", "aiodns", "brotlicffi"] +speedups = ["Brotli", "aiodns (>=3.2.0)", "brotlicffi"] [[package]] name = "aiosignal" @@ -164,32 +191,32 @@ files = [ [[package]] name = "attrs" -version = "23.2.0" +version = "24.2.0" description = "Classes Without Boilerplate" optional = true python-versions = ">=3.7" files = [ - {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, - {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, + {file = "attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2"}, + {file = "attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346"}, ] [package.extras] -cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] -dev = ["attrs[tests]", "pre-commit"] -docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] -tests = ["attrs[tests-no-zope]", "zope-interface"] -tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] -tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] [[package]] name = "bitsandbytes" -version = "0.43.1" +version = "0.43.3" description = "k-bit optimizers and matrix multiplication routines." optional = true python-versions = "*" files = [ - {file = "bitsandbytes-0.43.1-py3-none-manylinux_2_24_x86_64.whl", hash = "sha256:a81c826d576d6d691c7b4a7491c8fdc0f37f769795d6ca2e54afa605d2c260a3"}, - {file = "bitsandbytes-0.43.1-py3-none-win_amd64.whl", hash = "sha256:52c1c7189a6ca006555a9663e544e75f40520a97a26e075411f9f9aca0771fcd"}, + {file = "bitsandbytes-0.43.3-py3-none-manylinux_2_24_x86_64.whl", hash = "sha256:cc99507c352be0715098b2c7577b690dd158972dc4ea10c7495bac104c7c79f0"}, + {file = "bitsandbytes-0.43.3-py3-none-win_amd64.whl", hash = "sha256:257f6552f2144748a84e6c44e1f7a98f3da888f675ed74e18fd7f7eb13c6cafa"}, ] [package.dependencies] @@ -202,13 +229,13 @@ test = ["scipy"] [[package]] name = "certifi" -version = "2024.7.4" +version = "2024.8.30" description = "Python package for providing Mozilla's CA Bundle." optional = false python-versions = ">=3.6" files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, + {file = "certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8"}, + {file = "certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9"}, ] [[package]] @@ -348,27 +375,26 @@ files = [ [[package]] name = "datasets" -version = "2.20.0" +version = "2.21.0" description = "HuggingFace community-driven open-source library of datasets" optional = true python-versions = ">=3.8.0" files = [ - {file = "datasets-2.20.0-py3-none-any.whl", hash = "sha256:76ac02e3bdfff824492e20678f0b6b1b6d080515957fe834b00c2ba8d6b18e5e"}, - {file = "datasets-2.20.0.tar.gz", hash = "sha256:3c4dbcd27e0f642b9d41d20ff2efa721a5e04b32b2ca4009e0fc9139e324553f"}, + {file = "datasets-2.21.0-py3-none-any.whl", hash = "sha256:25e4e097110ce28824b746a107727ada94024cba11db8bc588d468414692b65a"}, + {file = "datasets-2.21.0.tar.gz", hash = "sha256:998f85a8460f1bd982e5bd058f8a0808eef424249e3df1e8cdd594ccd0dc8ba2"}, ] [package.dependencies] aiohttp = "*" dill = ">=0.3.0,<0.3.9" filelock = "*" -fsspec = {version = ">=2023.1.0,<=2024.5.0", extras = ["http"]} +fsspec = {version = ">=2023.1.0,<=2024.6.1", extras = ["http"]} huggingface-hub = ">=0.21.2" multiprocess = "*" numpy = ">=1.17" packaging = "*" pandas = "*" pyarrow = ">=15.0.0" -pyarrow-hotfix = "*" pyyaml = ">=5.1" requests = ">=2.32.2" tqdm = ">=4.66.3" @@ -376,17 +402,18 @@ xxhash = "*" [package.extras] apache-beam = ["apache-beam (>=2.26.0)"] -audio = ["librosa", "soundfile (>=0.12.1)"] +audio = ["librosa", "soundfile (>=0.12.1)", "soxr (>=0.4.0)"] benchmarks = ["tensorflow (==2.12.0)", "torch (==2.0.1)", "transformers (==4.30.1)"] -dev = ["Pillow (>=9.4.0)", "absl-py", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "ruff (>=0.3.0)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy", "tensorflow (>=2.6.0)", "tiktoken", "torch", "torch (>=2.0.0)", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] +dev = ["Pillow (>=9.4.0)", "absl-py", "decorator", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "ruff (>=0.3.0)", "s3fs", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch", "torch (>=2.0.0)", "transformers", "transformers (>=4.42.0)", "typing-extensions (>=4.6.1)", "zstandard"] docs = ["s3fs", "tensorflow (>=2.6.0)", "torch", "transformers"] jax = ["jax (>=0.3.14)", "jaxlib (>=0.3.14)"] -metrics-tests = ["Werkzeug (>=1.0.1)", "accelerate", "bert-score (>=0.3.6)", "jiwer", "langdetect", "mauve-text", "nltk", "requests-file (>=1.5.1)", "rouge-score", "sacrebleu", "sacremoses", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "spacy (>=3.0.0)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "typer (<0.5.0)"] +metrics-tests = ["Werkzeug (>=1.0.1)", "accelerate", "bert-score (>=0.3.6)", "jiwer", "langdetect", "mauve-text", "nltk (<3.8.2)", "requests-file (>=1.5.1)", "rouge-score", "sacrebleu", "sacremoses", "scikit-learn", "scipy", "sentencepiece", "seqeval", "six (>=1.15.0,<1.16.0)", "spacy (>=3.0.0)", "texttable (>=1.6.3)", "tldextract", "tldextract (>=3.1.0)", "toml (>=0.10.1)", "typer (<0.5.0)"] quality = ["ruff (>=0.3.0)"] s3 = ["s3fs"] tensorflow = ["tensorflow (>=2.6.0)"] tensorflow-gpu = ["tensorflow (>=2.6.0)"] -tests = ["Pillow (>=9.4.0)", "absl-py", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.6.4)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "sqlalchemy", "tensorflow (>=2.6.0)", "tiktoken", "torch (>=2.0.0)", "transformers", "typing-extensions (>=4.6.1)", "zstandard"] +tests = ["Pillow (>=9.4.0)", "absl-py", "decorator", "elasticsearch (<8.0.0)", "faiss-cpu (>=1.8.0.post1)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tensorflow (>=2.16.0)", "tensorflow (>=2.6.0)", "tiktoken", "torch (>=2.0.0)", "transformers (>=4.42.0)", "typing-extensions (>=4.6.1)", "zstandard"] +tests-numpy2 = ["Pillow (>=9.4.0)", "absl-py", "decorator", "elasticsearch (<8.0.0)", "jax (>=0.3.14)", "jaxlib (>=0.3.14)", "joblib (<1.3.0)", "joblibspark", "librosa", "lz4", "moto[server]", "polars[timezone] (>=0.20.0)", "protobuf (<4.0.0)", "py7zr", "pyspark (>=3.4)", "pytest", "pytest-datadir", "pytest-xdist", "rarfile (>=4.0)", "s3fs (>=2021.11.1)", "soundfile (>=0.12.1)", "soxr (>=0.4.0)", "sqlalchemy", "tiktoken", "torch (>=2.0.0)", "typing-extensions (>=4.6.1)", "zstandard"] torch = ["torch"] vision = ["Pillow (>=9.4.0)"] @@ -460,19 +487,19 @@ test = ["pytest (>=6)"] [[package]] name = "filelock" -version = "3.15.4" +version = "3.16.1" description = "A platform independent file lock." optional = false python-versions = ">=3.8" files = [ - {file = "filelock-3.15.4-py3-none-any.whl", hash = "sha256:6ca1fffae96225dab4c6eaf1c4f4f28cd2568d3ec2a44e15a08520504de468e7"}, - {file = "filelock-3.15.4.tar.gz", hash = "sha256:2207938cbc1844345cb01a5a95524dae30f0ce089eba5b00378295a17e3e90cb"}, + {file = "filelock-3.16.1-py3-none-any.whl", hash = "sha256:2082e5703d51fbf98ea75855d9d5527e33d8ff23099bec374a134febee6946b0"}, + {file = "filelock-3.16.1.tar.gz", hash = "sha256:c249fbfcd5db47e5e2d6d62198e565475ee65e4831e2561c8e313fa7eb961435"}, ] [package.extras] -docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] -testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] -typing = ["typing-extensions (>=4.8)"] +docs = ["furo (>=2024.8.6)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4.1)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.6.1)", "diff-cover (>=9.2)", "pytest (>=8.3.3)", "pytest-asyncio (>=0.24)", "pytest-cov (>=5)", "pytest-mock (>=3.14)", "pytest-timeout (>=2.3.1)", "virtualenv (>=20.26.4)"] +typing = ["typing-extensions (>=4.12.2)"] [[package]] name = "frozenlist" @@ -562,13 +589,13 @@ files = [ [[package]] name = "fsspec" -version = "2024.5.0" +version = "2024.6.1" description = "File-system specification" optional = false python-versions = ">=3.8" files = [ - {file = "fsspec-2024.5.0-py3-none-any.whl", hash = "sha256:e0fdbc446d67e182f49a70b82cf7889028a63588fde6b222521f10937b2b670c"}, - {file = "fsspec-2024.5.0.tar.gz", hash = "sha256:1d021b0b0f933e3b3029ed808eb400c08ba101ca2de4b3483fbc9ca23fcee94a"}, + {file = "fsspec-2024.6.1-py3-none-any.whl", hash = "sha256:3cb443f8bcd2efb31295a5b9fdb02aee81d8452c80d28f97a6d0959e6cee101e"}, + {file = "fsspec-2024.6.1.tar.gz", hash = "sha256:fad7d7e209dd4c1208e3bbfda706620e0da5142bebbd9c384afb95b07e798e49"}, ] [package.dependencies] @@ -580,6 +607,7 @@ adl = ["adlfs"] arrow = ["pyarrow (>=1)"] dask = ["dask", "distributed"] dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] dropbox = ["dropbox", "dropboxdrivefs", "requests"] full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] fuse = ["fusepy"] @@ -603,13 +631,13 @@ tqdm = ["tqdm"] [[package]] name = "googleapis-common-protos" -version = "1.63.2" +version = "1.65.0" description = "Common protobufs used in Google APIs" optional = false python-versions = ">=3.7" files = [ - {file = "googleapis-common-protos-1.63.2.tar.gz", hash = "sha256:27c5abdffc4911f28101e635de1533fb4cfd2c37fbaa9174587c799fac90aa87"}, - {file = "googleapis_common_protos-1.63.2-py2.py3-none-any.whl", hash = "sha256:27a2499c7e8aff199665b22741997e485eccc8645aa9176c7c988e6fae507945"}, + {file = "googleapis_common_protos-1.65.0-py2.py3-none-any.whl", hash = "sha256:2972e6c496f435b92590fd54045060867f3fe9be2c82ab148fc8885035479a63"}, + {file = "googleapis_common_protos-1.65.0.tar.gz", hash = "sha256:334a29d07cddc3aa01dee4988f9afd9b2916ee2ff49d6b757155dc0d197852c0"}, ] [package.dependencies] @@ -637,158 +665,152 @@ testing = ["protobuf (>=4.21.9)"] [[package]] name = "grpcio" -version = "1.65.1" +version = "1.66.1" description = "HTTP/2-based RPC framework" optional = false python-versions = ">=3.8" files = [ - {file = "grpcio-1.65.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:3dc5f928815b8972fb83b78d8db5039559f39e004ec93ebac316403fe031a062"}, - {file = "grpcio-1.65.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:8333ca46053c35484c9f2f7e8d8ec98c1383a8675a449163cea31a2076d93de8"}, - {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:7af64838b6e615fff0ec711960ed9b6ee83086edfa8c32670eafb736f169d719"}, - {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dbb64b4166362d9326f7efbf75b1c72106c1aa87f13a8c8b56a1224fac152f5c"}, - {file = "grpcio-1.65.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8422dc13ad93ec8caa2612b5032a2b9cd6421c13ed87f54db4a3a2c93afaf77"}, - {file = "grpcio-1.65.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:4effc0562b6c65d4add6a873ca132e46ba5e5a46f07c93502c37a9ae7f043857"}, - {file = "grpcio-1.65.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a6c71575a2fedf259724981fd73a18906513d2f306169c46262a5bae956e6364"}, - {file = "grpcio-1.65.1-cp310-cp310-win32.whl", hash = "sha256:34966cf526ef0ea616e008d40d989463e3db157abb213b2f20c6ce0ae7928875"}, - {file = "grpcio-1.65.1-cp310-cp310-win_amd64.whl", hash = "sha256:ca931de5dd6d9eb94ff19a2c9434b23923bce6f767179fef04dfa991f282eaad"}, - {file = "grpcio-1.65.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:bbb46330cc643ecf10bd9bd4ca8e7419a14b6b9dedd05f671c90fb2c813c6037"}, - {file = "grpcio-1.65.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d827a6fb9215b961eb73459ad7977edb9e748b23e3407d21c845d1d8ef6597e5"}, - {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:6e71aed8835f8d9fbcb84babc93a9da95955d1685021cceb7089f4f1e717d719"}, - {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a1c84560b3b2d34695c9ba53ab0264e2802721c530678a8f0a227951f453462"}, - {file = "grpcio-1.65.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27adee2338d697e71143ed147fe286c05810965d5d30ec14dd09c22479bfe48a"}, - {file = "grpcio-1.65.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:f62652ddcadc75d0e7aa629e96bb61658f85a993e748333715b4ab667192e4e8"}, - {file = "grpcio-1.65.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:71a05fd814700dd9cb7d9a507f2f6a1ef85866733ccaf557eedacec32d65e4c2"}, - {file = "grpcio-1.65.1-cp311-cp311-win32.whl", hash = "sha256:b590f1ad056294dfaeac0b7e1b71d3d5ace638d8dd1f1147ce4bd13458783ba8"}, - {file = "grpcio-1.65.1-cp311-cp311-win_amd64.whl", hash = "sha256:12e9bdf3b5fd48e5fbe5b3da382ad8f97c08b47969f3cca81dd9b36b86ed39e2"}, - {file = "grpcio-1.65.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:54cb822e177374b318b233e54b6856c692c24cdbd5a3ba5335f18a47396bac8f"}, - {file = "grpcio-1.65.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:aaf3c54419a28d45bd1681372029f40e5bfb58e5265e3882eaf21e4a5f81a119"}, - {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:557de35bdfbe8bafea0a003dbd0f4da6d89223ac6c4c7549d78e20f92ead95d9"}, - {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8bfd95ef3b097f0cc86ade54eafefa1c8ed623aa01a26fbbdcd1a3650494dd11"}, - {file = "grpcio-1.65.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e6a8f3d6c41e6b642870afe6cafbaf7b61c57317f9ec66d0efdaf19db992b90"}, - {file = "grpcio-1.65.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:1faaf7355ceed07ceaef0b9dcefa4c98daf1dd8840ed75c2de128c3f4a4d859d"}, - {file = "grpcio-1.65.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:60f1f38eed830488ad2a1b11579ef0f345ff16fffdad1d24d9fbc97ba31804ff"}, - {file = "grpcio-1.65.1-cp312-cp312-win32.whl", hash = "sha256:e75acfa52daf5ea0712e8aa82f0003bba964de7ae22c26d208cbd7bc08500177"}, - {file = "grpcio-1.65.1-cp312-cp312-win_amd64.whl", hash = "sha256:ff5a84907e51924973aa05ed8759210d8cdae7ffcf9e44fd17646cf4a902df59"}, - {file = "grpcio-1.65.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:1fbd6331f18c3acd7e09d17fd840c096f56eaf0ef830fbd50af45ae9dc8dfd83"}, - {file = "grpcio-1.65.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:de5b6be29116e094c5ef9d9e4252e7eb143e3d5f6bd6d50a78075553ab4930b0"}, - {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:e4a3cdba62b2d6aeae6027ae65f350de6dc082b72e6215eccf82628e79efe9ba"}, - {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:941c4869aa229d88706b78187d60d66aca77fe5c32518b79e3c3e03fc26109a2"}, - {file = "grpcio-1.65.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f40cebe5edb518d78b8131e87cb83b3ee688984de38a232024b9b44e74ee53d3"}, - {file = "grpcio-1.65.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:2ca684ba331fb249d8a1ce88db5394e70dbcd96e58d8c4b7e0d7b141a453dce9"}, - {file = "grpcio-1.65.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8558f0083ddaf5de64a59c790bffd7568e353914c0c551eae2955f54ee4b857f"}, - {file = "grpcio-1.65.1-cp38-cp38-win32.whl", hash = "sha256:8d8143a3e3966f85dce6c5cc45387ec36552174ba5712c5dc6fcc0898fb324c0"}, - {file = "grpcio-1.65.1-cp38-cp38-win_amd64.whl", hash = "sha256:76e81a86424d6ca1ce7c16b15bdd6a964a42b40544bf796a48da241fdaf61153"}, - {file = "grpcio-1.65.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:cb5175f45c980ff418998723ea1b3869cce3766d2ab4e4916fbd3cedbc9d0ed3"}, - {file = "grpcio-1.65.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b12c1aa7b95abe73b3e04e052c8b362655b41c7798da69f1eaf8d186c7d204df"}, - {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:3019fb50128b21a5e018d89569ffaaaa361680e1346c2f261bb84a91082eb3d3"}, - {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ae15275ed98ea267f64ee9ddedf8ecd5306a5b5bb87972a48bfe24af24153e8"}, - {file = "grpcio-1.65.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f096ffb881f37e8d4f958b63c74bfc400c7cebd7a944b027357cd2fb8d91a57"}, - {file = "grpcio-1.65.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2f56b5a68fdcf17a0a1d524bf177218c3c69b3947cb239ea222c6f1867c3ab68"}, - {file = "grpcio-1.65.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:941596d419b9736ab548aa0feb5bbba922f98872668847bf0720b42d1d227b9e"}, - {file = "grpcio-1.65.1-cp39-cp39-win32.whl", hash = "sha256:5fd7337a823b890215f07d429f4f193d24b80d62a5485cf88ee06648591a0c57"}, - {file = "grpcio-1.65.1-cp39-cp39-win_amd64.whl", hash = "sha256:1bceeec568372cbebf554eae1b436b06c2ff24cfaf04afade729fb9035408c6c"}, - {file = "grpcio-1.65.1.tar.gz", hash = "sha256:3c492301988cd720cd145d84e17318d45af342e29ef93141228f9cd73222368b"}, + {file = "grpcio-1.66.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:4877ba180591acdf127afe21ec1c7ff8a5ecf0fe2600f0d3c50e8c4a1cbc6492"}, + {file = "grpcio-1.66.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:3750c5a00bd644c75f4507f77a804d0189d97a107eb1481945a0cf3af3e7a5ac"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:a013c5fbb12bfb5f927444b477a26f1080755a931d5d362e6a9a720ca7dbae60"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1b24c23d51a1e8790b25514157d43f0a4dce1ac12b3f0b8e9f66a5e2c4c132f"}, + {file = "grpcio-1.66.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffb8ea674d68de4cac6f57d2498fef477cef582f1fa849e9f844863af50083"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:307b1d538140f19ccbd3aed7a93d8f71103c5d525f3c96f8616111614b14bf2a"}, + {file = "grpcio-1.66.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1c17ebcec157cfb8dd445890a03e20caf6209a5bd4ac5b040ae9dbc59eef091d"}, + {file = "grpcio-1.66.1-cp310-cp310-win32.whl", hash = "sha256:ef82d361ed5849d34cf09105d00b94b6728d289d6b9235513cb2fcc79f7c432c"}, + {file = "grpcio-1.66.1-cp310-cp310-win_amd64.whl", hash = "sha256:292a846b92cdcd40ecca46e694997dd6b9be6c4c01a94a0dfb3fcb75d20da858"}, + {file = "grpcio-1.66.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:c30aeceeaff11cd5ddbc348f37c58bcb96da8d5aa93fed78ab329de5f37a0d7a"}, + {file = "grpcio-1.66.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8a1e224ce6f740dbb6b24c58f885422deebd7eb724aff0671a847f8951857c26"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:a66fe4dc35d2330c185cfbb42959f57ad36f257e0cc4557d11d9f0a3f14311df"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ba04659e4fce609de2658fe4dbf7d6ed21987a94460f5f92df7579fd5d0e22"}, + {file = "grpcio-1.66.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4573608e23f7e091acfbe3e84ac2045680b69751d8d67685ffa193a4429fedb1"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7e06aa1f764ec8265b19d8f00140b8c4b6ca179a6dc67aa9413867c47e1fb04e"}, + {file = "grpcio-1.66.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3885f037eb11f1cacc41f207b705f38a44b69478086f40608959bf5ad85826dd"}, + {file = "grpcio-1.66.1-cp311-cp311-win32.whl", hash = "sha256:97ae7edd3f3f91480e48ede5d3e7d431ad6005bfdbd65c1b56913799ec79e791"}, + {file = "grpcio-1.66.1-cp311-cp311-win_amd64.whl", hash = "sha256:cfd349de4158d797db2bd82d2020554a121674e98fbe6b15328456b3bf2495bb"}, + {file = "grpcio-1.66.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:a92c4f58c01c77205df6ff999faa008540475c39b835277fb8883b11cada127a"}, + {file = "grpcio-1.66.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:fdb14bad0835914f325349ed34a51940bc2ad965142eb3090081593c6e347be9"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:f03a5884c56256e08fd9e262e11b5cfacf1af96e2ce78dc095d2c41ccae2c80d"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2ca2559692d8e7e245d456877a85ee41525f3ed425aa97eb7a70fc9a79df91a0"}, + {file = "grpcio-1.66.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ca1be089fb4446490dd1135828bd42a7c7f8421e74fa581611f7afdf7ab761"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:d639c939ad7c440c7b2819a28d559179a4508783f7e5b991166f8d7a34b52815"}, + {file = "grpcio-1.66.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:b9feb4e5ec8dc2d15709f4d5fc367794d69277f5d680baf1910fc9915c633524"}, + {file = "grpcio-1.66.1-cp312-cp312-win32.whl", hash = "sha256:7101db1bd4cd9b880294dec41a93fcdce465bdbb602cd8dc5bd2d6362b618759"}, + {file = "grpcio-1.66.1-cp312-cp312-win_amd64.whl", hash = "sha256:b0aa03d240b5539648d996cc60438f128c7f46050989e35b25f5c18286c86734"}, + {file = "grpcio-1.66.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:ecfe735e7a59e5a98208447293ff8580e9db1e890e232b8b292dc8bd15afc0d2"}, + {file = "grpcio-1.66.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:4825a3aa5648010842e1c9d35a082187746aa0cdbf1b7a2a930595a94fb10fce"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:f517fd7259fe823ef3bd21e508b653d5492e706e9f0ef82c16ce3347a8a5620c"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1fe60d0772831d96d263b53d83fb9a3d050a94b0e94b6d004a5ad111faa5b5b"}, + {file = "grpcio-1.66.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31a049daa428f928f21090403e5d18ea02670e3d5d172581670be006100db9ef"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6f914386e52cbdeb5d2a7ce3bf1fdfacbe9d818dd81b6099a05b741aaf3848bb"}, + {file = "grpcio-1.66.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bff2096bdba686019fb32d2dde45b95981f0d1490e054400f70fc9a8af34b49d"}, + {file = "grpcio-1.66.1-cp38-cp38-win32.whl", hash = "sha256:aa8ba945c96e73de29d25331b26f3e416e0c0f621e984a3ebdb2d0d0b596a3b3"}, + {file = "grpcio-1.66.1-cp38-cp38-win_amd64.whl", hash = "sha256:161d5c535c2bdf61b95080e7f0f017a1dfcb812bf54093e71e5562b16225b4ce"}, + {file = "grpcio-1.66.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:d0cd7050397b3609ea51727b1811e663ffda8bda39c6a5bb69525ef12414b503"}, + {file = "grpcio-1.66.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0e6c9b42ded5d02b6b1fea3a25f036a2236eeb75d0579bfd43c0018c88bf0a3e"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c9f80f9fad93a8cf71c7f161778ba47fd730d13a343a46258065c4deb4b550c0"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5dd67ed9da78e5121efc5c510f0122a972216808d6de70953a740560c572eb44"}, + {file = "grpcio-1.66.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48b0d92d45ce3be2084b92fb5bae2f64c208fea8ceed7fccf6a7b524d3c4942e"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4d813316d1a752be6f5c4360c49f55b06d4fe212d7df03253dfdae90c8a402bb"}, + {file = "grpcio-1.66.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9c9bebc6627873ec27a70fc800f6083a13c70b23a5564788754b9ee52c5aef6c"}, + {file = "grpcio-1.66.1-cp39-cp39-win32.whl", hash = "sha256:30a1c2cf9390c894c90bbc70147f2372130ad189cffef161f0432d0157973f45"}, + {file = "grpcio-1.66.1-cp39-cp39-win_amd64.whl", hash = "sha256:17663598aadbedc3cacd7bbde432f541c8e07d2496564e22b214b22c7523dac8"}, + {file = "grpcio-1.66.1.tar.gz", hash = "sha256:35334f9c9745add3e357e3372756fd32d925bd52c41da97f4dfdafbde0bf0ee2"}, ] [package.extras] -protobuf = ["grpcio-tools (>=1.65.1)"] +protobuf = ["grpcio-tools (>=1.66.1)"] [[package]] name = "grpcio-reflection" -version = "1.62.2" +version = "1.62.3" description = "Standard Protobuf Reflection Service for gRPC" optional = false python-versions = ">=3.6" files = [ - {file = "grpcio-reflection-1.62.2.tar.gz", hash = "sha256:2dd44806d68d0006636529bda573012b19a42281478c2d051cdaaebb91e2516c"}, - {file = "grpcio_reflection-1.62.2-py3-none-any.whl", hash = "sha256:68e8dff3617a9afaf7c462c688f7ca62b55323f497c662abf9965f2953508885"}, + {file = "grpcio-reflection-1.62.3.tar.gz", hash = "sha256:cb84682933c400bddf94dd94f928d1c6570f500b6dd255973d4bfb495b82585f"}, + {file = "grpcio_reflection-1.62.3-py3-none-any.whl", hash = "sha256:a48ef37df81a3bada78261fc92ef382f061112f989d1312398b945cc69838b9c"}, ] [package.dependencies] -grpcio = ">=1.62.2" +grpcio = ">=1.62.3" protobuf = ">=4.21.6" [[package]] name = "grpcio-status" -version = "1.62.2" +version = "1.62.3" description = "Status proto mapping for gRPC" optional = false python-versions = ">=3.6" files = [ - {file = "grpcio-status-1.62.2.tar.gz", hash = "sha256:62e1bfcb02025a1cd73732a2d33672d3e9d0df4d21c12c51e0bbcaf09bab742a"}, - {file = "grpcio_status-1.62.2-py3-none-any.whl", hash = "sha256:206ddf0eb36bc99b033f03b2c8e95d319f0044defae9b41ae21408e7e0cda48f"}, + {file = "grpcio-status-1.62.3.tar.gz", hash = "sha256:289bdd7b2459794a12cf95dc0cb727bd4a1742c37bd823f760236c937e53a485"}, + {file = "grpcio_status-1.62.3-py3-none-any.whl", hash = "sha256:f9049b762ba8de6b1086789d8315846e094edac2c50beaf462338b301a8fd4b8"}, ] [package.dependencies] googleapis-common-protos = ">=1.5.5" -grpcio = ">=1.62.2" +grpcio = ">=1.62.3" protobuf = ">=4.21.6" [[package]] name = "grpcio-tools" -version = "1.62.2" +version = "1.62.3" description = "Protobuf code generator for gRPC" optional = false python-versions = ">=3.7" files = [ - {file = "grpcio-tools-1.62.2.tar.gz", hash = "sha256:5fd5e1582b678e6b941ee5f5809340be5e0724691df5299aae8226640f94e18f"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:1679b4903aed2dc5bd8cb22a452225b05dc8470a076f14fd703581efc0740cdb"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:9d41e0e47dd075c075bb8f103422968a65dd0d8dc8613288f573ae91eb1053ba"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:987e774f74296842bbffd55ea8826370f70c499e5b5f71a8cf3103838b6ee9c3"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40cd4eeea4b25bcb6903b82930d579027d034ba944393c4751cdefd9c49e6989"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6746bc823958499a3cf8963cc1de00072962fb5e629f26d658882d3f4c35095"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2ed775e844566ce9ce089be9a81a8b928623b8ee5820f5e4d58c1a9d33dfc5ae"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bdc5dd3f57b5368d5d661d5d3703bcaa38bceca59d25955dff66244dbc987271"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-win32.whl", hash = "sha256:3a8d6f07e64c0c7756f4e0c4781d9d5a2b9cc9cbd28f7032a6fb8d4f847d0445"}, - {file = "grpcio_tools-1.62.2-cp310-cp310-win_amd64.whl", hash = "sha256:e33b59fb3efdddeb97ded988a871710033e8638534c826567738d3edce528752"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:472505d030135d73afe4143b0873efe0dcb385bd6d847553b4f3afe07679af00"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:ec674b4440ef4311ac1245a709e87b36aca493ddc6850eebe0b278d1f2b6e7d1"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:184b4174d4bd82089d706e8223e46c42390a6ebac191073b9772abc77308f9fa"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c195d74fe98541178ece7a50dad2197d43991e0f77372b9a88da438be2486f12"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a34d97c62e61bfe9e6cff0410fe144ac8cca2fc979ad0be46b7edf026339d161"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:cbb8453ae83a1db2452b7fe0f4b78e4a8dd32be0f2b2b73591ae620d4d784d3d"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4f989e5cebead3ae92c6abf6bf7b19949e1563a776aea896ac5933f143f0c45d"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-win32.whl", hash = "sha256:c48fabe40b9170f4e3d7dd2c252e4f1ff395dc24e49ac15fc724b1b6f11724da"}, - {file = "grpcio_tools-1.62.2-cp311-cp311-win_amd64.whl", hash = "sha256:8c616d0ad872e3780693fce6a3ac8ef00fc0963e6d7815ce9dcfae68ba0fc287"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-linux_armv7l.whl", hash = "sha256:10cc3321704ecd17c93cf68c99c35467a8a97ffaaed53207e9b2da6ae0308ee1"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:9be84ff6d47fd61462be7523b49d7ba01adf67ce4e1447eae37721ab32464dd8"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:d82f681c9a9d933a9d8068e8e382977768e7779ddb8870fa0cf918d8250d1532"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:04c607029ae3660fb1624ed273811ffe09d57d84287d37e63b5b802a35897329"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:72b61332f1b439c14cbd3815174a8f1d35067a02047c32decd406b3a09bb9890"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8214820990d01b52845f9fbcb92d2b7384a0c321b303e3ac614c219dc7d1d3af"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:462e0ab8dd7c7b70bfd6e3195eebc177549ede5cf3189814850c76f9a340d7ce"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-win32.whl", hash = "sha256:fa107460c842e4c1a6266150881694fefd4f33baa544ea9489601810c2210ef8"}, - {file = "grpcio_tools-1.62.2-cp312-cp312-win_amd64.whl", hash = "sha256:759c60f24c33a181bbbc1232a6752f9b49fbb1583312a4917e2b389fea0fb0f2"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-linux_armv7l.whl", hash = "sha256:45db5da2bcfa88f2b86b57ef35daaae85c60bd6754a051d35d9449c959925b57"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:ab84bae88597133f6ea7a2bdc57b2fda98a266fe8d8d4763652cbefd20e73ad7"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:7a49bccae1c7d154b78e991885c3111c9ad8c8fa98e91233de425718f47c6139"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a7e439476b29d6dac363b321781a113794397afceeb97dad85349db5f1cb5e9a"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ea369c4d1567d1acdf69c8ea74144f4ccad9e545df7f9a4fc64c94fa7684ba3"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:4f955702dc4b530696375251319d05223b729ed24e8673c2129f7a75d2caefbb"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:3708a747aa4b6b505727282ca887041174e146ae030ebcadaf4c1d346858df62"}, - {file = "grpcio_tools-1.62.2-cp37-cp37m-win_amd64.whl", hash = "sha256:2ce149ea55eadb486a7fb75a20f63ef3ac065ee6a0240ed25f3549ce7954c653"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:58cbb24b3fa6ae35aa9c210fcea3a51aa5fef0cd25618eb4fd94f746d5a9b703"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:6413581e14a80e0b4532577766cf0586de4dd33766a31b3eb5374a746771c07d"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:47117c8a7e861382470d0e22d336e5a91fdc5f851d1db44fa784b9acea190d87"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9f1ba79a253df9e553d20319c615fa2b429684580fa042dba618d7f6649ac7e4"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04a394cf5e51ba9be412eb9f6c482b6270bd81016e033e8eb7d21b8cc28fe8b5"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3c53b221378b035ae2f1881cbc3aca42a6075a8e90e1a342c2f205eb1d1aa6a1"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c384c838b34d1b67068e51b5bbe49caa6aa3633acd158f1ab16b5da8d226bc53"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-win32.whl", hash = "sha256:19ea69e41c3565932aa28a202d1875ec56786aea46a2eab54a3b28e8a27f9517"}, - {file = "grpcio_tools-1.62.2-cp38-cp38-win_amd64.whl", hash = "sha256:1d768a5c07279a4c461ebf52d0cec1c6ca85c6291c71ec2703fe3c3e7e28e8c4"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:5b07b5874187e170edfbd7aa2ca3a54ebf3b2952487653e8c0b0d83601c33035"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:d58389fe8be206ddfb4fa703db1e24c956856fcb9a81da62b13577b3a8f7fda7"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:7d8b4e00c3d7237b92260fc18a561cd81f1da82e8be100db1b7d816250defc66"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fe08d2038f2b7c53259b5c49e0ad08c8e0ce2b548d8185993e7ef67e8592cca"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19216e1fb26dbe23d12a810517e1b3fbb8d4f98b1a3fbebeec9d93a79f092de4"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:b8574469ecc4ff41d6bb95f44e0297cdb0d95bade388552a9a444db9cd7485cd"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4f6f32d39283ea834a493fccf0ebe9cfddee7577bdcc27736ad4be1732a36399"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-win32.whl", hash = "sha256:76eb459bdf3fb666e01883270beee18f3f11ed44488486b61cd210b4e0e17cc1"}, - {file = "grpcio_tools-1.62.2-cp39-cp39-win_amd64.whl", hash = "sha256:217c2ee6a7ce519a55958b8622e21804f6fdb774db08c322f4c9536c35fdce7c"}, + {file = "grpcio-tools-1.62.3.tar.gz", hash = "sha256:7c7136015c3d62c3eef493efabaf9e3380e3e66d24ee8e94c01cb71377f57833"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:2f968b049c2849540751ec2100ab05e8086c24bead769ca734fdab58698408c1"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:0a8c0c4724ae9c2181b7dbc9b186df46e4f62cb18dc184e46d06c0ebeccf569e"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5782883a27d3fae8c425b29a9d3dcf5f47d992848a1b76970da3b5a28d424b26"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3d812daffd0c2d2794756bd45a353f89e55dc8f91eb2fc840c51b9f6be62667"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:b47d0dda1bdb0a0ba7a9a6de88e5a1ed61f07fad613964879954961e36d49193"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ca246dffeca0498be9b4e1ee169b62e64694b0f92e6d0be2573e65522f39eea9"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-win32.whl", hash = "sha256:6a56d344b0bab30bf342a67e33d386b0b3c4e65868ffe93c341c51e1a8853ca5"}, + {file = "grpcio_tools-1.62.3-cp310-cp310-win_amd64.whl", hash = "sha256:710fecf6a171dcbfa263a0a3e7070e0df65ba73158d4c539cec50978f11dad5d"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:703f46e0012af83a36082b5f30341113474ed0d91e36640da713355cd0ea5d23"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:7cc83023acd8bc72cf74c2edbe85b52098501d5b74d8377bfa06f3e929803492"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7ff7d58a45b75df67d25f8f144936a3e44aabd91afec833ee06826bd02b7fbe7"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f2483ea232bd72d98a6dc6d7aefd97e5bc80b15cd909b9e356d6f3e326b6e43"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:962c84b4da0f3b14b3cdb10bc3837ebc5f136b67d919aea8d7bb3fd3df39528a"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8ad0473af5544f89fc5a1ece8676dd03bdf160fb3230f967e05d0f4bf89620e3"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-win32.whl", hash = "sha256:db3bc9fa39afc5e4e2767da4459df82b095ef0cab2f257707be06c44a1c2c3e5"}, + {file = "grpcio_tools-1.62.3-cp311-cp311-win_amd64.whl", hash = "sha256:e0898d412a434e768a0c7e365acabe13ff1558b767e400936e26b5b6ed1ee51f"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d102b9b21c4e1e40af9a2ab3c6d41afba6bd29c0aa50ca013bf85c99cdc44ac5"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:0a52cc9444df978438b8d2332c0ca99000521895229934a59f94f37ed896b133"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141d028bf5762d4a97f981c501da873589df3f7e02f4c1260e1921e565b376fa"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47a5c093ab256dec5714a7a345f8cc89315cb57c298b276fa244f37a0ba507f0"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:f6831fdec2b853c9daa3358535c55eed3694325889aa714070528cf8f92d7d6d"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e02d7c1a02e3814c94ba0cfe43d93e872c758bd8fd5c2797f894d0c49b4a1dfc"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-win32.whl", hash = "sha256:b881fd9505a84457e9f7e99362eeedd86497b659030cf57c6f0070df6d9c2b9b"}, + {file = "grpcio_tools-1.62.3-cp312-cp312-win_amd64.whl", hash = "sha256:11c625eebefd1fd40a228fc8bae385e448c7e32a6ae134e43cf13bbc23f902b7"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:ec6fbded0c61afe6f84e3c2a43e6d656791d95747d6d28b73eff1af64108c434"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:bfda6ee8990997a9df95c5606f3096dae65f09af7ca03a1e9ca28f088caca5cf"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b77f9f9cee87cd798f0fe26b7024344d1b03a7cd2d2cba7035f8433b13986325"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e02d3b96f2d0e4bab9ceaa30f37d4f75571e40c6272e95364bff3125a64d184"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1da38070738da53556a4b35ab67c1b9884a5dd48fa2f243db35dc14079ea3d0c"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ace43b26d88a58dcff16c20d23ff72b04d0a415f64d2820f4ff06b1166f50557"}, + {file = "grpcio_tools-1.62.3-cp37-cp37m-win_amd64.whl", hash = "sha256:350a80485e302daaa95d335a931f97b693e170e02d43767ab06552c708808950"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:c3a1ac9d394f8e229eb28eec2e04b9a6f5433fa19c9d32f1cb6066e3c5114a1d"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:11f363570dea661dde99e04a51bd108a5807b5df32a6f8bdf4860e34e94a4dbf"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9ad9950119d8ae27634e68b7663cc8d340ae535a0f80d85a55e56a6973ab1f"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c5d22b252dcef11dd1e0fbbe5bbfb9b4ae048e8880d33338215e8ccbdb03edc"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:27cd9ef5c5d68d5ed104b6dcb96fe9c66b82050e546c9e255716903c3d8f0373"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f4b1615adf67bd8bb71f3464146a6f9949972d06d21a4f5e87e73f6464d97f57"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-win32.whl", hash = "sha256:e18e15287c31baf574fcdf8251fb7f997d64e96c6ecf467906e576da0a079af6"}, + {file = "grpcio_tools-1.62.3-cp38-cp38-win_amd64.whl", hash = "sha256:6c3064610826f50bd69410c63101954676edc703e03f9e8f978a135f1aaf97c1"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:8e62cc7164b0b7c5128e637e394eb2ef3db0e61fc798e80c301de3b2379203ed"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:c8ad5cce554e2fcaf8842dee5d9462583b601a3a78f8b76a153c38c963f58c10"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ec279dcf3518201fc592c65002754f58a6b542798cd7f3ecd4af086422f33f29"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c989246c2aebc13253f08be32538a4039a64e12d9c18f6d662d7aee641dc8b5"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:ca4f5eeadbb57cf03317d6a2857823239a63a59cc935f5bd6cf6e8b7af7a7ecc"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0cb3a3436ac119cbd37a7d3331d9bdf85dad21a6ac233a3411dff716dcbf401e"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-win32.whl", hash = "sha256:3eae6ea76d62fcac091e1f15c2dcedf1dc3f114f8df1a972a8a0745e89f4cf61"}, + {file = "grpcio_tools-1.62.3-cp39-cp39-win_amd64.whl", hash = "sha256:eec73a005443061f4759b71a056f745e3b000dc0dc125c9f20560232dfbcbd14"}, ] [package.dependencies] -grpcio = ">=1.62.2" +grpcio = ">=1.62.3" protobuf = ">=4.21.6,<5.0dev" setuptools = "*" @@ -892,15 +914,18 @@ typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "t [[package]] name = "idna" -version = "3.7" +version = "3.10" description = "Internationalized Domain Names in Applications (IDNA)" optional = false -python-versions = ">=3.5" +python-versions = ">=3.6" files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, ] +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + [[package]] name = "importlib-metadata" version = "7.1.0" @@ -1007,13 +1032,13 @@ referencing = ">=0.31.0" [[package]] name = "lark" -version = "1.1.9" +version = "1.2.2" description = "a modern parsing library" optional = true -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "lark-1.1.9-py3-none-any.whl", hash = "sha256:a0dd3a87289f8ccbb325901e4222e723e7d745dbfc1803eaf5f3d2ace19cf2db"}, - {file = "lark-1.1.9.tar.gz", hash = "sha256:15fa5236490824c2c4aba0e22d2d6d823575dcaf4cdd1848e34b6ad836240fba"}, + {file = "lark-1.2.2-py3-none-any.whl", hash = "sha256:c2276486b02f0f1b90be155f2c8ba4a8e194d42775786db622faccd652d8e80c"}, + {file = "lark-1.2.2.tar.gz", hash = "sha256:ca807d0162cd16cef15a8feecb862d7319e7a09bdb13aef927968e45040fed80"}, ] [package.extras] @@ -1242,6 +1267,82 @@ files = [ {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, ] +[[package]] +name = "moe-kernels" +version = "0.4.0" +description = "MoE kernels" +optional = true +python-versions = ">=3.7" +files = [ + {file = "moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", hash = "sha256:3fc0475bb3b9c09bbf08f6f6e9767d10eaba55b558f67a605fe70ae0cbb5e6a4"}, +] + +[package.dependencies] +nvidia-ml-py = "*" +torch = "*" +triton = "*" + +[package.source] +type = "url" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl" + +[[package]] +name = "moe-kernels" +version = "0.4.0" +description = "MoE kernels" +optional = true +python-versions = ">=3.7" +files = [ + {file = "moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", hash = "sha256:8ca72a064ceb84a23a3437cc6e6363907ad41588877f6acb1febc010fc7beb22"}, +] + +[package.dependencies] +nvidia-ml-py = "*" +torch = "*" +triton = "*" + +[package.source] +type = "url" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl" + +[[package]] +name = "moe-kernels" +version = "0.4.0" +description = "MoE kernels" +optional = true +python-versions = ">=3.7" +files = [ + {file = "moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", hash = "sha256:d302d6b16bb4905b2312dc68da6a6f51e87d0cd3c4bf1f23d995501162399a8e"}, +] + +[package.dependencies] +nvidia-ml-py = "*" +torch = "*" +triton = "*" + +[package.source] +type = "url" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl" + +[[package]] +name = "moe-kernels" +version = "0.4.0" +description = "MoE kernels" +optional = true +python-versions = ">=3.7" +files = [ + {file = "moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", hash = "sha256:6aee3e723efa5113c338b40e6cb20fa62da6c442c65c1a6cc97751d34158a93a"}, +] + +[package.dependencies] +nvidia-ml-py = "*" +torch = "*" +triton = "*" + +[package.source] +type = "url" +url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl" + [[package]] name = "mpmath" version = "1.3.0" @@ -1261,103 +1362,108 @@ tests = ["pytest (>=4.6)"] [[package]] name = "multidict" -version = "6.0.5" +version = "6.1.0" description = "multidict implementation" optional = true -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"}, - {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"}, - {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"}, - {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"}, - {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"}, - {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f285e862d2f153a70586579c15c44656f888806ed0e5b56b64489afe4a2dbfba"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:53689bb4e102200a4fafa9de9c7c3c212ab40a7ab2c8e474491914d2305f187e"}, - {file = "multidict-6.0.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:612d1156111ae11d14afaf3a0669ebf6c170dbb735e510a7438ffe2369a847fd"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7be7047bd08accdb7487737631d25735c9a04327911de89ff1b26b81745bd4e3"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de170c7b4fe6859beb8926e84f7d7d6c693dfe8e27372ce3b76f01c46e489fcf"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:04bde7a7b3de05732a4eb39c94574db1ec99abb56162d6c520ad26f83267de29"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85f67aed7bb647f93e7520633d8f51d3cbc6ab96957c71272b286b2f30dc70ed"}, - {file = "multidict-6.0.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:425bf820055005bfc8aa9a0b99ccb52cc2f4070153e34b701acc98d201693733"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d3eb1ceec286eba8220c26f3b0096cf189aea7057b6e7b7a2e60ed36b373b77f"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7901c05ead4b3fb75113fb1dd33eb1253c6d3ee37ce93305acd9d38e0b5f21a4"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e0e79d91e71b9867c73323a3444724d496c037e578a0e1755ae159ba14f4f3d1"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:29bfeb0dff5cb5fdab2023a7a9947b3b4af63e9c47cae2a10ad58394b517fddc"}, - {file = "multidict-6.0.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e030047e85cbcedbfc073f71836d62dd5dadfbe7531cae27789ff66bc551bd5e"}, - {file = "multidict-6.0.5-cp311-cp311-win32.whl", hash = "sha256:2f4848aa3baa109e6ab81fe2006c77ed4d3cd1e0ac2c1fbddb7b1277c168788c"}, - {file = "multidict-6.0.5-cp311-cp311-win_amd64.whl", hash = "sha256:2faa5ae9376faba05f630d7e5e6be05be22913782b927b19d12b8145968a85ea"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:51d035609b86722963404f711db441cf7134f1889107fb171a970c9701f92e1e"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cbebcd5bcaf1eaf302617c114aa67569dd3f090dd0ce8ba9e35e9985b41ac35b"}, - {file = "multidict-6.0.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2ffc42c922dbfddb4a4c3b438eb056828719f07608af27d163191cb3e3aa6cc5"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ceb3b7e6a0135e092de86110c5a74e46bda4bd4fbfeeb3a3bcec79c0f861e450"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:79660376075cfd4b2c80f295528aa6beb2058fd289f4c9252f986751a4cd0496"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e4428b29611e989719874670fd152b6625500ad6c686d464e99f5aaeeaca175a"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d84a5c3a5f7ce6db1f999fb9438f686bc2e09d38143f2d93d8406ed2dd6b9226"}, - {file = "multidict-6.0.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:76c0de87358b192de7ea9649beb392f107dcad9ad27276324c24c91774ca5271"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:79a6d2ba910adb2cbafc95dad936f8b9386e77c84c35bc0add315b856d7c3abb"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:92d16a3e275e38293623ebf639c471d3e03bb20b8ebb845237e0d3664914caef"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:fb616be3538599e797a2017cccca78e354c767165e8858ab5116813146041a24"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:14c2976aa9038c2629efa2c148022ed5eb4cb939e15ec7aace7ca932f48f9ba6"}, - {file = "multidict-6.0.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:435a0984199d81ca178b9ae2c26ec3d49692d20ee29bc4c11a2a8d4514c67eda"}, - {file = "multidict-6.0.5-cp312-cp312-win32.whl", hash = "sha256:9fe7b0653ba3d9d65cbe7698cca585bf0f8c83dbbcc710db9c90f478e175f2d5"}, - {file = "multidict-6.0.5-cp312-cp312-win_amd64.whl", hash = "sha256:01265f5e40f5a17f8241d52656ed27192be03bfa8764d88e8220141d1e4b3556"}, - {file = "multidict-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:19fe01cea168585ba0f678cad6f58133db2aa14eccaf22f88e4a6dccadfad8b3"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6bf7a982604375a8d49b6cc1b781c1747f243d91b81035a9b43a2126c04766f5"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:107c0cdefe028703fb5dafe640a409cb146d44a6ae201e55b35a4af8e95457dd"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:403c0911cd5d5791605808b942c88a8155c2592e05332d2bf78f18697a5fa15e"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aeaf541ddbad8311a87dd695ed9642401131ea39ad7bc8cf3ef3967fd093b626"}, - {file = "multidict-6.0.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e4972624066095e52b569e02b5ca97dbd7a7ddd4294bf4e7247d52635630dd83"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d946b0a9eb8aaa590df1fe082cee553ceab173e6cb5b03239716338629c50c7a"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:b55358304d7a73d7bdf5de62494aaf70bd33015831ffd98bc498b433dfe5b10c"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:a3145cb08d8625b2d3fee1b2d596a8766352979c9bffe5d7833e0503d0f0b5e5"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d65f25da8e248202bd47445cec78e0025c0fe7582b23ec69c3b27a640dd7a8e3"}, - {file = "multidict-6.0.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c9bf56195c6bbd293340ea82eafd0071cb3d450c703d2c93afb89f93b8386ccc"}, - {file = "multidict-6.0.5-cp37-cp37m-win32.whl", hash = "sha256:69db76c09796b313331bb7048229e3bee7928eb62bab5e071e9f7fcc4879caee"}, - {file = "multidict-6.0.5-cp37-cp37m-win_amd64.whl", hash = "sha256:fce28b3c8a81b6b36dfac9feb1de115bab619b3c13905b419ec71d03a3fc1423"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:76f067f5121dcecf0d63a67f29080b26c43c71a98b10c701b0677e4a065fbd54"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b82cc8ace10ab5bd93235dfaab2021c70637005e1ac787031f4d1da63d493c1d"}, - {file = "multidict-6.0.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5cb241881eefd96b46f89b1a056187ea8e9ba14ab88ba632e68d7a2ecb7aadf7"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e8e94e6912639a02ce173341ff62cc1201232ab86b8a8fcc05572741a5dc7d93"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:09a892e4a9fb47331da06948690ae38eaa2426de97b4ccbfafbdcbe5c8f37ff8"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55205d03e8a598cfc688c71ca8ea5f66447164efff8869517f175ea632c7cb7b"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37b15024f864916b4951adb95d3a80c9431299080341ab9544ed148091b53f50"}, - {file = "multidict-6.0.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f2a1dee728b52b33eebff5072817176c172050d44d67befd681609b4746e1c2e"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:edd08e6f2f1a390bf137080507e44ccc086353c8e98c657e666c017718561b89"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:60d698e8179a42ec85172d12f50b1668254628425a6bd611aba022257cac1386"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:3d25f19500588cbc47dc19081d78131c32637c25804df8414463ec908631e453"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4cc0ef8b962ac7a5e62b9e826bd0cd5040e7d401bc45a6835910ed699037a461"}, - {file = "multidict-6.0.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:eca2e9d0cc5a889850e9bbd68e98314ada174ff6ccd1129500103df7a94a7a44"}, - {file = "multidict-6.0.5-cp38-cp38-win32.whl", hash = "sha256:4a6a4f196f08c58c59e0b8ef8ec441d12aee4125a7d4f4fef000ccb22f8d7241"}, - {file = "multidict-6.0.5-cp38-cp38-win_amd64.whl", hash = "sha256:0275e35209c27a3f7951e1ce7aaf93ce0d163b28948444bec61dd7badc6d3f8c"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e7be68734bd8c9a513f2b0cfd508802d6609da068f40dc57d4e3494cefc92929"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:1d9ea7a7e779d7a3561aade7d596649fbecfa5c08a7674b11b423783217933f9"}, - {file = "multidict-6.0.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ea1456df2a27c73ce51120fa2f519f1bea2f4a03a917f4a43c8707cf4cbbae1a"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf590b134eb70629e350691ecca88eac3e3b8b3c86992042fb82e3cb1830d5e1"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5c0631926c4f58e9a5ccce555ad7747d9a9f8b10619621f22f9635f069f6233e"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dce1c6912ab9ff5f179eaf6efe7365c1f425ed690b03341911bf4939ef2f3046"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0868d64af83169e4d4152ec612637a543f7a336e4a307b119e98042e852ad9c"}, - {file = "multidict-6.0.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:141b43360bfd3bdd75f15ed811850763555a251e38b2405967f8e25fb43f7d40"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:7df704ca8cf4a073334e0427ae2345323613e4df18cc224f647f251e5e75a527"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6214c5a5571802c33f80e6c84713b2c79e024995b9c5897f794b43e714daeec9"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:cd6c8fca38178e12c00418de737aef1261576bd1b6e8c6134d3e729a4e858b38"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:e02021f87a5b6932fa6ce916ca004c4d441509d33bbdbeca70d05dff5e9d2479"}, - {file = "multidict-6.0.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ebd8d160f91a764652d3e51ce0d2956b38efe37c9231cd82cfc0bed2e40b581c"}, - {file = "multidict-6.0.5-cp39-cp39-win32.whl", hash = "sha256:04da1bb8c8dbadf2a18a452639771951c662c5ad03aefe4884775454be322c9b"}, - {file = "multidict-6.0.5-cp39-cp39-win_amd64.whl", hash = "sha256:d6f6d4f185481c9669b9447bf9d9cf3b95a0e9df9d169bbc17e363b7d5487755"}, - {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"}, - {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3380252550e372e8511d49481bd836264c009adb826b23fefcc5dd3c69692f60"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:99f826cbf970077383d7de805c0681799491cb939c25450b9b5b3ced03ca99f1"}, + {file = "multidict-6.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a114d03b938376557927ab23f1e950827c3b893ccb94b62fd95d430fd0e5cf53"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1c416351ee6271b2f49b56ad7f308072f6f44b37118d69c2cad94f3fa8a40d5"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6b5d83030255983181005e6cfbac1617ce9746b219bc2aad52201ad121226581"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3e97b5e938051226dc025ec80980c285b053ffb1e25a3db2a3aa3bc046bf7f56"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d618649d4e70ac6efcbba75be98b26ef5078faad23592f9b51ca492953012429"}, + {file = "multidict-6.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10524ebd769727ac77ef2278390fb0068d83f3acb7773792a5080f2b0abf7748"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ff3827aef427c89a25cc96ded1759271a93603aba9fb977a6d264648ebf989db"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:06809f4f0f7ab7ea2cabf9caca7d79c22c0758b58a71f9d32943ae13c7ace056"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:f179dee3b863ab1c59580ff60f9d99f632f34ccb38bf67a33ec6b3ecadd0fd76"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:aaed8b0562be4a0876ee3b6946f6869b7bcdb571a5d1496683505944e268b160"}, + {file = "multidict-6.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3c8b88a2ccf5493b6c8da9076fb151ba106960a2df90c2633f342f120751a9e7"}, + {file = "multidict-6.1.0-cp310-cp310-win32.whl", hash = "sha256:4a9cb68166a34117d6646c0023c7b759bf197bee5ad4272f420a0141d7eb03a0"}, + {file = "multidict-6.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:20b9b5fbe0b88d0bdef2012ef7dee867f874b72528cf1d08f1d59b0e3850129d"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3efe2c2cb5763f2f1b275ad2bf7a287d3f7ebbef35648a9726e3b69284a4f3d6"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7053d3b0353a8b9de430a4f4b4268ac9a4fb3481af37dfe49825bf45ca24156"}, + {file = "multidict-6.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:27e5fc84ccef8dfaabb09d82b7d179c7cf1a3fbc8a966f8274fcb4ab2eb4cadb"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e2b90b43e696f25c62656389d32236e049568b39320e2735d51f08fd362761b"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d83a047959d38a7ff552ff94be767b7fd79b831ad1cd9920662db05fec24fe72"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d1a9dd711d0877a1ece3d2e4fea11a8e75741ca21954c919406b44e7cf971304"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec2abea24d98246b94913b76a125e855eb5c434f7c46546046372fe60f666351"}, + {file = "multidict-6.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4867cafcbc6585e4b678876c489b9273b13e9fff9f6d6d66add5e15d11d926cb"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:5b48204e8d955c47c55b72779802b219a39acc3ee3d0116d5080c388970b76e3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:d8fff389528cad1618fb4b26b95550327495462cd745d879a8c7c2115248e399"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a7a9541cd308eed5e30318430a9c74d2132e9a8cb46b901326272d780bf2d423"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:da1758c76f50c39a2efd5e9859ce7d776317eb1dd34317c8152ac9251fc574a3"}, + {file = "multidict-6.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c943a53e9186688b45b323602298ab727d8865d8c9ee0b17f8d62d14b56f0753"}, + {file = "multidict-6.1.0-cp311-cp311-win32.whl", hash = "sha256:90f8717cb649eea3504091e640a1b8568faad18bd4b9fcd692853a04475a4b80"}, + {file = "multidict-6.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:82176036e65644a6cc5bd619f65f6f19781e8ec2e5330f51aa9ada7504cc1926"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b04772ed465fa3cc947db808fa306d79b43e896beb677a56fb2347ca1a49c1fa"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6180c0ae073bddeb5a97a38c03f30c233e0a4d39cd86166251617d1bbd0af436"}, + {file = "multidict-6.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:071120490b47aa997cca00666923a83f02c7fbb44f71cf7f136df753f7fa8761"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50b3a2710631848991d0bf7de077502e8994c804bb805aeb2925a981de58ec2e"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b58c621844d55e71c1b7f7c498ce5aa6985d743a1a59034c57a905b3f153c1ef"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:55b6d90641869892caa9ca42ff913f7ff1c5ece06474fbd32fb2cf6834726c95"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b820514bfc0b98a30e3d85462084779900347e4d49267f747ff54060cc33925"}, + {file = "multidict-6.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10a9b09aba0c5b48c53761b7c720aaaf7cf236d5fe394cd399c7ba662d5f9966"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1e16bf3e5fc9f44632affb159d30a437bfe286ce9e02754759be5536b169b305"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:76f364861c3bfc98cbbcbd402d83454ed9e01a5224bb3a28bf70002a230f73e2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:820c661588bd01a0aa62a1283f20d2be4281b086f80dad9e955e690c75fb54a2"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:0e5f362e895bc5b9e67fe6e4ded2492d8124bdf817827f33c5b46c2fe3ffaca6"}, + {file = "multidict-6.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3ec660d19bbc671e3a6443325f07263be452c453ac9e512f5eb935e7d4ac28b3"}, + {file = "multidict-6.1.0-cp312-cp312-win32.whl", hash = "sha256:58130ecf8f7b8112cdb841486404f1282b9c86ccb30d3519faf301b2e5659133"}, + {file = "multidict-6.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:188215fc0aafb8e03341995e7c4797860181562380f81ed0a87ff455b70bf1f1"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d569388c381b24671589335a3be6e1d45546c2988c2ebe30fdcada8457a31008"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:052e10d2d37810b99cc170b785945421141bf7bb7d2f8799d431e7db229c385f"}, + {file = "multidict-6.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f90c822a402cb865e396a504f9fc8173ef34212a342d92e362ca498cad308e28"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b225d95519a5bf73860323e633a664b0d85ad3d5bede6d30d95b35d4dfe8805b"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:23bfd518810af7de1116313ebd9092cb9aa629beb12f6ed631ad53356ed6b86c"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c09fcfdccdd0b57867577b719c69e347a436b86cd83747f179dbf0cc0d4c1f3"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf6bea52ec97e95560af5ae576bdac3aa3aae0b6758c6efa115236d9e07dae44"}, + {file = "multidict-6.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57feec87371dbb3520da6192213c7d6fc892d5589a93db548331954de8248fd2"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0c3f390dc53279cbc8ba976e5f8035eab997829066756d811616b652b00a23a3"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:59bfeae4b25ec05b34f1956eaa1cb38032282cd4dfabc5056d0a1ec4d696d3aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:b2f59caeaf7632cc633b5cf6fc449372b83bbdf0da4ae04d5be36118e46cc0aa"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:37bb93b2178e02b7b618893990941900fd25b6b9ac0fa49931a40aecdf083fe4"}, + {file = "multidict-6.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4e9f48f58c2c523d5a06faea47866cd35b32655c46b443f163d08c6d0ddb17d6"}, + {file = "multidict-6.1.0-cp313-cp313-win32.whl", hash = "sha256:3a37ffb35399029b45c6cc33640a92bef403c9fd388acce75cdc88f58bd19a81"}, + {file = "multidict-6.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:e9aa71e15d9d9beaad2c6b9319edcdc0a49a43ef5c0a4c8265ca9ee7d6c67774"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:db7457bac39421addd0c8449933ac32d8042aae84a14911a757ae6ca3eef1392"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d094ddec350a2fb899fec68d8353c78233debde9b7d8b4beeafa70825f1c281a"}, + {file = "multidict-6.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5845c1fd4866bb5dd3125d89b90e57ed3138241540897de748cdf19de8a2fca2"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9079dfc6a70abe341f521f78405b8949f96db48da98aeb43f9907f342f627cdc"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3914f5aaa0f36d5d60e8ece6a308ee1c9784cd75ec8151062614657a114c4478"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c08be4f460903e5a9d0f76818db3250f12e9c344e79314d1d570fc69d7f4eae4"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d093be959277cb7dee84b801eb1af388b6ad3ca6a6b6bf1ed7585895789d027d"}, + {file = "multidict-6.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3702ea6872c5a2a4eeefa6ffd36b042e9773f05b1f37ae3ef7264b1163c2dcf6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2090f6a85cafc5b2db085124d752757c9d251548cedabe9bd31afe6363e0aff2"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:f67f217af4b1ff66c68a87318012de788dd95fcfeb24cc889011f4e1c7454dfd"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:189f652a87e876098bbc67b4da1049afb5f5dfbaa310dd67c594b01c10388db6"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:6bb5992037f7a9eff7991ebe4273ea7f51f1c1c511e6a2ce511d0e7bdb754492"}, + {file = "multidict-6.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ac10f4c2b9e770c4e393876e35a7046879d195cd123b4f116d299d442b335bcd"}, + {file = "multidict-6.1.0-cp38-cp38-win32.whl", hash = "sha256:e27bbb6d14416713a8bd7aaa1313c0fc8d44ee48d74497a0ff4c3a1b6ccb5167"}, + {file = "multidict-6.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:22f3105d4fb15c8f57ff3959a58fcab6ce36814486500cd7485651230ad4d4ef"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4e18b656c5e844539d506a0a06432274d7bd52a7487e6828c63a63d69185626c"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a185f876e69897a6f3325c3f19f26a297fa058c5e456bfcff8015e9a27e83ae1"}, + {file = "multidict-6.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab7c4ceb38d91570a650dba194e1ca87c2b543488fe9309b4212694174fd539c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e617fb6b0b6953fffd762669610c1c4ffd05632c138d61ac7e14ad187870669c"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:16e5f4bf4e603eb1fdd5d8180f1a25f30056f22e55ce51fb3d6ad4ab29f7d96f"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f4c035da3f544b1882bac24115f3e2e8760f10a0107614fc9839fd232200b875"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:957cf8e4b6e123a9eea554fa7ebc85674674b713551de587eb318a2df3e00255"}, + {file = "multidict-6.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:483a6aea59cb89904e1ceabd2b47368b5600fb7de78a6e4a2c2987b2d256cf30"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:87701f25a2352e5bf7454caa64757642734da9f6b11384c1f9d1a8e699758057"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:682b987361e5fd7a139ed565e30d81fd81e9629acc7d925a205366877d8c8657"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ce2186a7df133a9c895dea3331ddc5ddad42cdd0d1ea2f0a51e5d161e4762f28"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:9f636b730f7e8cb19feb87094949ba54ee5357440b9658b2a32a5ce4bce53972"}, + {file = "multidict-6.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:73eae06aa53af2ea5270cc066dcaf02cc60d2994bbb2c4ef5764949257d10f43"}, + {file = "multidict-6.1.0-cp39-cp39-win32.whl", hash = "sha256:1ca0083e80e791cffc6efce7660ad24af66c8d4079d2a750b29001b53ff59ada"}, + {file = "multidict-6.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:aa466da5b15ccea564bdab9c89175c762bc12825f4659c11227f515cee76fa4a"}, + {file = "multidict-6.1.0-py3-none-any.whl", hash = "sha256:48e171e52d1c4d33888e529b999e5900356b9ae588c2f09a52dcefb158b27506"}, + {file = "multidict-6.1.0.tar.gz", hash = "sha256:22ae2ebf9b0c69d206c003e2f6a914ea33f0a932d4aa16f236afc049d9958f4a"}, ] +[package.dependencies] +typing-extensions = {version = ">=4.1.0", markers = "python_version < \"3.11\""} + [[package]] name = "multiprocess" version = "0.70.16" @@ -1600,6 +1706,17 @@ files = [ [package.dependencies] nvidia-nvjitlink-cu12 = "*" +[[package]] +name = "nvidia-ml-py" +version = "12.560.30" +description = "Python Bindings for the NVIDIA Management Library" +optional = true +python-versions = "*" +files = [ + {file = "nvidia-ml-py-12.560.30.tar.gz", hash = "sha256:f0254dc7400647680a072ee02509bfd46102b60bdfeca321576d4d4817e7fe97"}, + {file = "nvidia_ml_py-12.560.30-py3-none-any.whl", hash = "sha256:fea371c94d63e38a611c17bbb85fe400e9c8ddb9e8684a9cd0e47786a4bc3c73"}, +] + [[package]] name = "nvidia-nccl-cu12" version = "2.20.5" @@ -1613,14 +1730,14 @@ files = [ [[package]] name = "nvidia-nvjitlink-cu12" -version = "12.5.82" +version = "12.6.68" description = "Nvidia JIT LTO Library" optional = true python-versions = ">=3" files = [ - {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_aarch64.whl", hash = "sha256:98103729cc5226e13ca319a10bbf9433bbbd44ef64fe72f45f067cacc14b8d27"}, - {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f9b37bc5c8cf7509665cb6ada5aaa0ce65618f2332b7d3e78e9790511f111212"}, - {file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-win_amd64.whl", hash = "sha256:e782564d705ff0bf61ac3e1bf730166da66dd2fe9012f111ede5fc49b64ae697"}, + {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-manylinux2014_aarch64.whl", hash = "sha256:b3fd0779845f68b92063ab1393abab1ed0a23412fc520df79a8190d098b5cd6b"}, + {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-manylinux2014_x86_64.whl", hash = "sha256:125a6c2a44e96386dda634e13d944e60b07a0402d391a070e8fb4104b34ea1ab"}, + {file = "nvidia_nvjitlink_cu12-12.6.68-py3-none-win_amd64.whl", hash = "sha256:a55744c98d70317c5e23db14866a8cc2b733f7324509e941fc96276f9f37801d"}, ] [[package]] @@ -1844,40 +1961,53 @@ files = [ [[package]] name = "pandas" -version = "2.2.2" +version = "2.2.3" description = "Powerful data structures for data analysis, time series, and statistics" optional = true python-versions = ">=3.9" files = [ - {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, - {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, - {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, - {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, - {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, - {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, - {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, - {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, - {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, - {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, - {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, - {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, - {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, - {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, - {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, - {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, - {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, - {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, ] [package.dependencies] @@ -2072,22 +2202,22 @@ twisted = ["twisted"] [[package]] name = "protobuf" -version = "4.25.3" +version = "4.25.5" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-4.25.3-cp310-abi3-win32.whl", hash = "sha256:d4198877797a83cbfe9bffa3803602bbe1625dc30d8a097365dbc762e5790faa"}, - {file = "protobuf-4.25.3-cp310-abi3-win_amd64.whl", hash = "sha256:209ba4cc916bab46f64e56b85b090607a676f66b473e6b762e6f1d9d591eb2e8"}, - {file = "protobuf-4.25.3-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:f1279ab38ecbfae7e456a108c5c0681e4956d5b1090027c1de0f934dfdb4b35c"}, - {file = "protobuf-4.25.3-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:e7cb0ae90dd83727f0c0718634ed56837bfeeee29a5f82a7514c03ee1364c019"}, - {file = "protobuf-4.25.3-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:7c8daa26095f82482307bc717364e7c13f4f1c99659be82890dcfc215194554d"}, - {file = "protobuf-4.25.3-cp38-cp38-win32.whl", hash = "sha256:f4f118245c4a087776e0a8408be33cf09f6c547442c00395fbfb116fac2f8ac2"}, - {file = "protobuf-4.25.3-cp38-cp38-win_amd64.whl", hash = "sha256:c053062984e61144385022e53678fbded7aea14ebb3e0305ae3592fb219ccfa4"}, - {file = "protobuf-4.25.3-cp39-cp39-win32.whl", hash = "sha256:19b270aeaa0099f16d3ca02628546b8baefe2955bbe23224aaf856134eccf1e4"}, - {file = "protobuf-4.25.3-cp39-cp39-win_amd64.whl", hash = "sha256:e3c97a1555fd6388f857770ff8b9703083de6bf1f9274a002a332d65fbb56c8c"}, - {file = "protobuf-4.25.3-py3-none-any.whl", hash = "sha256:f0700d54bcf45424477e46a9f0944155b46fb0639d69728739c0e47bab83f2b9"}, - {file = "protobuf-4.25.3.tar.gz", hash = "sha256:25b5d0b42fd000320bd7830b349e3b696435f3b329810427a6bcce6a5492cc5c"}, + {file = "protobuf-4.25.5-cp310-abi3-win32.whl", hash = "sha256:5e61fd921603f58d2f5acb2806a929b4675f8874ff5f330b7d6f7e2e784bbcd8"}, + {file = "protobuf-4.25.5-cp310-abi3-win_amd64.whl", hash = "sha256:4be0571adcbe712b282a330c6e89eae24281344429ae95c6d85e79e84780f5ea"}, + {file = "protobuf-4.25.5-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:b2fde3d805354df675ea4c7c6338c1aecd254dfc9925e88c6d31a2bcb97eb173"}, + {file = "protobuf-4.25.5-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:919ad92d9b0310070f8356c24b855c98df2b8bd207ebc1c0c6fcc9ab1e007f3d"}, + {file = "protobuf-4.25.5-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:fe14e16c22be926d3abfcb500e60cab068baf10b542b8c858fa27e098123e331"}, + {file = "protobuf-4.25.5-cp38-cp38-win32.whl", hash = "sha256:98d8d8aa50de6a2747efd9cceba361c9034050ecce3e09136f90de37ddba66e1"}, + {file = "protobuf-4.25.5-cp38-cp38-win_amd64.whl", hash = "sha256:b0234dd5a03049e4ddd94b93400b67803c823cfc405689688f59b34e0742381a"}, + {file = "protobuf-4.25.5-cp39-cp39-win32.whl", hash = "sha256:abe32aad8561aa7cc94fc7ba4fdef646e576983edb94a73381b03c53728a626f"}, + {file = "protobuf-4.25.5-cp39-cp39-win_amd64.whl", hash = "sha256:7a183f592dc80aa7c8da7ad9e55091c4ffc9497b3054452d629bb85fa27c2a45"}, + {file = "protobuf-4.25.5-py3-none-any.whl", hash = "sha256:0aebecb809cae990f8129ada5ca273d9d670b76d9bfc9b1809f0a9c02b7dbf41"}, + {file = "protobuf-4.25.5.tar.gz", hash = "sha256:7f8249476b4a9473645db7f8ab42b02fe1488cbe5fb72fddd445e0665afd8584"}, ] [[package]] @@ -2181,132 +2311,122 @@ numpy = ">=1.16.6" [package.extras] test = ["cffi", "hypothesis", "pandas", "pytest", "pytz"] -[[package]] -name = "pyarrow-hotfix" -version = "0.6" -description = "" -optional = true -python-versions = ">=3.5" -files = [ - {file = "pyarrow_hotfix-0.6-py3-none-any.whl", hash = "sha256:dcc9ae2d220dff0083be6a9aa8e0cdee5182ad358d4931fce825c545e5c89178"}, - {file = "pyarrow_hotfix-0.6.tar.gz", hash = "sha256:79d3e030f7ff890d408a100ac16d6f00b14d44a502d7897cd9fc3e3a534e9945"}, -] - [[package]] name = "pydantic" -version = "2.8.2" +version = "2.9.2" description = "Data validation using Python type hints" optional = true python-versions = ">=3.8" files = [ - {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, - {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, + {file = "pydantic-2.9.2-py3-none-any.whl", hash = "sha256:f048cec7b26778210e28a0459867920654d48e5e62db0958433636cde4254f12"}, + {file = "pydantic-2.9.2.tar.gz", hash = "sha256:d155cef71265d1e9807ed1c32b4c8deec042a44a50a4188b25ac67ecd81a9c0f"}, ] [package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.20.1" +annotated-types = ">=0.6.0" +pydantic-core = "2.23.4" typing-extensions = {version = ">=4.6.1", markers = "python_version < \"3.13\""} [package.extras] email = ["email-validator (>=2.0.0)"] +timezone = ["tzdata"] [[package]] name = "pydantic-core" -version = "2.20.1" +version = "2.23.4" description = "Core functionality for Pydantic validation and serialization" optional = true python-versions = ">=3.8" files = [ - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, - {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, - {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, - {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, - {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, - {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, - {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, - {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, - {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, - {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, - {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, - {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, - {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, - {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, - {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, - {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, - {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, - {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, - {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, - {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, - {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, - {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, - {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, - {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, - {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, - {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, - {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, - {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, - {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, - {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, - {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, - {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, - {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b10bd51f823d891193d4717448fab065733958bdb6a6b351967bd349d48d5c9b"}, + {file = "pydantic_core-2.23.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4fc714bdbfb534f94034efaa6eadd74e5b93c8fa6315565a222f7b6f42ca1166"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63e46b3169866bd62849936de036f901a9356e36376079b05efa83caeaa02ceb"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed1a53de42fbe34853ba90513cea21673481cd81ed1be739f7f2efb931b24916"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cfdd16ab5e59fc31b5e906d1a3f666571abc367598e3e02c83403acabc092e07"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:255a8ef062cbf6674450e668482456abac99a5583bbafb73f9ad469540a3a232"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a7cd62e831afe623fbb7aabbb4fe583212115b3ef38a9f6b71869ba644624a2"}, + {file = "pydantic_core-2.23.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f09e2ff1f17c2b51f2bc76d1cc33da96298f0a036a137f5440ab3ec5360b624f"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e38e63e6f3d1cec5a27e0afe90a085af8b6806ee208b33030e65b6516353f1a3"}, + {file = "pydantic_core-2.23.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0dbd8dbed2085ed23b5c04afa29d8fd2771674223135dc9bc937f3c09284d071"}, + {file = "pydantic_core-2.23.4-cp310-none-win32.whl", hash = "sha256:6531b7ca5f951d663c339002e91aaebda765ec7d61b7d1e3991051906ddde119"}, + {file = "pydantic_core-2.23.4-cp310-none-win_amd64.whl", hash = "sha256:7c9129eb40958b3d4500fa2467e6a83356b3b61bfff1b414c7361d9220f9ae8f"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:77733e3892bb0a7fa797826361ce8a9184d25c8dffaec60b7ffe928153680ba8"}, + {file = "pydantic_core-2.23.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b84d168f6c48fabd1f2027a3d1bdfe62f92cade1fb273a5d68e621da0e44e6d"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df49e7a0861a8c36d089c1ed57d308623d60416dab2647a4a17fe050ba85de0e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ff02b6d461a6de369f07ec15e465a88895f3223eb75073ffea56b84d9331f607"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:996a38a83508c54c78a5f41456b0103c30508fed9abcad0a59b876d7398f25fd"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d97683ddee4723ae8c95d1eddac7c192e8c552da0c73a925a89fa8649bf13eea"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:216f9b2d7713eb98cb83c80b9c794de1f6b7e3145eef40400c62e86cee5f4e1e"}, + {file = "pydantic_core-2.23.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6f783e0ec4803c787bcea93e13e9932edab72068f68ecffdf86a99fd5918878b"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d0776dea117cf5272382634bd2a5c1b6eb16767c223c6a5317cd3e2a757c61a0"}, + {file = "pydantic_core-2.23.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d5f7a395a8cf1621939692dba2a6b6a830efa6b3cee787d82c7de1ad2930de64"}, + {file = "pydantic_core-2.23.4-cp311-none-win32.whl", hash = "sha256:74b9127ffea03643e998e0c5ad9bd3811d3dac8c676e47db17b0ee7c3c3bf35f"}, + {file = "pydantic_core-2.23.4-cp311-none-win_amd64.whl", hash = "sha256:98d134c954828488b153d88ba1f34e14259284f256180ce659e8d83e9c05eaa3"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:f3e0da4ebaef65158d4dfd7d3678aad692f7666877df0002b8a522cdf088f231"}, + {file = "pydantic_core-2.23.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:f69a8e0b033b747bb3e36a44e7732f0c99f7edd5cea723d45bc0d6e95377ffee"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:723314c1d51722ab28bfcd5240d858512ffd3116449c557a1336cbe3919beb87"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bb2802e667b7051a1bebbfe93684841cc9351004e2badbd6411bf357ab8d5ac8"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d18ca8148bebe1b0a382a27a8ee60350091a6ddaf475fa05ef50dc35b5df6327"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33e3d65a85a2a4a0dc3b092b938a4062b1a05f3a9abde65ea93b233bca0e03f2"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:128585782e5bfa515c590ccee4b727fb76925dd04a98864182b22e89a4e6ed36"}, + {file = "pydantic_core-2.23.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:68665f4c17edcceecc112dfed5dbe6f92261fb9d6054b47d01bf6371a6196126"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:20152074317d9bed6b7a95ade3b7d6054845d70584216160860425f4fbd5ee9e"}, + {file = "pydantic_core-2.23.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:9261d3ce84fa1d38ed649c3638feefeae23d32ba9182963e465d58d62203bd24"}, + {file = "pydantic_core-2.23.4-cp312-none-win32.whl", hash = "sha256:4ba762ed58e8d68657fc1281e9bb72e1c3e79cc5d464be146e260c541ec12d84"}, + {file = "pydantic_core-2.23.4-cp312-none-win_amd64.whl", hash = "sha256:97df63000f4fea395b2824da80e169731088656d1818a11b95f3b173747b6cd9"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:7530e201d10d7d14abce4fb54cfe5b94a0aefc87da539d0346a484ead376c3cc"}, + {file = "pydantic_core-2.23.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:df933278128ea1cd77772673c73954e53a1c95a4fdf41eef97c2b779271bd0bd"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0cb3da3fd1b6a5d0279a01877713dbda118a2a4fc6f0d821a57da2e464793f05"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42c6dcb030aefb668a2b7009c85b27f90e51e6a3b4d5c9bc4c57631292015b0d"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:696dd8d674d6ce621ab9d45b205df149399e4bb9aa34102c970b721554828510"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2971bb5ffe72cc0f555c13e19b23c85b654dd2a8f7ab493c262071377bfce9f6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8394d940e5d400d04cad4f75c0598665cbb81aecefaca82ca85bd28264af7f9b"}, + {file = "pydantic_core-2.23.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dff76e0602ca7d4cdaacc1ac4c005e0ce0dcfe095d5b5259163a80d3a10d327"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7d32706badfe136888bdea71c0def994644e09fff0bfe47441deaed8e96fdbc6"}, + {file = "pydantic_core-2.23.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ed541d70698978a20eb63d8c5d72f2cc6d7079d9d90f6b50bad07826f1320f5f"}, + {file = "pydantic_core-2.23.4-cp313-none-win32.whl", hash = "sha256:3d5639516376dce1940ea36edf408c554475369f5da2abd45d44621cb616f769"}, + {file = "pydantic_core-2.23.4-cp313-none-win_amd64.whl", hash = "sha256:5a1504ad17ba4210df3a045132a7baeeba5a200e930f57512ee02909fc5c4cb5"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:d4488a93b071c04dc20f5cecc3631fc78b9789dd72483ba15d423b5b3689b555"}, + {file = "pydantic_core-2.23.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:81965a16b675b35e1d09dd14df53f190f9129c0202356ed44ab2728b1c905658"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ffa2ebd4c8530079140dd2d7f794a9d9a73cbb8e9d59ffe24c63436efa8f271"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:61817945f2fe7d166e75fbfb28004034b48e44878177fc54d81688e7b85a3665"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29d2c342c4bc01b88402d60189f3df065fb0dda3654744d5a165a5288a657368"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5e11661ce0fd30a6790e8bcdf263b9ec5988e95e63cf901972107efc49218b13"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d18368b137c6295db49ce7218b1a9ba15c5bc254c96d7c9f9e924a9bc7825ad"}, + {file = "pydantic_core-2.23.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec4e55f79b1c4ffb2eecd8a0cfba9955a2588497d96851f4c8f99aa4a1d39b12"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:374a5e5049eda9e0a44c696c7ade3ff355f06b1fe0bb945ea3cac2bc336478a2"}, + {file = "pydantic_core-2.23.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:5c364564d17da23db1106787675fc7af45f2f7b58b4173bfdd105564e132e6fb"}, + {file = "pydantic_core-2.23.4-cp38-none-win32.whl", hash = "sha256:d7a80d21d613eec45e3d41eb22f8f94ddc758a6c4720842dc74c0581f54993d6"}, + {file = "pydantic_core-2.23.4-cp38-none-win_amd64.whl", hash = "sha256:5f5ff8d839f4566a474a969508fe1c5e59c31c80d9e140566f9a37bba7b8d556"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:a4fa4fc04dff799089689f4fd502ce7d59de529fc2f40a2c8836886c03e0175a"}, + {file = "pydantic_core-2.23.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0a7df63886be5e270da67e0966cf4afbae86069501d35c8c1b3b6c168f42cb36"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcedcd19a557e182628afa1d553c3895a9f825b936415d0dbd3cd0bbcfd29b4b"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f54b118ce5de9ac21c363d9b3caa6c800341e8c47a508787e5868c6b79c9323"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:86d2f57d3e1379a9525c5ab067b27dbb8a0642fb5d454e17a9ac434f9ce523e3"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:de6d1d1b9e5101508cb37ab0d972357cac5235f5c6533d1071964c47139257df"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1278e0d324f6908e872730c9102b0112477a7f7cf88b308e4fc36ce1bdb6d58c"}, + {file = "pydantic_core-2.23.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9a6b5099eeec78827553827f4c6b8615978bb4b6a88e5d9b93eddf8bb6790f55"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:e55541f756f9b3ee346b840103f32779c695a19826a4c442b7954550a0972040"}, + {file = "pydantic_core-2.23.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a5c7ba8ffb6d6f8f2ab08743be203654bb1aaa8c9dcb09f82ddd34eadb695605"}, + {file = "pydantic_core-2.23.4-cp39-none-win32.whl", hash = "sha256:37b0fe330e4a58d3c58b24d91d1eb102aeec675a3db4c292ec3928ecd892a9a6"}, + {file = "pydantic_core-2.23.4-cp39-none-win_amd64.whl", hash = "sha256:1498bec4c05c9c787bde9125cfdcc63a41004ff167f495063191b863399b1a29"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f455ee30a9d61d3e1a15abd5068827773d6e4dc513e795f380cdd59932c782d5"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1e90d2e3bd2c3863d48525d297cd143fe541be8bbf6f579504b9712cb6b643ec"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e203fdf807ac7e12ab59ca2bfcabb38c7cf0b33c41efeb00f8e5da1d86af480"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08277a400de01bc72436a0ccd02bdf596631411f592ad985dcee21445bd0068"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f220b0eea5965dec25480b6333c788fb72ce5f9129e8759ef876a1d805d00801"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:d06b0c8da4f16d1d1e352134427cb194a0a6e19ad5db9161bf32b2113409e728"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ba1a0996f6c2773bd83e63f18914c1de3c9dd26d55f4ac302a7efe93fb8e7433"}, + {file = "pydantic_core-2.23.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:9a5bce9d23aac8f0cf0836ecfc033896aa8443b501c58d0602dbfd5bd5b37753"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:78ddaaa81421a29574a682b3179d4cf9e6d405a09b99d93ddcf7e5239c742e21"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:883a91b5dd7d26492ff2f04f40fbb652de40fcc0afe07e8129e8ae779c2110eb"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88ad334a15b32a791ea935af224b9de1bf99bcd62fabf745d5f3442199d86d59"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:233710f069d251feb12a56da21e14cca67994eab08362207785cf8c598e74577"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:19442362866a753485ba5e4be408964644dd6a09123d9416c54cd49171f50744"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:624e278a7d29b6445e4e813af92af37820fafb6dcc55c012c834f9e26f9aaaef"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f5ef8f42bec47f21d07668a043f077d507e5bf4e668d5c6dfe6aaba89de1a5b8"}, + {file = "pydantic_core-2.23.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:aea443fffa9fbe3af1a9ba721a87f926fe548d32cab71d188a6ede77d0ff244e"}, + {file = "pydantic_core-2.23.4.tar.gz", hash = "sha256:2584f7cf844ac4d970fba483a717dbe10c1c1c96a969bf65d61ffe94df1b2863"}, ] [package.dependencies] @@ -2364,73 +2484,75 @@ six = ">=1.5" [[package]] name = "pytz" -version = "2024.1" +version = "2024.2" description = "World timezone definitions, modern and historical" optional = true python-versions = "*" files = [ - {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, - {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, ] [[package]] name = "pyyaml" -version = "6.0.1" +version = "6.0.2" description = "YAML parser and emitter for Python" optional = false -python-versions = ">=3.6" +python-versions = ">=3.8" files = [ - {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, - {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, - {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, - {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, - {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, - {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, - {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, - {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, - {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, - {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, - {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, - {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, - {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, - {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, - {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, - {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, - {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, - {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, - {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, - {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, - {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, - {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, - {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, - {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, - {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, - {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, - {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, - {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, - {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, - {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, - {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, - {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, - {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, ] [[package]] @@ -2450,90 +2572,105 @@ rpds-py = ">=0.7.0" [[package]] name = "regex" -version = "2024.5.15" +version = "2024.9.11" description = "Alternative regular expression module, to replace re." optional = false python-versions = ">=3.8" files = [ - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a81e3cfbae20378d75185171587cbf756015ccb14840702944f014e0d93ea09f"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b59138b219ffa8979013be7bc85bb60c6f7b7575df3d56dc1e403a438c7a3f6"}, - {file = "regex-2024.5.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0bd000c6e266927cb7a1bc39d55be95c4b4f65c5be53e659537537e019232b1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eaa7ddaf517aa095fa8da0b5015c44d03da83f5bd49c87961e3c997daed0de7"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba68168daedb2c0bab7fd7e00ced5ba90aebf91024dea3c88ad5063c2a562cca"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6e8d717bca3a6e2064fc3a08df5cbe366369f4b052dcd21b7416e6d71620dca1"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1337b7dbef9b2f71121cdbf1e97e40de33ff114801263b275aafd75303bd62b5"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9ebd0a36102fcad2f03696e8af4ae682793a5d30b46c647eaf280d6cfb32796"}, - {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9efa1a32ad3a3ea112224897cdaeb6aa00381627f567179c0314f7b65d354c62"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1595f2d10dff3d805e054ebdc41c124753631b6a471b976963c7b28543cf13b0"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b802512f3e1f480f41ab5f2cfc0e2f761f08a1f41092d6718868082fc0d27143"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a0981022dccabca811e8171f913de05720590c915b033b7e601f35ce4ea7019f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:19068a6a79cf99a19ccefa44610491e9ca02c2be3305c7760d3831d38a467a6f"}, - {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b5269484f6126eee5e687785e83c6b60aad7663dafe842b34691157e5083e53"}, - {file = "regex-2024.5.15-cp310-cp310-win32.whl", hash = "sha256:ada150c5adfa8fbcbf321c30c751dc67d2f12f15bd183ffe4ec7cde351d945b3"}, - {file = "regex-2024.5.15-cp310-cp310-win_amd64.whl", hash = "sha256:ac394ff680fc46b97487941f5e6ae49a9f30ea41c6c6804832063f14b2a5a145"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f5b1dff3ad008dccf18e652283f5e5339d70bf8ba7c98bf848ac33db10f7bc7a"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6a2b494a76983df8e3d3feea9b9ffdd558b247e60b92f877f93a1ff43d26656"}, - {file = "regex-2024.5.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a32b96f15c8ab2e7d27655969a23895eb799de3665fa94349f3b2fbfd547236f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10002e86e6068d9e1c91eae8295ef690f02f913c57db120b58fdd35a6bb1af35"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec54d5afa89c19c6dd8541a133be51ee1017a38b412b1321ccb8d6ddbeb4cf7d"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10e4ce0dca9ae7a66e6089bb29355d4432caed736acae36fef0fdd7879f0b0cb"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e507ff1e74373c4d3038195fdd2af30d297b4f0950eeda6f515ae3d84a1770f"}, - {file = "regex-2024.5.15-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1f059a4d795e646e1c37665b9d06062c62d0e8cc3c511fe01315973a6542e40"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0721931ad5fe0dda45d07f9820b90b2148ccdd8e45bb9e9b42a146cb4f695649"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:833616ddc75ad595dee848ad984d067f2f31be645d603e4d158bba656bbf516c"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:287eb7f54fc81546346207c533ad3c2c51a8d61075127d7f6d79aaf96cdee890"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:19dfb1c504781a136a80ecd1fff9f16dddf5bb43cec6871778c8a907a085bb3d"}, - {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:119af6e56dce35e8dfb5222573b50c89e5508d94d55713c75126b753f834de68"}, - {file = "regex-2024.5.15-cp311-cp311-win32.whl", hash = "sha256:1c1c174d6ec38d6c8a7504087358ce9213d4332f6293a94fbf5249992ba54efa"}, - {file = "regex-2024.5.15-cp311-cp311-win_amd64.whl", hash = "sha256:9e717956dcfd656f5055cc70996ee2cc82ac5149517fc8e1b60261b907740201"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:632b01153e5248c134007209b5c6348a544ce96c46005d8456de1d552455b014"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e64198f6b856d48192bf921421fdd8ad8eb35e179086e99e99f711957ffedd6e"}, - {file = "regex-2024.5.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68811ab14087b2f6e0fc0c2bae9ad689ea3584cad6917fc57be6a48bbd012c49"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ec0c2fea1e886a19c3bee0cd19d862b3aa75dcdfb42ebe8ed30708df64687a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0c0c0003c10f54a591d220997dd27d953cd9ccc1a7294b40a4be5312be8797b"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2431b9e263af1953c55abbd3e2efca67ca80a3de8a0437cb58e2421f8184717a"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a605586358893b483976cffc1723fb0f83e526e8f14c6e6614e75919d9862cf"}, - {file = "regex-2024.5.15-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391d7f7f1e409d192dba8bcd42d3e4cf9e598f3979cdaed6ab11288da88cb9f2"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9ff11639a8d98969c863d4617595eb5425fd12f7c5ef6621a4b74b71ed8726d5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4eee78a04e6c67e8391edd4dad3279828dd66ac4b79570ec998e2155d2e59fd5"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8fe45aa3f4aa57faabbc9cb46a93363edd6197cbc43523daea044e9ff2fea83e"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d0a3d8d6acf0c78a1fff0e210d224b821081330b8524e3e2bc5a68ef6ab5803d"}, - {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c486b4106066d502495b3025a0a7251bf37ea9540433940a23419461ab9f2a80"}, - {file = "regex-2024.5.15-cp312-cp312-win32.whl", hash = "sha256:c49e15eac7c149f3670b3e27f1f28a2c1ddeccd3a2812cba953e01be2ab9b5fe"}, - {file = "regex-2024.5.15-cp312-cp312-win_amd64.whl", hash = "sha256:673b5a6da4557b975c6c90198588181029c60793835ce02f497ea817ff647cb2"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87e2a9c29e672fc65523fb47a90d429b70ef72b901b4e4b1bd42387caf0d6835"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3bea0ba8b73b71b37ac833a7f3fd53825924165da6a924aec78c13032f20850"}, - {file = "regex-2024.5.15-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfc4f82cabe54f1e7f206fd3d30fda143f84a63fe7d64a81558d6e5f2e5aaba9"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5bb9425fe881d578aeca0b2b4b3d314ec88738706f66f219c194d67179337cb"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64c65783e96e563103d641760664125e91bd85d8e49566ee560ded4da0d3e704"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cf2430df4148b08fb4324b848672514b1385ae3807651f3567871f130a728cc3"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5397de3219a8b08ae9540c48f602996aa6b0b65d5a61683e233af8605c42b0f2"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455705d34b4154a80ead722f4f185b04c4237e8e8e33f265cd0798d0e44825fa"}, - {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b2b6f1b3bb6f640c1a92be3bbfbcb18657b125b99ecf141fb3310b5282c7d4ed"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3ad070b823ca5890cab606c940522d05d3d22395d432f4aaaf9d5b1653e47ced"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5b5467acbfc153847d5adb21e21e29847bcb5870e65c94c9206d20eb4e99a384"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e6662686aeb633ad65be2a42b4cb00178b3fbf7b91878f9446075c404ada552f"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2b4c884767504c0e2401babe8b5b7aea9148680d2e157fa28f01529d1f7fcf67"}, - {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3cd7874d57f13bf70078f1ff02b8b0aa48d5b9ed25fc48547516c6aba36f5741"}, - {file = "regex-2024.5.15-cp38-cp38-win32.whl", hash = "sha256:e4682f5ba31f475d58884045c1a97a860a007d44938c4c0895f41d64481edbc9"}, - {file = "regex-2024.5.15-cp38-cp38-win_amd64.whl", hash = "sha256:d99ceffa25ac45d150e30bd9ed14ec6039f2aad0ffa6bb87a5936f5782fc1569"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13cdaf31bed30a1e1c2453ef6015aa0983e1366fad2667657dbcac7b02f67133"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cac27dcaa821ca271855a32188aa61d12decb6fe45ffe3e722401fe61e323cd1"}, - {file = "regex-2024.5.15-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7dbe2467273b875ea2de38ded4eba86cbcbc9a1a6d0aa11dcf7bd2e67859c435"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f18a9a3513a99c4bef0e3efd4c4a5b11228b48aa80743be822b71e132ae4f5"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d347a741ea871c2e278fde6c48f85136c96b8659b632fb57a7d1ce1872547600"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1878b8301ed011704aea4c806a3cadbd76f84dece1ec09cc9e4dc934cfa5d4da"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4babf07ad476aaf7830d77000874d7611704a7fcf68c9c2ad151f5d94ae4bfc4"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cb514e137cb3488bce23352af3e12fb0dbedd1ee6e60da053c69fb1b29cc6c"}, - {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cdd09d47c0b2efee9378679f8510ee6955d329424c659ab3c5e3a6edea696294"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:72d7a99cd6b8f958e85fc6ca5b37c4303294954eac1376535b03c2a43eb72629"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:a094801d379ab20c2135529948cb84d417a2169b9bdceda2a36f5f10977ebc16"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c0c18345010870e58238790a6779a1219b4d97bd2e77e1140e8ee5d14df071aa"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:16093f563098448ff6b1fa68170e4acbef94e6b6a4e25e10eae8598bb1694b5d"}, - {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e38a7d4e8f633a33b4c7350fbd8bad3b70bf81439ac67ac38916c4a86b465456"}, - {file = "regex-2024.5.15-cp39-cp39-win32.whl", hash = "sha256:71a455a3c584a88f654b64feccc1e25876066c4f5ef26cd6dd711308aa538694"}, - {file = "regex-2024.5.15-cp39-cp39-win_amd64.whl", hash = "sha256:cab12877a9bdafde5500206d1020a584355a97884dfd388af3699e9137bf7388"}, - {file = "regex-2024.5.15.tar.gz", hash = "sha256:d3ee02d9e5f482cc8309134a91eeaacbdd2261ba111b0fef3748eeb4913e6a2c"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d"}, + {file = "regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8"}, + {file = "regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca"}, + {file = "regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a"}, + {file = "regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0"}, + {file = "regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268"}, + {file = "regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50"}, + {file = "regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96"}, + {file = "regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1"}, + {file = "regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9"}, + {file = "regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231"}, + {file = "regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a"}, + {file = "regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a"}, + {file = "regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a"}, + {file = "regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776"}, + {file = "regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36"}, + {file = "regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6"}, + {file = "regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554"}, + {file = "regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8"}, + {file = "regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8"}, + {file = "regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:35f4a6f96aa6cb3f2f7247027b07b15a374f0d5b912c0001418d1d55024d5cb4"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:55b96e7ce3a69a8449a66984c268062fbaa0d8ae437b285428e12797baefce7e"}, + {file = "regex-2024.9.11-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cb130fccd1a37ed894824b8c046321540263013da72745d755f2d35114b81a60"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:323c1f04be6b2968944d730e5c2091c8c89767903ecaa135203eec4565ed2b2b"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be1c8ed48c4c4065ecb19d882a0ce1afe0745dfad8ce48c49586b90a55f02366"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b5b029322e6e7b94fff16cd120ab35a253236a5f99a79fb04fda7ae71ca20ae8"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6fff13ef6b5f29221d6904aa816c34701462956aa72a77f1f151a8ec4f56aeb"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:587d4af3979376652010e400accc30404e6c16b7df574048ab1f581af82065e4"}, + {file = "regex-2024.9.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:079400a8269544b955ffa9e31f186f01d96829110a3bf79dc338e9910f794fca"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f9268774428ec173654985ce55fc6caf4c6d11ade0f6f914d48ef4719eb05ebb"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:23f9985c8784e544d53fc2930fc1ac1a7319f5d5332d228437acc9f418f2f168"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:ae2941333154baff9838e88aa71c1d84f4438189ecc6021a12c7573728b5838e"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:e93f1c331ca8e86fe877a48ad64e77882c0c4da0097f2212873a69bbfea95d0c"}, + {file = "regex-2024.9.11-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:846bc79ee753acf93aef4184c040d709940c9d001029ceb7b7a52747b80ed2dd"}, + {file = "regex-2024.9.11-cp38-cp38-win32.whl", hash = "sha256:c94bb0a9f1db10a1d16c00880bdebd5f9faf267273b8f5bd1878126e0fbde771"}, + {file = "regex-2024.9.11-cp38-cp38-win_amd64.whl", hash = "sha256:2b08fce89fbd45664d3df6ad93e554b6c16933ffa9d55cb7e01182baaf971508"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:07f45f287469039ffc2c53caf6803cd506eb5f5f637f1d4acb37a738f71dd066"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4838e24ee015101d9f901988001038f7f0d90dc0c3b115541a1365fb439add62"}, + {file = "regex-2024.9.11-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6edd623bae6a737f10ce853ea076f56f507fd7726bee96a41ee3d68d347e4d16"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c69ada171c2d0e97a4b5aa78fbb835e0ffbb6b13fc5da968c09811346564f0d3"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02087ea0a03b4af1ed6ebab2c54d7118127fee8d71b26398e8e4b05b78963199"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:69dee6a020693d12a3cf892aba4808fe168d2a4cef368eb9bf74f5398bfd4ee8"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:297f54910247508e6e5cae669f2bc308985c60540a4edd1c77203ef19bfa63ca"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ecea58b43a67b1b79805f1a0255730edaf5191ecef84dbc4cc85eb30bc8b63b9"}, + {file = "regex-2024.9.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:eab4bb380f15e189d1313195b062a6aa908f5bd687a0ceccd47c8211e9cf0d4a"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0cbff728659ce4bbf4c30b2a1be040faafaa9eca6ecde40aaff86f7889f4ab39"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:54c4a097b8bc5bb0dfc83ae498061d53ad7b5762e00f4adaa23bee22b012e6ba"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:73d6d2f64f4d894c96626a75578b0bf7d9e56dcda8c3d037a2118fdfe9b1c664"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:e53b5fbab5d675aec9f0c501274c467c0f9a5d23696cfc94247e1fb56501ed89"}, + {file = "regex-2024.9.11-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:0ffbcf9221e04502fc35e54d1ce9567541979c3fdfb93d2c554f0ca583a19b35"}, + {file = "regex-2024.9.11-cp39-cp39-win32.whl", hash = "sha256:e4c22e1ac1f1ec1e09f72e6c44d8f2244173db7eb9629cc3a346a8d7ccc31142"}, + {file = "regex-2024.9.11-cp39-cp39-win_amd64.whl", hash = "sha256:faa3c142464efec496967359ca99696c896c591c56c53506bac1ad465f66e919"}, + {file = "regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd"}, ] [[package]] @@ -2559,13 +2696,13 @@ use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] [[package]] name = "rich" -version = "13.7.1" +version = "13.8.1" description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" optional = false python-versions = ">=3.7.0" files = [ - {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"}, - {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"}, + {file = "rich-13.8.1-py3-none-any.whl", hash = "sha256:1760a3c0848469b97b558fc61c85233e3dafb69c7a071b4d60c38099d3cd4c06"}, + {file = "rich-13.8.1.tar.gz", hash = "sha256:8260cda28e3db6bf04d2d1ef4dbc03ba80a824c88b0e7668a0f23126a424844a"}, ] [package.dependencies] @@ -2577,219 +2714,233 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rpds-py" -version = "0.19.0" +version = "0.20.0" description = "Python bindings to Rust's persistent data structures (rpds)" optional = true python-versions = ">=3.8" files = [ - {file = "rpds_py-0.19.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:fb37bd599f031f1a6fb9e58ec62864ccf3ad549cf14bac527dbfa97123edcca4"}, - {file = "rpds_py-0.19.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3384d278df99ec2c6acf701d067147320b864ef6727405d6470838476e44d9e8"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54548e0be3ac117595408fd4ca0ac9278fde89829b0b518be92863b17ff67a2"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8eb488ef928cdbc05a27245e52de73c0d7c72a34240ef4d9893fdf65a8c1a955"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5da93debdfe27b2bfc69eefb592e1831d957b9535e0943a0ee8b97996de21b5"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:79e205c70afddd41f6ee79a8656aec738492a550247a7af697d5bd1aee14f766"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:959179efb3e4a27610e8d54d667c02a9feaa86bbabaf63efa7faa4dfa780d4f1"}, - {file = "rpds_py-0.19.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a6e605bb9edcf010f54f8b6a590dd23a4b40a8cb141255eec2a03db249bc915b"}, - {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9133d75dc119a61d1a0ded38fb9ba40a00ef41697cc07adb6ae098c875195a3f"}, - {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dd36b712d35e757e28bf2f40a71e8f8a2d43c8b026d881aa0c617b450d6865c9"}, - {file = "rpds_py-0.19.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:354f3a91718489912f2e0fc331c24eaaf6a4565c080e00fbedb6015857c00582"}, - {file = "rpds_py-0.19.0-cp310-none-win32.whl", hash = "sha256:ebcbf356bf5c51afc3290e491d3722b26aaf5b6af3c1c7f6a1b757828a46e336"}, - {file = "rpds_py-0.19.0-cp310-none-win_amd64.whl", hash = "sha256:75a6076289b2df6c8ecb9d13ff79ae0cad1d5fb40af377a5021016d58cd691ec"}, - {file = "rpds_py-0.19.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6d45080095e585f8c5097897313def60caa2046da202cdb17a01f147fb263b81"}, - {file = "rpds_py-0.19.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c5c9581019c96f865483d031691a5ff1cc455feb4d84fc6920a5ffc48a794d8a"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1540d807364c84516417115c38f0119dfec5ea5c0dd9a25332dea60b1d26fc4d"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9e65489222b410f79711dc3d2d5003d2757e30874096b2008d50329ea4d0f88c"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9da6f400eeb8c36f72ef6646ea530d6d175a4f77ff2ed8dfd6352842274c1d8b"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:37f46bb11858717e0efa7893c0f7055c43b44c103e40e69442db5061cb26ed34"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:071d4adc734de562bd11d43bd134330fb6249769b2f66b9310dab7460f4bf714"}, - {file = "rpds_py-0.19.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9625367c8955e4319049113ea4f8fee0c6c1145192d57946c6ffcd8fe8bf48dd"}, - {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e19509145275d46bc4d1e16af0b57a12d227c8253655a46bbd5ec317e941279d"}, - {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d438e4c020d8c39961deaf58f6913b1bf8832d9b6f62ec35bd93e97807e9cbc"}, - {file = "rpds_py-0.19.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:90bf55d9d139e5d127193170f38c584ed3c79e16638890d2e36f23aa1630b952"}, - {file = "rpds_py-0.19.0-cp311-none-win32.whl", hash = "sha256:8d6ad132b1bc13d05ffe5b85e7a01a3998bf3a6302ba594b28d61b8c2cf13aaf"}, - {file = "rpds_py-0.19.0-cp311-none-win_amd64.whl", hash = "sha256:7ec72df7354e6b7f6eb2a17fa6901350018c3a9ad78e48d7b2b54d0412539a67"}, - {file = "rpds_py-0.19.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:5095a7c838a8647c32aa37c3a460d2c48debff7fc26e1136aee60100a8cd8f68"}, - {file = "rpds_py-0.19.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6f2f78ef14077e08856e788fa482107aa602636c16c25bdf59c22ea525a785e9"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7cc6cb44f8636fbf4a934ca72f3e786ba3c9f9ba4f4d74611e7da80684e48d2"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:cf902878b4af334a09de7a45badbff0389e7cf8dc2e4dcf5f07125d0b7c2656d"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:688aa6b8aa724db1596514751ffb767766e02e5c4a87486ab36b8e1ebc1aedac"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57dbc9167d48e355e2569346b5aa4077f29bf86389c924df25c0a8b9124461fb"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b4cf5a9497874822341c2ebe0d5850fed392034caadc0bad134ab6822c0925b"}, - {file = "rpds_py-0.19.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8a790d235b9d39c70a466200d506bb33a98e2ee374a9b4eec7a8ac64c2c261fa"}, - {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1d16089dfa58719c98a1c06f2daceba6d8e3fb9b5d7931af4a990a3c486241cb"}, - {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:bc9128e74fe94650367fe23f37074f121b9f796cabbd2f928f13e9661837296d"}, - {file = "rpds_py-0.19.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c8f77e661ffd96ff104bebf7d0f3255b02aa5d5b28326f5408d6284c4a8b3248"}, - {file = "rpds_py-0.19.0-cp312-none-win32.whl", hash = "sha256:5f83689a38e76969327e9b682be5521d87a0c9e5a2e187d2bc6be4765f0d4600"}, - {file = "rpds_py-0.19.0-cp312-none-win_amd64.whl", hash = "sha256:06925c50f86da0596b9c3c64c3837b2481337b83ef3519e5db2701df695453a4"}, - {file = "rpds_py-0.19.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:52e466bea6f8f3a44b1234570244b1cff45150f59a4acae3fcc5fd700c2993ca"}, - {file = "rpds_py-0.19.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e21cc693045fda7f745c790cb687958161ce172ffe3c5719ca1764e752237d16"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b31f059878eb1f5da8b2fd82480cc18bed8dcd7fb8fe68370e2e6285fa86da6"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:1dd46f309e953927dd018567d6a9e2fb84783963650171f6c5fe7e5c41fd5666"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:34a01a4490e170376cd79258b7f755fa13b1a6c3667e872c8e35051ae857a92b"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bcf426a8c38eb57f7bf28932e68425ba86def6e756a5b8cb4731d8e62e4e0223"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68eea5df6347d3f1378ce992d86b2af16ad7ff4dcb4a19ccdc23dea901b87fb"}, - {file = "rpds_py-0.19.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dab8d921b55a28287733263c0e4c7db11b3ee22aee158a4de09f13c93283c62d"}, - {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6fe87efd7f47266dfc42fe76dae89060038f1d9cb911f89ae7e5084148d1cc08"}, - {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:535d4b52524a961d220875688159277f0e9eeeda0ac45e766092bfb54437543f"}, - {file = "rpds_py-0.19.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:8b1a94b8afc154fbe36978a511a1f155f9bd97664e4f1f7a374d72e180ceb0ae"}, - {file = "rpds_py-0.19.0-cp38-none-win32.whl", hash = "sha256:7c98298a15d6b90c8f6e3caa6457f4f022423caa5fa1a1ca7a5e9e512bdb77a4"}, - {file = "rpds_py-0.19.0-cp38-none-win_amd64.whl", hash = "sha256:b0da31853ab6e58a11db3205729133ce0df26e6804e93079dee095be3d681dc1"}, - {file = "rpds_py-0.19.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5039e3cef7b3e7a060de468a4a60a60a1f31786da94c6cb054e7a3c75906111c"}, - {file = "rpds_py-0.19.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ab1932ca6cb8c7499a4d87cb21ccc0d3326f172cfb6a64021a889b591bb3045c"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f2afd2164a1e85226fcb6a1da77a5c8896c18bfe08e82e8ceced5181c42d2179"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b1c30841f5040de47a0046c243fc1b44ddc87d1b12435a43b8edff7e7cb1e0d0"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f757f359f30ec7dcebca662a6bd46d1098f8b9fb1fcd661a9e13f2e8ce343ba1"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15e65395a59d2e0e96caf8ee5389ffb4604e980479c32742936ddd7ade914b22"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb0f6eb3a320f24b94d177e62f4074ff438f2ad9d27e75a46221904ef21a7b05"}, - {file = "rpds_py-0.19.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b228e693a2559888790936e20f5f88b6e9f8162c681830eda303bad7517b4d5a"}, - {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2575efaa5d949c9f4e2cdbe7d805d02122c16065bfb8d95c129372d65a291a0b"}, - {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:5c872814b77a4e84afa293a1bee08c14daed1068b2bb1cc312edbf020bbbca2b"}, - {file = "rpds_py-0.19.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:850720e1b383df199b8433a20e02b25b72f0fded28bc03c5bd79e2ce7ef050be"}, - {file = "rpds_py-0.19.0-cp39-none-win32.whl", hash = "sha256:ce84a7efa5af9f54c0aa7692c45861c1667080814286cacb9958c07fc50294fb"}, - {file = "rpds_py-0.19.0-cp39-none-win_amd64.whl", hash = "sha256:1c26da90b8d06227d7769f34915913911222d24ce08c0ab2d60b354e2d9c7aff"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:75969cf900d7be665ccb1622a9aba225cf386bbc9c3bcfeeab9f62b5048f4a07"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8445f23f13339da640d1be8e44e5baf4af97e396882ebbf1692aecd67f67c479"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5a7c1062ef8aea3eda149f08120f10795835fc1c8bc6ad948fb9652a113ca55"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:462b0c18fbb48fdbf980914a02ee38c423a25fcc4cf40f66bacc95a2d2d73bc8"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3208f9aea18991ac7f2b39721e947bbd752a1abbe79ad90d9b6a84a74d44409b"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3444fe52b82f122d8a99bf66777aed6b858d392b12f4c317da19f8234db4533"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88cb4bac7185a9f0168d38c01d7a00addece9822a52870eee26b8d5b61409213"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6b130bd4163c93798a6b9bb96be64a7c43e1cec81126ffa7ffaa106e1fc5cef5"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:a707b158b4410aefb6b054715545bbb21aaa5d5d0080217290131c49c2124a6e"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dc9ac4659456bde7c567107556ab065801622396b435a3ff213daef27b495388"}, - {file = "rpds_py-0.19.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:81ea573aa46d3b6b3d890cd3c0ad82105985e6058a4baed03cf92518081eec8c"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3f148c3f47f7f29a79c38cc5d020edcb5ca780020fab94dbc21f9af95c463581"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b0906357f90784a66e89ae3eadc2654f36c580a7d65cf63e6a616e4aec3a81be"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f629ecc2db6a4736b5ba95a8347b0089240d69ad14ac364f557d52ad68cf94b0"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c6feacd1d178c30e5bc37184526e56740342fd2aa6371a28367bad7908d454fc"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae8b6068ee374fdfab63689be0963333aa83b0815ead5d8648389a8ded593378"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78d57546bad81e0da13263e4c9ce30e96dcbe720dbff5ada08d2600a3502e526"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b6683a37338818646af718c9ca2a07f89787551057fae57c4ec0446dc6224b"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e8481b946792415adc07410420d6fc65a352b45d347b78fec45d8f8f0d7496f0"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bec35eb20792ea64c3c57891bc3ca0bedb2884fbac2c8249d9b731447ecde4fa"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:aa5476c3e3a402c37779e95f7b4048db2cb5b0ed0b9d006983965e93f40fe05a"}, - {file = "rpds_py-0.19.0-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:19d02c45f2507b489fd4df7b827940f1420480b3e2e471e952af4d44a1ea8e34"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a3e2fd14c5d49ee1da322672375963f19f32b3d5953f0615b175ff7b9d38daed"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:93a91c2640645303e874eada51f4f33351b84b351a689d470f8108d0e0694210"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5b9fc03bf76a94065299d4a2ecd8dfbae4ae8e2e8098bbfa6ab6413ca267709"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5a4b07cdf3f84310c08c1de2c12ddadbb7a77568bcb16e95489f9c81074322ed"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba0ed0dc6763d8bd6e5de5cf0d746d28e706a10b615ea382ac0ab17bb7388633"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:474bc83233abdcf2124ed3f66230a1c8435896046caa4b0b5ab6013c640803cc"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:329c719d31362355a96b435f4653e3b4b061fcc9eba9f91dd40804ca637d914e"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ef9101f3f7b59043a34f1dccbb385ca760467590951952d6701df0da9893ca0c"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:0121803b0f424ee2109d6e1f27db45b166ebaa4b32ff47d6aa225642636cd834"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8344127403dea42f5970adccf6c5957a71a47f522171fafaf4c6ddb41b61703a"}, - {file = "rpds_py-0.19.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:443cec402ddd650bb2b885113e1dcedb22b1175c6be223b14246a714b61cd521"}, - {file = "rpds_py-0.19.0.tar.gz", hash = "sha256:4fdc9afadbeb393b4bbbad75481e0ea78e4469f2e1d713a90811700830b553a9"}, + {file = "rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3ad0fda1635f8439cde85c700f964b23ed5fc2d28016b32b9ee5fe30da5c84e2"}, + {file = "rpds_py-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9bb4a0d90fdb03437c109a17eade42dfbf6190408f29b2744114d11586611d6f"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6377e647bbfd0a0b159fe557f2c6c602c159fc752fa316572f012fc0bf67150"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb851b7df9dda52dc1415ebee12362047ce771fc36914586b2e9fcbd7d293b3e"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e0f80b739e5a8f54837be5d5c924483996b603d5502bfff79bf33da06164ee2"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a8c94dad2e45324fc74dce25e1645d4d14df9a4e54a30fa0ae8bad9a63928e3"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e604fe73ba048c06085beaf51147eaec7df856824bfe7b98657cf436623daf"}, + {file = "rpds_py-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:df3de6b7726b52966edf29663e57306b23ef775faf0ac01a3e9f4012a24a4140"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cf258ede5bc22a45c8e726b29835b9303c285ab46fc7c3a4cc770736b5304c9f"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:55fea87029cded5df854ca7e192ec7bdb7ecd1d9a3f63d5c4eb09148acf4a7ce"}, + {file = "rpds_py-0.20.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ae94bd0b2f02c28e199e9bc51485d0c5601f58780636185660f86bf80c89af94"}, + {file = "rpds_py-0.20.0-cp310-none-win32.whl", hash = "sha256:28527c685f237c05445efec62426d285e47a58fb05ba0090a4340b73ecda6dee"}, + {file = "rpds_py-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:238a2d5b1cad28cdc6ed15faf93a998336eb041c4e440dd7f902528b8891b399"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac2f4f7a98934c2ed6505aead07b979e6f999389f16b714448fb39bbaa86a489"}, + {file = "rpds_py-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:220002c1b846db9afd83371d08d239fdc865e8f8c5795bbaec20916a76db3318"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d7919548df3f25374a1f5d01fbcd38dacab338ef5f33e044744b5c36729c8db"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:758406267907b3781beee0f0edfe4a179fbd97c0be2e9b1154d7f0a1279cf8e5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3d61339e9f84a3f0767b1995adfb171a0d00a1185192718a17af6e124728e0f5"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1259c7b3705ac0a0bd38197565a5d603218591d3f6cee6e614e380b6ba61c6f6"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c1dc0f53856b9cc9a0ccca0a7cc61d3d20a7088201c0937f3f4048c1718a209"}, + {file = "rpds_py-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7e60cb630f674a31f0368ed32b2a6b4331b8350d67de53c0359992444b116dd3"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbe982f38565bb50cb7fb061ebf762c2f254ca3d8c20d4006878766e84266272"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:514b3293b64187172bc77c8fb0cdae26981618021053b30d8371c3a902d4d5ad"}, + {file = "rpds_py-0.20.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0a26ffe9d4dd35e4dfdd1e71f46401cff0181c75ac174711ccff0459135fa58"}, + {file = "rpds_py-0.20.0-cp311-none-win32.whl", hash = "sha256:89c19a494bf3ad08c1da49445cc5d13d8fefc265f48ee7e7556839acdacf69d0"}, + {file = "rpds_py-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:c638144ce971df84650d3ed0096e2ae7af8e62ecbbb7b201c8935c370df00a2c"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a84ab91cbe7aab97f7446652d0ed37d35b68a465aeef8fc41932a9d7eee2c1a6"}, + {file = "rpds_py-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:56e27147a5a4c2c21633ff8475d185734c0e4befd1c989b5b95a5d0db699b21b"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2580b0c34583b85efec8c5c5ec9edf2dfe817330cc882ee972ae650e7b5ef739"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b80d4a7900cf6b66bb9cee5c352b2d708e29e5a37fe9bf784fa97fc11504bf6c"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50eccbf054e62a7b2209b28dc7a22d6254860209d6753e6b78cfaeb0075d7bee"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:49a8063ea4296b3a7e81a5dfb8f7b2d73f0b1c20c2af401fb0cdf22e14711a96"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea438162a9fcbee3ecf36c23e6c68237479f89f962f82dae83dc15feeceb37e4"}, + {file = "rpds_py-0.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:18d7585c463087bddcfa74c2ba267339f14f2515158ac4db30b1f9cbdb62c8ef"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d4c7d1a051eeb39f5c9547e82ea27cbcc28338482242e3e0b7768033cb083821"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4df1e3b3bec320790f699890d41c59d250f6beda159ea3c44c3f5bac1976940"}, + {file = "rpds_py-0.20.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2cf126d33a91ee6eedc7f3197b53e87a2acdac63602c0f03a02dd69e4b138174"}, + {file = "rpds_py-0.20.0-cp312-none-win32.whl", hash = "sha256:8bc7690f7caee50b04a79bf017a8d020c1f48c2a1077ffe172abec59870f1139"}, + {file = "rpds_py-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:0e13e6952ef264c40587d510ad676a988df19adea20444c2b295e536457bc585"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:aa9a0521aeca7d4941499a73ad7d4f8ffa3d1affc50b9ea11d992cd7eff18a29"}, + {file = "rpds_py-0.20.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4a1f1d51eccb7e6c32ae89243cb352389228ea62f89cd80823ea7dd1b98e0b91"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a86a9b96070674fc88b6f9f71a97d2c1d3e5165574615d1f9168ecba4cecb24"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6c8ef2ebf76df43f5750b46851ed1cdf8f109d7787ca40035fe19fbdc1acc5a7"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b25f024b421d5859d156750ea9a65651793d51b76a2e9238c05c9d5f203a9"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57eb94a8c16ab08fef6404301c38318e2c5a32216bf5de453e2714c964c125c8"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1940dae14e715e2e02dfd5b0f64a52e8374a517a1e531ad9412319dc3ac7879"}, + {file = "rpds_py-0.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d20277fd62e1b992a50c43f13fbe13277a31f8c9f70d59759c88f644d66c619f"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:06db23d43f26478303e954c34c75182356ca9aa7797d22c5345b16871ab9c45c"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b2a5db5397d82fa847e4c624b0c98fe59d2d9b7cf0ce6de09e4d2e80f8f5b3f2"}, + {file = "rpds_py-0.20.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5a35df9f5548fd79cb2f52d27182108c3e6641a4feb0f39067911bf2adaa3e57"}, + {file = "rpds_py-0.20.0-cp313-none-win32.whl", hash = "sha256:fd2d84f40633bc475ef2d5490b9c19543fbf18596dcb1b291e3a12ea5d722f7a"}, + {file = "rpds_py-0.20.0-cp313-none-win_amd64.whl", hash = "sha256:9bc2d153989e3216b0559251b0c260cfd168ec78b1fac33dd485750a228db5a2"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:f2fbf7db2012d4876fb0d66b5b9ba6591197b0f165db8d99371d976546472a24"}, + {file = "rpds_py-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1e5f3cd7397c8f86c8cc72d5a791071431c108edd79872cdd96e00abd8497d29"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce9845054c13696f7af7f2b353e6b4f676dab1b4b215d7fe5e05c6f8bb06f965"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c3e130fd0ec56cb76eb49ef52faead8ff09d13f4527e9b0c400307ff72b408e1"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4b16aa0107ecb512b568244ef461f27697164d9a68d8b35090e9b0c1c8b27752"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa7f429242aae2947246587d2964fad750b79e8c233a2367f71b554e9447949c"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af0fc424a5842a11e28956e69395fbbeab2c97c42253169d87e90aac2886d751"}, + {file = "rpds_py-0.20.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b8c00a3b1e70c1d3891f0db1b05292747f0dbcfb49c43f9244d04c70fbc40eb8"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:40ce74fc86ee4645d0a225498d091d8bc61f39b709ebef8204cb8b5a464d3c0e"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:4fe84294c7019456e56d93e8ababdad5a329cd25975be749c3f5f558abb48253"}, + {file = "rpds_py-0.20.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:338ca4539aad4ce70a656e5187a3a31c5204f261aef9f6ab50e50bcdffaf050a"}, + {file = "rpds_py-0.20.0-cp38-none-win32.whl", hash = "sha256:54b43a2b07db18314669092bb2de584524d1ef414588780261e31e85846c26a5"}, + {file = "rpds_py-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:a1862d2d7ce1674cffa6d186d53ca95c6e17ed2b06b3f4c476173565c862d232"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:3fde368e9140312b6e8b6c09fb9f8c8c2f00999d1823403ae90cc00480221b22"}, + {file = "rpds_py-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9824fb430c9cf9af743cf7aaf6707bf14323fb51ee74425c380f4c846ea70789"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11ef6ce74616342888b69878d45e9f779b95d4bd48b382a229fe624a409b72c5"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c52d3f2f82b763a24ef52f5d24358553e8403ce05f893b5347098014f2d9eff2"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9d35cef91e59ebbeaa45214861874bc6f19eb35de96db73e467a8358d701a96c"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d72278a30111e5b5525c1dd96120d9e958464316f55adb030433ea905866f4de"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c29cbbba378759ac5786730d1c3cb4ec6f8ababf5c42a9ce303dc4b3d08cda"}, + {file = "rpds_py-0.20.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6632f2d04f15d1bd6fe0eedd3b86d9061b836ddca4c03d5cf5c7e9e6b7c14580"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:d0b67d87bb45ed1cd020e8fbf2307d449b68abc45402fe1a4ac9e46c3c8b192b"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:ec31a99ca63bf3cd7f1a5ac9fe95c5e2d060d3c768a09bc1d16e235840861420"}, + {file = "rpds_py-0.20.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:22e6c9976e38f4d8c4a63bd8a8edac5307dffd3ee7e6026d97f3cc3a2dc02a0b"}, + {file = "rpds_py-0.20.0-cp39-none-win32.whl", hash = "sha256:569b3ea770c2717b730b61998b6c54996adee3cef69fc28d444f3e7920313cf7"}, + {file = "rpds_py-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:e6900ecdd50ce0facf703f7a00df12374b74bbc8ad9fe0f6559947fb20f82364"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:617c7357272c67696fd052811e352ac54ed1d9b49ab370261a80d3b6ce385045"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9426133526f69fcaba6e42146b4e12d6bc6c839b8b555097020e2b78ce908dcc"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deb62214c42a261cb3eb04d474f7155279c1a8a8c30ac89b7dcb1721d92c3c02"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcaeb7b57f1a1e071ebd748984359fef83ecb026325b9d4ca847c95bc7311c92"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d454b8749b4bd70dd0a79f428731ee263fa6995f83ccb8bada706e8d1d3ff89d"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d807dc2051abe041b6649681dce568f8e10668e3c1c6543ebae58f2d7e617855"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3c20f0ddeb6e29126d45f89206b8291352b8c5b44384e78a6499d68b52ae511"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7f19250ceef892adf27f0399b9e5afad019288e9be756d6919cb58892129f51"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4f1ed4749a08379555cebf4650453f14452eaa9c43d0a95c49db50c18b7da075"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dcedf0b42bcb4cfff4101d7771a10532415a6106062f005ab97d1d0ab5681c60"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39ed0d010457a78f54090fafb5d108501b5aa5604cc22408fc1c0c77eac14344"}, + {file = "rpds_py-0.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bb273176be34a746bdac0b0d7e4e2c467323d13640b736c4c477881a3220a989"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f918a1a130a6dfe1d7fe0f105064141342e7dd1611f2e6a21cd2f5c8cb1cfb3e"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f60012a73aa396be721558caa3a6fd49b3dd0033d1675c6d59c4502e870fcf0c"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d2b1ad682a3dfda2a4e8ad8572f3100f95fad98cb99faf37ff0ddfe9cbf9d03"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:614fdafe9f5f19c63ea02817fa4861c606a59a604a77c8cdef5aa01d28b97921"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fa518bcd7600c584bf42e6617ee8132869e877db2f76bcdc281ec6a4113a53ab"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f0475242f447cc6cb8a9dd486d68b2ef7fbee84427124c232bff5f63b1fe11e5"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f90a4cd061914a60bd51c68bcb4357086991bd0bb93d8aa66a6da7701370708f"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:def7400461c3a3f26e49078302e1c1b38f6752342c77e3cf72ce91ca69fb1bc1"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:65794e4048ee837494aea3c21a28ad5fc080994dfba5b036cf84de37f7ad5074"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:faefcc78f53a88f3076b7f8be0a8f8d35133a3ecf7f3770895c25f8813460f08"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:5b4f105deeffa28bbcdff6c49b34e74903139afa690e35d2d9e3c2c2fba18cec"}, + {file = "rpds_py-0.20.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fdfc3a892927458d98f3d55428ae46b921d1f7543b89382fdb483f5640daaec8"}, + {file = "rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121"}, ] [[package]] name = "safetensors" -version = "0.4.3" +version = "0.4.5" description = "" optional = false python-versions = ">=3.7" files = [ - {file = "safetensors-0.4.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:dcf5705cab159ce0130cd56057f5f3425023c407e170bca60b4868048bae64fd"}, - {file = "safetensors-0.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bb4f8c5d0358a31e9a08daeebb68f5e161cdd4018855426d3f0c23bb51087055"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70a5319ef409e7f88686a46607cbc3c428271069d8b770076feaf913664a07ac"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fb9c65bd82f9ef3ce4970dc19ee86be5f6f93d032159acf35e663c6bea02b237"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:edb5698a7bc282089f64c96c477846950358a46ede85a1c040e0230344fdde10"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:efcc860be094b8d19ac61b452ec635c7acb9afa77beb218b1d7784c6d41fe8ad"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d88b33980222085dd6001ae2cad87c6068e0991d4f5ccf44975d216db3b57376"}, - {file = "safetensors-0.4.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:5fc6775529fb9f0ce2266edd3e5d3f10aab068e49f765e11f6f2a63b5367021d"}, - {file = "safetensors-0.4.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9c6ad011c1b4e3acff058d6b090f1da8e55a332fbf84695cf3100c649cc452d1"}, - {file = "safetensors-0.4.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8c496c5401c1b9c46d41a7688e8ff5b0310a3b9bae31ce0f0ae870e1ea2b8caf"}, - {file = "safetensors-0.4.3-cp310-none-win32.whl", hash = "sha256:38e2a8666178224a51cca61d3cb4c88704f696eac8f72a49a598a93bbd8a4af9"}, - {file = "safetensors-0.4.3-cp310-none-win_amd64.whl", hash = "sha256:393e6e391467d1b2b829c77e47d726f3b9b93630e6a045b1d1fca67dc78bf632"}, - {file = "safetensors-0.4.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:22f3b5d65e440cec0de8edaa672efa888030802e11c09b3d6203bff60ebff05a"}, - {file = "safetensors-0.4.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c4fa560ebd4522adddb71dcd25d09bf211b5634003f015a4b815b7647d62ebe"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9afd5358719f1b2cf425fad638fc3c887997d6782da317096877e5b15b2ce93"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d8c5093206ef4b198600ae484230402af6713dab1bd5b8e231905d754022bec7"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e0b2104df1579d6ba9052c0ae0e3137c9698b2d85b0645507e6fd1813b70931a"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8cf18888606dad030455d18f6c381720e57fc6a4170ee1966adb7ebc98d4d6a3"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0bf4f9d6323d9f86eef5567eabd88f070691cf031d4c0df27a40d3b4aaee755b"}, - {file = "safetensors-0.4.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:585c9ae13a205807b63bef8a37994f30c917ff800ab8a1ca9c9b5d73024f97ee"}, - {file = "safetensors-0.4.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faefeb3b81bdfb4e5a55b9bbdf3d8d8753f65506e1d67d03f5c851a6c87150e9"}, - {file = "safetensors-0.4.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:befdf0167ad626f22f6aac6163477fcefa342224a22f11fdd05abb3995c1783c"}, - {file = "safetensors-0.4.3-cp311-none-win32.whl", hash = "sha256:a7cef55929dcbef24af3eb40bedec35d82c3c2fa46338bb13ecf3c5720af8a61"}, - {file = "safetensors-0.4.3-cp311-none-win_amd64.whl", hash = "sha256:840b7ac0eff5633e1d053cc9db12fdf56b566e9403b4950b2dc85393d9b88d67"}, - {file = "safetensors-0.4.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:22d21760dc6ebae42e9c058d75aa9907d9f35e38f896e3c69ba0e7b213033856"}, - {file = "safetensors-0.4.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d22c1a10dff3f64d0d68abb8298a3fd88ccff79f408a3e15b3e7f637ef5c980"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1648568667f820b8c48317c7006221dc40aced1869908c187f493838a1362bc"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:446e9fe52c051aeab12aac63d1017e0f68a02a92a027b901c4f8e931b24e5397"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fef5d70683643618244a4f5221053567ca3e77c2531e42ad48ae05fae909f542"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a1f4430cc0c9d6afa01214a4b3919d0a029637df8e09675ceef1ca3f0dfa0df"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d603846a8585b9432a0fd415db1d4c57c0f860eb4aea21f92559ff9902bae4d"}, - {file = "safetensors-0.4.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a844cdb5d7cbc22f5f16c7e2a0271170750763c4db08381b7f696dbd2c78a361"}, - {file = "safetensors-0.4.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:88887f69f7a00cf02b954cdc3034ffb383b2303bc0ab481d4716e2da51ddc10e"}, - {file = "safetensors-0.4.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ee463219d9ec6c2be1d331ab13a8e0cd50d2f32240a81d498266d77d07b7e71e"}, - {file = "safetensors-0.4.3-cp312-none-win32.whl", hash = "sha256:d0dd4a1db09db2dba0f94d15addc7e7cd3a7b0d393aa4c7518c39ae7374623c3"}, - {file = "safetensors-0.4.3-cp312-none-win_amd64.whl", hash = "sha256:d14d30c25897b2bf19b6fb5ff7e26cc40006ad53fd4a88244fdf26517d852dd7"}, - {file = "safetensors-0.4.3-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:d1456f814655b224d4bf6e7915c51ce74e389b413be791203092b7ff78c936dd"}, - {file = "safetensors-0.4.3-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:455d538aa1aae4a8b279344a08136d3f16334247907b18a5c3c7fa88ef0d3c46"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf476bca34e1340ee3294ef13e2c625833f83d096cfdf69a5342475602004f95"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02ef3a24face643456020536591fbd3c717c5abaa2737ec428ccbbc86dffa7a4"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7de32d0d34b6623bb56ca278f90db081f85fb9c5d327e3c18fd23ac64f465768"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a0deb16a1d3ea90c244ceb42d2c6c276059616be21a19ac7101aa97da448faf"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c59d51f182c729f47e841510b70b967b0752039f79f1de23bcdd86462a9b09ee"}, - {file = "safetensors-0.4.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1f598b713cc1a4eb31d3b3203557ac308acf21c8f41104cdd74bf640c6e538e3"}, - {file = "safetensors-0.4.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5757e4688f20df083e233b47de43845d1adb7e17b6cf7da5f8444416fc53828d"}, - {file = "safetensors-0.4.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:fe746d03ed8d193674a26105e4f0fe6c726f5bb602ffc695b409eaf02f04763d"}, - {file = "safetensors-0.4.3-cp37-none-win32.whl", hash = "sha256:0d5ffc6a80f715c30af253e0e288ad1cd97a3d0086c9c87995e5093ebc075e50"}, - {file = "safetensors-0.4.3-cp37-none-win_amd64.whl", hash = "sha256:a11c374eb63a9c16c5ed146457241182f310902bd2a9c18255781bb832b6748b"}, - {file = "safetensors-0.4.3-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:b1e31be7945f66be23f4ec1682bb47faa3df34cb89fc68527de6554d3c4258a4"}, - {file = "safetensors-0.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:03a4447c784917c9bf01d8f2ac5080bc15c41692202cd5f406afba16629e84d6"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d244bcafeb1bc06d47cfee71727e775bca88a8efda77a13e7306aae3813fa7e4"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53c4879b9c6bd7cd25d114ee0ef95420e2812e676314300624594940a8d6a91f"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:74707624b81f1b7f2b93f5619d4a9f00934d5948005a03f2c1845ffbfff42212"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0d52c958dc210265157573f81d34adf54e255bc2b59ded6218500c9b15a750eb"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f9568f380f513a60139971169c4a358b8731509cc19112369902eddb33faa4d"}, - {file = "safetensors-0.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0d9cd8e1560dfc514b6d7859247dc6a86ad2f83151a62c577428d5102d872721"}, - {file = "safetensors-0.4.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:89f9f17b0dacb913ed87d57afbc8aad85ea42c1085bd5de2f20d83d13e9fc4b2"}, - {file = "safetensors-0.4.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1139eb436fd201c133d03c81209d39ac57e129f5e74e34bb9ab60f8d9b726270"}, - {file = "safetensors-0.4.3-cp38-none-win32.whl", hash = "sha256:d9c289f140a9ae4853fc2236a2ffc9a9f2d5eae0cb673167e0f1b8c18c0961ac"}, - {file = "safetensors-0.4.3-cp38-none-win_amd64.whl", hash = "sha256:622afd28968ef3e9786562d352659a37de4481a4070f4ebac883f98c5836563e"}, - {file = "safetensors-0.4.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:8651c7299cbd8b4161a36cd6a322fa07d39cd23535b144d02f1c1972d0c62f3c"}, - {file = "safetensors-0.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e375d975159ac534c7161269de24ddcd490df2157b55c1a6eeace6cbb56903f0"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:084fc436e317f83f7071fc6a62ca1c513b2103db325cd09952914b50f51cf78f"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:41a727a7f5e6ad9f1db6951adee21bbdadc632363d79dc434876369a17de6ad6"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e7dbbde64b6c534548696808a0e01276d28ea5773bc9a2dfb97a88cd3dffe3df"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bbae3b4b9d997971431c346edbfe6e41e98424a097860ee872721e176040a893"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01e4b22e3284cd866edeabe4f4d896229495da457229408d2e1e4810c5187121"}, - {file = "safetensors-0.4.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:0dd37306546b58d3043eb044c8103a02792cc024b51d1dd16bd3dd1f334cb3ed"}, - {file = "safetensors-0.4.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d8815b5e1dac85fc534a97fd339e12404db557878c090f90442247e87c8aeaea"}, - {file = "safetensors-0.4.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e011cc162503c19f4b1fd63dfcddf73739c7a243a17dac09b78e57a00983ab35"}, - {file = "safetensors-0.4.3-cp39-none-win32.whl", hash = "sha256:01feb3089e5932d7e662eda77c3ecc389f97c0883c4a12b5cfdc32b589a811c3"}, - {file = "safetensors-0.4.3-cp39-none-win_amd64.whl", hash = "sha256:3f9cdca09052f585e62328c1c2923c70f46814715c795be65f0b93f57ec98a02"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1b89381517891a7bb7d1405d828b2bf5d75528299f8231e9346b8eba092227f9"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:cd6fff9e56df398abc5866b19a32124815b656613c1c5ec0f9350906fd798aac"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:840caf38d86aa7014fe37ade5d0d84e23dcfbc798b8078015831996ecbc206a3"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f9650713b2cfa9537a2baf7dd9fee458b24a0aaaa6cafcea8bdd5fb2b8efdc34"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e4119532cd10dba04b423e0f86aecb96cfa5a602238c0aa012f70c3a40c44b50"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e066e8861eef6387b7c772344d1fe1f9a72800e04ee9a54239d460c400c72aab"}, - {file = "safetensors-0.4.3-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:90964917f5b0fa0fa07e9a051fbef100250c04d150b7026ccbf87a34a54012e0"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c41e1893d1206aa7054029681778d9a58b3529d4c807002c156d58426c225173"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae7613a119a71a497d012ccc83775c308b9c1dab454806291427f84397d852fd"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9bac020faba7f5dc481e881b14b6425265feabb5bfc552551d21189c0eddc3"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:420a98f593ff9930f5822560d14c395ccbc57342ddff3b463bc0b3d6b1951550"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:f5e6883af9a68c0028f70a4c19d5a6ab6238a379be36ad300a22318316c00cb0"}, - {file = "safetensors-0.4.3-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:cdd0a3b5da66e7f377474599814dbf5cbf135ff059cc73694de129b58a5e8a2c"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9bfb92f82574d9e58401d79c70c716985dc049b635fef6eecbb024c79b2c46ad"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:3615a96dd2dcc30eb66d82bc76cda2565f4f7bfa89fcb0e31ba3cea8a1a9ecbb"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:868ad1b6fc41209ab6bd12f63923e8baeb1a086814cb2e81a65ed3d497e0cf8f"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7ffba80aa49bd09195145a7fd233a7781173b422eeb995096f2b30591639517"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c0acbe31340ab150423347e5b9cc595867d814244ac14218932a5cf1dd38eb39"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:19bbdf95de2cf64f25cd614c5236c8b06eb2cfa47cbf64311f4b5d80224623a3"}, - {file = "safetensors-0.4.3-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b852e47eb08475c2c1bd8131207b405793bfc20d6f45aff893d3baaad449ed14"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5d07cbca5b99babb692d76d8151bec46f461f8ad8daafbfd96b2fca40cadae65"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1ab6527a20586d94291c96e00a668fa03f86189b8a9defa2cdd34a1a01acc7d5"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02318f01e332cc23ffb4f6716e05a492c5f18b1d13e343c49265149396284a44"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec4b52ce9a396260eb9731eb6aea41a7320de22ed73a1042c2230af0212758ce"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:018b691383026a2436a22b648873ed11444a364324e7088b99cd2503dd828400"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:309b10dbcab63269ecbf0e2ca10ce59223bb756ca5d431ce9c9eeabd446569da"}, - {file = "safetensors-0.4.3-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b277482120df46e27a58082df06a15aebda4481e30a1c21eefd0921ae7e03f65"}, - {file = "safetensors-0.4.3.tar.gz", hash = "sha256:2f85fc50c4e07a21e95c24e07460fe6f7e2859d0ce88092838352b798ce711c2"}, + {file = "safetensors-0.4.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a63eaccd22243c67e4f2b1c3e258b257effc4acd78f3b9d397edc8cf8f1298a7"}, + {file = "safetensors-0.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:23fc9b4ec7b602915cbb4ec1a7c1ad96d2743c322f20ab709e2c35d1b66dad27"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6885016f34bef80ea1085b7e99b3c1f92cb1be78a49839203060f67b40aee761"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:133620f443450429322f238fda74d512c4008621227fccf2f8cf4a76206fea7c"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4fb3e0609ec12d2a77e882f07cced530b8262027f64b75d399f1504ffec0ba56"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0f1dd769f064adc33831f5e97ad07babbd728427f98e3e1db6902e369122737"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6d156bdb26732feada84f9388a9f135528c1ef5b05fae153da365ad4319c4c5"}, + {file = "safetensors-0.4.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9e347d77e2c77eb7624400ccd09bed69d35c0332f417ce8c048d404a096c593b"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9f556eea3aec1d3d955403159fe2123ddd68e880f83954ee9b4a3f2e15e716b6"}, + {file = "safetensors-0.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9483f42be3b6bc8ff77dd67302de8ae411c4db39f7224dec66b0eb95822e4163"}, + {file = "safetensors-0.4.5-cp310-none-win32.whl", hash = "sha256:7389129c03fadd1ccc37fd1ebbc773f2b031483b04700923c3511d2a939252cc"}, + {file = "safetensors-0.4.5-cp310-none-win_amd64.whl", hash = "sha256:e98ef5524f8b6620c8cdef97220c0b6a5c1cef69852fcd2f174bb96c2bb316b1"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:21f848d7aebd5954f92538552d6d75f7c1b4500f51664078b5b49720d180e47c"}, + {file = "safetensors-0.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:bb07000b19d41e35eecef9a454f31a8b4718a185293f0d0b1c4b61d6e4487971"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09dedf7c2fda934ee68143202acff6e9e8eb0ddeeb4cfc24182bef999efa9f42"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:59b77e4b7a708988d84f26de3ebead61ef1659c73dcbc9946c18f3b1786d2688"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d3bc83e14d67adc2e9387e511097f254bd1b43c3020440e708858c684cbac68"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:39371fc551c1072976073ab258c3119395294cf49cdc1f8476794627de3130df"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a6c19feda32b931cae0acd42748a670bdf56bee6476a046af20181ad3fee4090"}, + {file = "safetensors-0.4.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a659467495de201e2f282063808a41170448c78bada1e62707b07a27b05e6943"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bad5e4b2476949bcd638a89f71b6916fa9a5cae5c1ae7eede337aca2100435c0"}, + {file = "safetensors-0.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a3a315a6d0054bc6889a17f5668a73f94f7fe55121ff59e0a199e3519c08565f"}, + {file = "safetensors-0.4.5-cp311-none-win32.whl", hash = "sha256:a01e232e6d3d5cf8b1667bc3b657a77bdab73f0743c26c1d3c5dd7ce86bd3a92"}, + {file = "safetensors-0.4.5-cp311-none-win_amd64.whl", hash = "sha256:cbd39cae1ad3e3ef6f63a6f07296b080c951f24cec60188378e43d3713000c04"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:473300314e026bd1043cef391bb16a8689453363381561b8a3e443870937cc1e"}, + {file = "safetensors-0.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:801183a0f76dc647f51a2d9141ad341f9665602a7899a693207a82fb102cc53e"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1524b54246e422ad6fb6aea1ac71edeeb77666efa67230e1faf6999df9b2e27f"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b3139098e3e8b2ad7afbca96d30ad29157b50c90861084e69fcb80dec7430461"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:65573dc35be9059770808e276b017256fa30058802c29e1038eb1c00028502ea"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fd33da8e9407559f8779c82a0448e2133737f922d71f884da27184549416bfed"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3685ce7ed036f916316b567152482b7e959dc754fcc4a8342333d222e05f407c"}, + {file = "safetensors-0.4.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dde2bf390d25f67908278d6f5d59e46211ef98e44108727084d4637ee70ab4f1"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7469d70d3de970b1698d47c11ebbf296a308702cbaae7fcb993944751cf985f4"}, + {file = "safetensors-0.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3a6ba28118636a130ccbb968bc33d4684c48678695dba2590169d5ab03a45646"}, + {file = "safetensors-0.4.5-cp312-none-win32.whl", hash = "sha256:c859c7ed90b0047f58ee27751c8e56951452ed36a67afee1b0a87847d065eec6"}, + {file = "safetensors-0.4.5-cp312-none-win_amd64.whl", hash = "sha256:b5a8810ad6a6f933fff6c276eae92c1da217b39b4d8b1bc1c0b8af2d270dc532"}, + {file = "safetensors-0.4.5-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:25e5f8e2e92a74f05b4ca55686234c32aac19927903792b30ee6d7bd5653d54e"}, + {file = "safetensors-0.4.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:81efb124b58af39fcd684254c645e35692fea81c51627259cdf6d67ff4458916"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:585f1703a518b437f5103aa9cf70e9bd437cb78eea9c51024329e4fb8a3e3679"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4b99fbf72e3faf0b2f5f16e5e3458b93b7d0a83984fe8d5364c60aa169f2da89"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b17b299ca9966ca983ecda1c0791a3f07f9ca6ab5ded8ef3d283fff45f6bcd5f"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:76ded72f69209c9780fdb23ea89e56d35c54ae6abcdec67ccb22af8e696e449a"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2783956926303dcfeb1de91a4d1204cd4089ab441e622e7caee0642281109db3"}, + {file = "safetensors-0.4.5-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d94581aab8c6b204def4d7320f07534d6ee34cd4855688004a4354e63b639a35"}, + {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:67e1e7cb8678bb1b37ac48ec0df04faf689e2f4e9e81e566b5c63d9f23748523"}, + {file = "safetensors-0.4.5-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:dbd280b07e6054ea68b0cb4b16ad9703e7d63cd6890f577cb98acc5354780142"}, + {file = "safetensors-0.4.5-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:77d9b228da8374c7262046a36c1f656ba32a93df6cc51cd4453af932011e77f1"}, + {file = "safetensors-0.4.5-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:500cac01d50b301ab7bb192353317035011c5ceeef0fca652f9f43c000bb7f8d"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75331c0c746f03158ded32465b7d0b0e24c5a22121743662a2393439c43a45cf"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670e95fe34e0d591d0529e5e59fd9d3d72bc77b1444fcaa14dccda4f36b5a38b"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:098923e2574ff237c517d6e840acada8e5b311cb1fa226019105ed82e9c3b62f"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:13ca0902d2648775089fa6a0c8fc9e6390c5f8ee576517d33f9261656f851e3f"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f0032bedc869c56f8d26259fe39cd21c5199cd57f2228d817a0e23e8370af25"}, + {file = "safetensors-0.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f4b15f51b4f8f2a512341d9ce3475cacc19c5fdfc5db1f0e19449e75f95c7dc8"}, + {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f6594d130d0ad933d885c6a7b75c5183cb0e8450f799b80a39eae2b8508955eb"}, + {file = "safetensors-0.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:60c828a27e852ded2c85fc0f87bf1ec20e464c5cd4d56ff0e0711855cc2e17f8"}, + {file = "safetensors-0.4.5-cp37-none-win32.whl", hash = "sha256:6d3de65718b86c3eeaa8b73a9c3d123f9307a96bbd7be9698e21e76a56443af5"}, + {file = "safetensors-0.4.5-cp37-none-win_amd64.whl", hash = "sha256:5a2d68a523a4cefd791156a4174189a4114cf0bf9c50ceb89f261600f3b2b81a"}, + {file = "safetensors-0.4.5-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:e7a97058f96340850da0601a3309f3d29d6191b0702b2da201e54c6e3e44ccf0"}, + {file = "safetensors-0.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:63bfd425e25f5c733f572e2246e08a1c38bd6f2e027d3f7c87e2e43f228d1345"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3664ac565d0e809b0b929dae7ccd74e4d3273cd0c6d1220c6430035befb678e"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:313514b0b9b73ff4ddfb4edd71860696dbe3c1c9dc4d5cc13dbd74da283d2cbf"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31fa33ee326f750a2f2134a6174773c281d9a266ccd000bd4686d8021f1f3dac"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:09566792588d77b68abe53754c9f1308fadd35c9f87be939e22c623eaacbed6b"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:309aaec9b66cbf07ad3a2e5cb8a03205663324fea024ba391594423d0f00d9fe"}, + {file = "safetensors-0.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:53946c5813b8f9e26103c5efff4a931cc45d874f45229edd68557ffb35ffb9f8"}, + {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:868f9df9e99ad1e7f38c52194063a982bc88fedc7d05096f4f8160403aaf4bd6"}, + {file = "safetensors-0.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:9cc9449bd0b0bc538bd5e268221f0c5590bc5c14c1934a6ae359d44410dc68c4"}, + {file = "safetensors-0.4.5-cp38-none-win32.whl", hash = "sha256:83c4f13a9e687335c3928f615cd63a37e3f8ef072a3f2a0599fa09f863fb06a2"}, + {file = "safetensors-0.4.5-cp38-none-win_amd64.whl", hash = "sha256:b98d40a2ffa560653f6274e15b27b3544e8e3713a44627ce268f419f35c49478"}, + {file = "safetensors-0.4.5-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:cf727bb1281d66699bef5683b04d98c894a2803442c490a8d45cd365abfbdeb2"}, + {file = "safetensors-0.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:96f1d038c827cdc552d97e71f522e1049fef0542be575421f7684756a748e457"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:139fbee92570ecea774e6344fee908907db79646d00b12c535f66bc78bd5ea2c"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c36302c1c69eebb383775a89645a32b9d266878fab619819ce660309d6176c9b"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d641f5b8149ea98deb5ffcf604d764aad1de38a8285f86771ce1abf8e74c4891"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b4db6a61d968de73722b858038c616a1bebd4a86abe2688e46ca0cc2d17558f2"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b75a616e02f21b6f1d5785b20cecbab5e2bd3f6358a90e8925b813d557666ec1"}, + {file = "safetensors-0.4.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:788ee7d04cc0e0e7f944c52ff05f52a4415b312f5efd2ee66389fb7685ee030c"}, + {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:87bc42bd04fd9ca31396d3ca0433db0be1411b6b53ac5a32b7845a85d01ffc2e"}, + {file = "safetensors-0.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4037676c86365a721a8c9510323a51861d703b399b78a6b4486a54a65a975fca"}, + {file = "safetensors-0.4.5-cp39-none-win32.whl", hash = "sha256:1500418454529d0ed5c1564bda376c4ddff43f30fce9517d9bee7bcce5a8ef50"}, + {file = "safetensors-0.4.5-cp39-none-win_amd64.whl", hash = "sha256:9d1a94b9d793ed8fe35ab6d5cea28d540a46559bafc6aae98f30ee0867000cab"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:fdadf66b5a22ceb645d5435a0be7a0292ce59648ca1d46b352f13cff3ea80410"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d42ffd4c2259f31832cb17ff866c111684c87bd930892a1ba53fed28370c918c"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd8a1f6d2063a92cd04145c7fd9e31a1c7d85fbec20113a14b487563fdbc0597"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:951d2fcf1817f4fb0ef0b48f6696688a4e852a95922a042b3f96aaa67eedc920"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ac85d9a8c1af0e3132371d9f2d134695a06a96993c2e2f0bbe25debb9e3f67a"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e3cec4a29eb7fe8da0b1c7988bc3828183080439dd559f720414450de076fcab"}, + {file = "safetensors-0.4.5-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:21742b391b859e67b26c0b2ac37f52c9c0944a879a25ad2f9f9f3cd61e7fda8f"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:c7db3006a4915151ce1913652e907cdede299b974641a83fbc092102ac41b644"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f68bf99ea970960a237f416ea394e266e0361895753df06e3e06e6ea7907d98b"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8158938cf3324172df024da511839d373c40fbfaa83e9abf467174b2910d7b4c"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:540ce6c4bf6b58cb0fd93fa5f143bc0ee341c93bb4f9287ccd92cf898cc1b0dd"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:bfeaa1a699c6b9ed514bd15e6a91e74738b71125a9292159e3d6b7f0a53d2cde"}, + {file = "safetensors-0.4.5-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:01c8f00da537af711979e1b42a69a8ec9e1d7112f208e0e9b8a35d2c381085ef"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a0dd565f83b30f2ca79b5d35748d0d99dd4b3454f80e03dfb41f0038e3bdf180"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:023b6e5facda76989f4cba95a861b7e656b87e225f61811065d5c501f78cdb3f"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9633b663393d5796f0b60249549371e392b75a0b955c07e9c6f8708a87fc841f"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78dd8adfb48716233c45f676d6e48534d34b4bceb50162c13d1f0bdf6f78590a"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8e8deb16c4321d61ae72533b8451ec4a9af8656d1c61ff81aa49f966406e4b68"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:52452fa5999dc50c4decaf0c53aa28371f7f1e0fe5c2dd9129059fbe1e1599c7"}, + {file = "safetensors-0.4.5-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:d5f23198821e227cfc52d50fa989813513db381255c6d100927b012f0cfec63d"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f4beb84b6073b1247a773141a6331117e35d07134b3bb0383003f39971d414bb"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:68814d599d25ed2fdd045ed54d370d1d03cf35e02dce56de44c651f828fb9b7b"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0b6453c54c57c1781292c46593f8a37254b8b99004c68d6c3ce229688931a22"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:adaa9c6dead67e2dd90d634f89131e43162012479d86e25618e821a03d1eb1dc"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:73e7d408e9012cd17511b382b43547850969c7979efc2bc353f317abaf23c84c"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:775409ce0fcc58b10773fdb4221ed1eb007de10fe7adbdf8f5e8a56096b6f0bc"}, + {file = "safetensors-0.4.5-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:834001bed193e4440c4a3950a31059523ee5090605c907c66808664c932b549c"}, + {file = "safetensors-0.4.5.tar.gz", hash = "sha256:d73de19682deabb02524b3d5d1f8b3aaba94c72f1bbfc7911b9b9d5d391c0310"}, ] [package.extras] @@ -2849,73 +3000,85 @@ test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "po [[package]] name = "sentencepiece" -version = "0.1.99" +version = "0.2.0" description = "SentencePiece python wrapper" optional = false python-versions = "*" files = [ - {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"}, - {file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"}, - {file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"}, - {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"}, - {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"}, - {file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"}, - {file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"}, - {file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"}, - {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"}, - {file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"}, - {file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"}, - {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"}, - {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"}, - {file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"}, - {file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"}, - {file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"}, - {file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"}, - {file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"}, - {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"}, - {file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"}, - {file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"}, - {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"}, - {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"}, - {file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"}, - {file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"}, - {file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"}, - {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"}, - {file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"}, - {file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"}, - {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"}, - {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"}, - {file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"}, - {file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"}, - {file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"}, - {file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"}, + {file = "sentencepiece-0.2.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:188779e1298a1c8b8253c7d3ad729cb0a9891e5cef5e5d07ce4592c54869e227"}, + {file = "sentencepiece-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bed9cf85b296fa2b76fc2547b9cbb691a523864cebaee86304c43a7b4cb1b452"}, + {file = "sentencepiece-0.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d7b67e724bead13f18db6e1d10b6bbdc454af574d70efbb36f27d90387be1ca3"}, + {file = "sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fde4b08cfe237be4484c6c7c2e2c75fb862cfeab6bd5449ce4caeafd97b767a"}, + {file = "sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c378492056202d1c48a4979650981635fd97875a00eabb1f00c6a236b013b5e"}, + {file = "sentencepiece-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1380ce6540a368de2ef6d7e6ba14ba8f3258df650d39ba7d833b79ee68a52040"}, + {file = "sentencepiece-0.2.0-cp310-cp310-win32.whl", hash = "sha256:a1151d6a6dd4b43e552394aed0edfe9292820272f0194bd56c7c1660a0c06c3d"}, + {file = "sentencepiece-0.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:d490142b0521ef22bc1085f061d922a2a6666175bb6b42e588ff95c0db6819b2"}, + {file = "sentencepiece-0.2.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17982700c4f6dbb55fa3594f3d7e5dd1c8659a274af3738e33c987d2a27c9d5c"}, + {file = "sentencepiece-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7c867012c0e8bcd5bdad0f791609101cb5c66acb303ab3270218d6debc68a65e"}, + {file = "sentencepiece-0.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7fd6071249c74f779c5b27183295b9202f8dedb68034e716784364443879eaa6"}, + {file = "sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27f90c55a65013cbb8f4d7aab0599bf925cde4adc67ae43a0d323677b5a1c6cb"}, + {file = "sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b293734059ef656dcd65be62ff771507bea8fed0a711b6733976e1ed3add4553"}, + {file = "sentencepiece-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e58b47f933aca74c6a60a79dcb21d5b9e47416256c795c2d58d55cec27f9551d"}, + {file = "sentencepiece-0.2.0-cp311-cp311-win32.whl", hash = "sha256:c581258cf346b327c62c4f1cebd32691826306f6a41d8c4bec43b010dee08e75"}, + {file = "sentencepiece-0.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:0993dbc665f4113017892f1b87c3904a44d0640eda510abcacdfb07f74286d36"}, + {file = "sentencepiece-0.2.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ea5f536e32ea8ec96086ee00d7a4a131ce583a1b18d130711707c10e69601cb2"}, + {file = "sentencepiece-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d0cb51f53b6aae3c36bafe41e86167c71af8370a039f542c43b0cce5ef24a68c"}, + {file = "sentencepiece-0.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3212121805afc58d8b00ab4e7dd1f8f76c203ddb9dc94aa4079618a31cf5da0f"}, + {file = "sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2a3149e3066c2a75e0d68a43eb632d7ae728c7925b517f4c05c40f6f7280ce08"}, + {file = "sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:632f3594d3e7ac8b367bca204cb3fd05a01d5b21455acd097ea4c0e30e2f63d7"}, + {file = "sentencepiece-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f295105c6bdbb05bd5e1b0cafbd78ff95036f5d3641e7949455a3f4e5e7c3109"}, + {file = "sentencepiece-0.2.0-cp312-cp312-win32.whl", hash = "sha256:fb89f811e5efd18bab141afc3fea3de141c3f69f3fe9e898f710ae7fe3aab251"}, + {file = "sentencepiece-0.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a673a72aab81fef5ebe755c6e0cc60087d1f3a4700835d40537183c1703a45f"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4547683f330289ec4f093027bfeb87f9ef023b2eb6f879fdc4a8187c7e0ffb90"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd6175f7eaec7142d2bf6f6597ce7db4c9ac89acf93fcdb17410c3a8b781eeb"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:859ba1acde782609a0910a26a60e16c191a82bf39b5621107552c0cd79fad00f"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcbbef6cc277f8f18f36959e305f10b1c620442d75addc79c21d7073ae581b50"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-win32.whl", hash = "sha256:536b934e244829e3fe6c4f198652cd82da48adb9aa145c9f00889542726dee3d"}, + {file = "sentencepiece-0.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:0a91aaa3c769b52440df56fafda683b3aa48e3f2169cf7ee5b8c8454a7f3ae9b"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:787e480ca4c1d08c9985a7eb1eae4345c107729c99e9b5a9a00f2575fc7d4b4b"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4d158189eb2ecffea3a51edf6d25e110b3678ec47f1a40f2d541eafbd8f6250"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1e5ca43013e8935f25457a4fca47e315780172c3e821b4b13a890668911c792"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7140d9e5a74a0908493bb4a13f1f16a401297bd755ada4c707e842fbf6f0f5bf"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-win32.whl", hash = "sha256:6cf333625234f247ab357b0bd9836638405ea9082e1543d5b8408f014979dcbf"}, + {file = "sentencepiece-0.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ff88712338b01031910e8e61e7239aff3ce8869ee31a47df63cb38aadd591bea"}, + {file = "sentencepiece-0.2.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:20813a68d4c221b1849c62c30e1281ea81687894d894b8d4a0f4677d9311e0f5"}, + {file = "sentencepiece-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:926ef920ae2e8182db31d3f5d081ada57804e3e1d3a8c4ef8b117f9d9fb5a945"}, + {file = "sentencepiece-0.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:89f65f69636b7e9c015b79dff9c9985a9bc7d19ded6f79ef9f1ec920fdd73ecf"}, + {file = "sentencepiece-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f67eae0dbe6f2d7d6ba50a354623d787c99965f068b81e145d53240198021b0"}, + {file = "sentencepiece-0.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:98501e075f35dd1a1d5a20f65be26839fcb1938752ec61539af008a5aa6f510b"}, + {file = "sentencepiece-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3d1d2cc4882e8d6a1adf9d5927d7716f80617fc693385661caff21888972269"}, + {file = "sentencepiece-0.2.0-cp38-cp38-win32.whl", hash = "sha256:b99a308a2e5e569031ab164b74e6fab0b6f37dfb493c32f7816225f4d411a6dd"}, + {file = "sentencepiece-0.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:cdb701eec783d3ec86b7cd4c763adad8eaf6b46db37ee1c36e5e6c44b3fe1b5f"}, + {file = "sentencepiece-0.2.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:1e0f9c4d0a6b0af59b613175f019916e28ade076e21242fd5be24340d8a2f64a"}, + {file = "sentencepiece-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:298f21cc1366eb60311aedba3169d30f885c363ddbf44214b0a587d2908141ad"}, + {file = "sentencepiece-0.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3f1ec95aa1e5dab11f37ac7eff190493fd87770f7a8b81ebc9dd768d1a3c8704"}, + {file = "sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b06b70af54daa4b4904cbb90b4eb6d35c9f3252fdc86c9c32d5afd4d30118d8"}, + {file = "sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:22e37bac44dd6603388cb598c64ff7a76e41ca774646f21c23aadfbf5a2228ab"}, + {file = "sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0461324897735512a32d222e3d886e24ad6a499761952b6bda2a9ee6e4313ea5"}, + {file = "sentencepiece-0.2.0-cp39-cp39-win32.whl", hash = "sha256:38aed822fb76435fa1f12185f10465a94ab9e51d5e8a9159e9a540ce926f0ffd"}, + {file = "sentencepiece-0.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:d8cf876516548b5a1d6ac4745d8b554f5c07891d55da557925e5c13ff0b4e6ad"}, + {file = "sentencepiece-0.2.0.tar.gz", hash = "sha256:a52c19171daaf2e697dc6cbe67684e0fa341b1248966f6aebb541de654d15843"}, ] [[package]] name = "setuptools" -version = "71.1.0" +version = "75.1.0" description = "Easily download, build, install, upgrade, and uninstall Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "setuptools-71.1.0-py3-none-any.whl", hash = "sha256:33874fdc59b3188304b2e7c80d9029097ea31627180896fb549c578ceb8a0855"}, - {file = "setuptools-71.1.0.tar.gz", hash = "sha256:032d42ee9fb536e33087fb66cac5f840eb9391ed05637b3f2a76a7c8fb477936"}, + {file = "setuptools-75.1.0-py3-none-any.whl", hash = "sha256:35ab7fd3bcd95e6b7fd704e4a1539513edad446c097797f2985e0e4b960772f2"}, + {file = "setuptools-75.1.0.tar.gz", hash = "sha256:d59a21b17a275fb872a9c3dae73963160ae079f1049ed956880cd7c09b120538"}, ] [package.extras] -core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.text (>=3.7)", "more-itertools (>=8.8)", "ordered-set (>=3.1.1)", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] -doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "mypy (==1.11.*)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (<0.4)", "pytest-ruff (>=0.2.1)", "pytest-ruff (>=0.3.2)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.5.2)"] +core = ["importlib-metadata (>=6)", "importlib-resources (>=5.10.2)", "jaraco.collections", "jaraco.functools", "jaraco.text (>=3.7)", "more-itertools", "more-itertools (>=8.8)", "packaging", "packaging (>=24)", "platformdirs (>=2.6.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "jaraco.test", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib-metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.11.*)", "pytest-mypy"] [[package]] name = "six" @@ -2930,13 +3093,13 @@ files = [ [[package]] name = "sympy" -version = "1.13.1" +version = "1.13.3" description = "Computer algebra system (CAS) in Python" optional = true python-versions = ">=3.8" files = [ - {file = "sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8"}, - {file = "sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f"}, + {file = "sympy-1.13.3-py3-none-any.whl", hash = "sha256:54612cf55a62755ee71824ce692986f23c88ffa77207b30c1368eda4a7060f73"}, + {file = "sympy-1.13.3.tar.gz", hash = "sha256:b27fd2c6530e0ab39e275fc9b683895367e51d5da91baa8d3d64db2565fec4d9"}, ] [package.dependencies] @@ -2958,111 +3121,111 @@ files = [ [[package]] name = "tokenizers" -version = "0.19.1" +version = "0.20.0" description = "" optional = false python-versions = ">=3.7" files = [ - {file = "tokenizers-0.19.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:952078130b3d101e05ecfc7fc3640282d74ed26bcf691400f872563fca15ac97"}, - {file = "tokenizers-0.19.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82c8b8063de6c0468f08e82c4e198763e7b97aabfe573fd4cf7b33930ca4df77"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f03727225feaf340ceeb7e00604825addef622d551cbd46b7b775ac834c1e1c4"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:453e4422efdfc9c6b6bf2eae00d5e323f263fff62b29a8c9cd526c5003f3f642"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:02e81bf089ebf0e7f4df34fa0207519f07e66d8491d963618252f2e0729e0b46"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b07c538ba956843833fee1190cf769c60dc62e1cf934ed50d77d5502194d63b1"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28cab1582e0eec38b1f38c1c1fb2e56bce5dc180acb1724574fc5f47da2a4fe"}, - {file = "tokenizers-0.19.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b01afb7193d47439f091cd8f070a1ced347ad0f9144952a30a41836902fe09e"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7fb297edec6c6841ab2e4e8f357209519188e4a59b557ea4fafcf4691d1b4c98"}, - {file = "tokenizers-0.19.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:2e8a3dd055e515df7054378dc9d6fa8c8c34e1f32777fb9a01fea81496b3f9d3"}, - {file = "tokenizers-0.19.1-cp310-none-win32.whl", hash = "sha256:7ff898780a155ea053f5d934925f3902be2ed1f4d916461e1a93019cc7250837"}, - {file = "tokenizers-0.19.1-cp310-none-win_amd64.whl", hash = "sha256:bea6f9947e9419c2fda21ae6c32871e3d398cba549b93f4a65a2d369662d9403"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:5c88d1481f1882c2e53e6bb06491e474e420d9ac7bdff172610c4f9ad3898059"}, - {file = "tokenizers-0.19.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ddf672ed719b4ed82b51499100f5417d7d9f6fb05a65e232249268f35de5ed14"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dadc509cc8a9fe460bd274c0e16ac4184d0958117cf026e0ea8b32b438171594"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dfedf31824ca4915b511b03441784ff640378191918264268e6923da48104acc"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac11016d0a04aa6487b1513a3a36e7bee7eec0e5d30057c9c0408067345c48d2"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:76951121890fea8330d3a0df9a954b3f2a37e3ec20e5b0530e9a0044ca2e11fe"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b342d2ce8fc8d00f376af068e3274e2e8649562e3bc6ae4a67784ded6b99428d"}, - {file = "tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d16ff18907f4909dca9b076b9c2d899114dd6abceeb074eca0c93e2353f943aa"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:706a37cc5332f85f26efbe2bdc9ef8a9b372b77e4645331a405073e4b3a8c1c6"}, - {file = "tokenizers-0.19.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:16baac68651701364b0289979ecec728546133e8e8fe38f66fe48ad07996b88b"}, - {file = "tokenizers-0.19.1-cp311-none-win32.whl", hash = "sha256:9ed240c56b4403e22b9584ee37d87b8bfa14865134e3e1c3fb4b2c42fafd3256"}, - {file = "tokenizers-0.19.1-cp311-none-win_amd64.whl", hash = "sha256:ad57d59341710b94a7d9dbea13f5c1e7d76fd8d9bcd944a7a6ab0b0da6e0cc66"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:621d670e1b1c281a1c9698ed89451395d318802ff88d1fc1accff0867a06f153"}, - {file = "tokenizers-0.19.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d924204a3dbe50b75630bd16f821ebda6a5f729928df30f582fb5aade90c818a"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:4f3fefdc0446b1a1e6d81cd4c07088ac015665d2e812f6dbba4a06267d1a2c95"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9620b78e0b2d52ef07b0d428323fb34e8ea1219c5eac98c2596311f20f1f9266"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04ce49e82d100594715ac1b2ce87d1a36e61891a91de774755f743babcd0dd52"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c5c2ff13d157afe413bf7e25789879dd463e5a4abfb529a2d8f8473d8042e28f"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3174c76efd9d08f836bfccaca7cfec3f4d1c0a4cf3acbc7236ad577cc423c840"}, - {file = "tokenizers-0.19.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9d5b6c0e7a1e979bec10ff960fae925e947aab95619a6fdb4c1d8ff3708ce3"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a179856d1caee06577220ebcfa332af046d576fb73454b8f4d4b0ba8324423ea"}, - {file = "tokenizers-0.19.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:952b80dac1a6492170f8c2429bd11fcaa14377e097d12a1dbe0ef2fb2241e16c"}, - {file = "tokenizers-0.19.1-cp312-none-win32.whl", hash = "sha256:01d62812454c188306755c94755465505836fd616f75067abcae529c35edeb57"}, - {file = "tokenizers-0.19.1-cp312-none-win_amd64.whl", hash = "sha256:b70bfbe3a82d3e3fb2a5e9b22a39f8d1740c96c68b6ace0086b39074f08ab89a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:bb9dfe7dae85bc6119d705a76dc068c062b8b575abe3595e3c6276480e67e3f1"}, - {file = "tokenizers-0.19.1-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:1f0360cbea28ea99944ac089c00de7b2e3e1c58f479fb8613b6d8d511ce98267"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:71e3ec71f0e78780851fef28c2a9babe20270404c921b756d7c532d280349214"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b82931fa619dbad979c0ee8e54dd5278acc418209cc897e42fac041f5366d626"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e8ff5b90eabdcdaa19af697885f70fe0b714ce16709cf43d4952f1f85299e73a"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e742d76ad84acbdb1a8e4694f915fe59ff6edc381c97d6dfdd054954e3478ad4"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d8c5d59d7b59885eab559d5bc082b2985555a54cda04dda4c65528d90ad252ad"}, - {file = "tokenizers-0.19.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b2da5c32ed869bebd990c9420df49813709e953674c0722ff471a116d97b22d"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:638e43936cc8b2cbb9f9d8dde0fe5e7e30766a3318d2342999ae27f68fdc9bd6"}, - {file = "tokenizers-0.19.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:78e769eb3b2c79687d9cb0f89ef77223e8e279b75c0a968e637ca7043a84463f"}, - {file = "tokenizers-0.19.1-cp37-none-win32.whl", hash = "sha256:72791f9bb1ca78e3ae525d4782e85272c63faaef9940d92142aa3eb79f3407a3"}, - {file = "tokenizers-0.19.1-cp37-none-win_amd64.whl", hash = "sha256:f3bbb7a0c5fcb692950b041ae11067ac54826204318922da754f908d95619fbc"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:07f9295349bbbcedae8cefdbcfa7f686aa420be8aca5d4f7d1ae6016c128c0c5"}, - {file = "tokenizers-0.19.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:10a707cc6c4b6b183ec5dbfc5c34f3064e18cf62b4a938cb41699e33a99e03c1"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6309271f57b397aa0aff0cbbe632ca9d70430839ca3178bf0f06f825924eca22"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ad23d37d68cf00d54af184586d79b84075ada495e7c5c0f601f051b162112dc"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:427c4f0f3df9109314d4f75b8d1f65d9477033e67ffaec4bca53293d3aca286d"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e83a31c9cf181a0a3ef0abad2b5f6b43399faf5da7e696196ddd110d332519ee"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c27b99889bd58b7e301468c0838c5ed75e60c66df0d4db80c08f43462f82e0d3"}, - {file = "tokenizers-0.19.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bac0b0eb952412b0b196ca7a40e7dce4ed6f6926489313414010f2e6b9ec2adf"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8a6298bde623725ca31c9035a04bf2ef63208d266acd2bed8c2cb7d2b7d53ce6"}, - {file = "tokenizers-0.19.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:08a44864e42fa6d7d76d7be4bec62c9982f6f6248b4aa42f7302aa01e0abfd26"}, - {file = "tokenizers-0.19.1-cp38-none-win32.whl", hash = "sha256:1de5bc8652252d9357a666e609cb1453d4f8e160eb1fb2830ee369dd658e8975"}, - {file = "tokenizers-0.19.1-cp38-none-win_amd64.whl", hash = "sha256:0bcce02bf1ad9882345b34d5bd25ed4949a480cf0e656bbd468f4d8986f7a3f1"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:0b9394bd204842a2a1fd37fe29935353742be4a3460b6ccbaefa93f58a8df43d"}, - {file = "tokenizers-0.19.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4692ab92f91b87769d950ca14dbb61f8a9ef36a62f94bad6c82cc84a51f76f6a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6258c2ef6f06259f70a682491c78561d492e885adeaf9f64f5389f78aa49a051"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c85cf76561fbd01e0d9ea2d1cbe711a65400092bc52b5242b16cfd22e51f0c58"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:670b802d4d82bbbb832ddb0d41df7015b3e549714c0e77f9bed3e74d42400fbe"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:85aa3ab4b03d5e99fdd31660872249df5e855334b6c333e0bc13032ff4469c4a"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cbf001afbbed111a79ca47d75941e9e5361297a87d186cbfc11ed45e30b5daba"}, - {file = "tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b4c89aa46c269e4e70c4d4f9d6bc644fcc39bb409cb2a81227923404dd6f5227"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:39c1ec76ea1027438fafe16ecb0fb84795e62e9d643444c1090179e63808c69d"}, - {file = "tokenizers-0.19.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c2a0d47a89b48d7daa241e004e71fb5a50533718897a4cd6235cb846d511a478"}, - {file = "tokenizers-0.19.1-cp39-none-win32.whl", hash = "sha256:61b7fe8886f2e104d4caf9218b157b106207e0f2a4905c9c7ac98890688aabeb"}, - {file = "tokenizers-0.19.1-cp39-none-win_amd64.whl", hash = "sha256:f97660f6c43efd3e0bfd3f2e3e5615bf215680bad6ee3d469df6454b8c6e8256"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3b11853f17b54c2fe47742c56d8a33bf49ce31caf531e87ac0d7d13d327c9334"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d26194ef6c13302f446d39972aaa36a1dda6450bc8949f5eb4c27f51191375bd"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:e8d1ed93beda54bbd6131a2cb363a576eac746d5c26ba5b7556bc6f964425594"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca407133536f19bdec44b3da117ef0d12e43f6d4b56ac4c765f37eca501c7bda"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce05fde79d2bc2e46ac08aacbc142bead21614d937aac950be88dc79f9db9022"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:35583cd46d16f07c054efd18b5d46af4a2f070a2dd0a47914e66f3ff5efb2b1e"}, - {file = "tokenizers-0.19.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:43350270bfc16b06ad3f6f07eab21f089adb835544417afda0f83256a8bf8b75"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b4399b59d1af5645bcee2072a463318114c39b8547437a7c2d6a186a1b5a0e2d"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6852c5b2a853b8b0ddc5993cd4f33bfffdca4fcc5d52f89dd4b8eada99379285"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bcd266ae85c3d39df2f7e7d0e07f6c41a55e9a3123bb11f854412952deacd828"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecb2651956eea2aa0a2d099434134b1b68f1c31f9a5084d6d53f08ed43d45ff2"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:b279ab506ec4445166ac476fb4d3cc383accde1ea152998509a94d82547c8e2a"}, - {file = "tokenizers-0.19.1-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:89183e55fb86e61d848ff83753f64cded119f5d6e1f553d14ffee3700d0a4a49"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b2edbc75744235eea94d595a8b70fe279dd42f3296f76d5a86dde1d46e35f574"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:0e64bfde9a723274e9a71630c3e9494ed7b4c0f76a1faacf7fe294cd26f7ae7c"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0b5ca92bfa717759c052e345770792d02d1f43b06f9e790ca0a1db62838816f3"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6f8a20266e695ec9d7a946a019c1d5ca4eddb6613d4f466888eee04f16eedb85"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63c38f45d8f2a2ec0f3a20073cccb335b9f99f73b3c69483cd52ebc75369d8a1"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:dd26e3afe8a7b61422df3176e06664503d3f5973b94f45d5c45987e1cb711876"}, - {file = "tokenizers-0.19.1-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:eddd5783a4a6309ce23432353cdb36220e25cbb779bfa9122320666508b44b88"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:56ae39d4036b753994476a1b935584071093b55c7a72e3b8288e68c313ca26e7"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f9939ca7e58c2758c01b40324a59c034ce0cebad18e0d4563a9b1beab3018243"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6c330c0eb815d212893c67a032e9dc1b38a803eccb32f3e8172c19cc69fbb439"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec11802450a2487cdf0e634b750a04cbdc1c4d066b97d94ce7dd2cb51ebb325b"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2b718f316b596f36e1dae097a7d5b91fc5b85e90bf08b01ff139bd8953b25af"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:ed69af290c2b65169f0ba9034d1dc39a5db9459b32f1dd8b5f3f32a3fcf06eab"}, - {file = "tokenizers-0.19.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f8a9c828277133af13f3859d1b6bf1c3cb6e9e1637df0e45312e6b7c2e622b1f"}, - {file = "tokenizers-0.19.1.tar.gz", hash = "sha256:ee59e6680ed0fdbe6b724cf38bd70400a0c1dd623b07ac729087270caeac88e3"}, + {file = "tokenizers-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6cff5c5e37c41bc5faa519d6f3df0679e4b37da54ea1f42121719c5e2b4905c0"}, + {file = "tokenizers-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:62a56bf75c27443432456f4ca5ca055befa95e25be8a28141cc495cac8ae4d6d"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68cc7de6a63f09c4a86909c2597b995aa66e19df852a23aea894929c74369929"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:053c37ecee482cc958fdee53af3c6534286a86f5d35aac476f7c246830e53ae5"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3d7074aaabc151a6363fa03db5493fc95b423b2a1874456783989e96d541c7b6"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a11435780f2acd89e8fefe5e81cecf01776f6edb9b3ac95bcb76baee76b30b90"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9a81cd2712973b007d84268d45fc3f6f90a79c31dfe7f1925e6732f8d2959987"}, + {file = "tokenizers-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7dfd796ab9d909f76fb93080e1c7c8309f196ecb316eb130718cd5e34231c69"}, + {file = "tokenizers-0.20.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8029ad2aa8cb00605c9374566034c1cc1b15130713e0eb5afcef6cface8255c9"}, + {file = "tokenizers-0.20.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ca4d54260ebe97d59dfa9a30baa20d0c4dd9137d99a8801700055c561145c24e"}, + {file = "tokenizers-0.20.0-cp310-none-win32.whl", hash = "sha256:95ee16b57cec11b86a7940174ec5197d506439b0f415ab3859f254b1dffe9df0"}, + {file = "tokenizers-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:0a61a11e93eeadbf02aea082ffc75241c4198e0608bbbac4f65a9026851dcf37"}, + {file = "tokenizers-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6636b798b3c4d6c9b1af1a918bd07c867808e5a21c64324e95318a237e6366c3"}, + {file = "tokenizers-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ec603e42eaf499ffd58b9258162add948717cf21372458132f14e13a6bc7172"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cce124264903a8ea6f8f48e1cc7669e5ef638c18bd4ab0a88769d5f92debdf7f"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07bbeba0231cf8de07aa6b9e33e9779ff103d47042eeeb859a8c432e3292fb98"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:06c0ca8397b35d38b83a44a9c6929790c1692957d88541df061cb34d82ebbf08"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ca6557ac3b83d912dfbb1f70ab56bd4b0594043916688e906ede09f42e192401"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a5ad94c9e80ac6098328bee2e3264dbced4c6faa34429994d473f795ec58ef4"}, + {file = "tokenizers-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b5c7f906ee6bec30a9dc20268a8b80f3b9584de1c9f051671cb057dc6ce28f6"}, + {file = "tokenizers-0.20.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:31e087e9ee1b8f075b002bfee257e858dc695f955b43903e1bb4aa9f170e37fe"}, + {file = "tokenizers-0.20.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c3124fb6f3346cb3d8d775375d3b429bf4dcfc24f739822702009d20a4297990"}, + {file = "tokenizers-0.20.0-cp311-none-win32.whl", hash = "sha256:a4bb8b40ba9eefa621fdcabf04a74aa6038ae3be0c614c6458bd91a4697a452f"}, + {file = "tokenizers-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:2b709d371f1fe60a28ef0c5c67815952d455ca7f34dbe7197eaaed3cc54b658e"}, + {file = "tokenizers-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:15c81a17d0d66f4987c6ca16f4bea7ec253b8c7ed1bb00fdc5d038b1bb56e714"}, + {file = "tokenizers-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6a531cdf1fb6dc41c984c785a3b299cb0586de0b35683842a3afbb1e5207f910"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06caabeb4587f8404e0cd9d40f458e9cba3e815c8155a38e579a74ff3e2a4301"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8768f964f23f5b9f50546c0369c75ab3262de926983888bbe8b98be05392a79c"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:626403860152c816f97b649fd279bd622c3d417678c93b4b1a8909b6380b69a8"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c1b88fa9e5ff062326f4bf82681da5a96fca7104d921a6bd7b1e6fcf224af26"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7e559436a07dc547f22ce1101f26d8b2fad387e28ec8e7e1e3b11695d681d8"}, + {file = "tokenizers-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e48afb75e50449848964e4a67b0da01261dd3aa8df8daecf10db8fd7f5b076eb"}, + {file = "tokenizers-0.20.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:baf5d0e1ff44710a95eefc196dd87666ffc609fd447c5e5b68272a7c3d342a1d"}, + {file = "tokenizers-0.20.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e5e56df0e8ed23ba60ae3848c3f069a0710c4b197218fe4f89e27eba38510768"}, + {file = "tokenizers-0.20.0-cp312-none-win32.whl", hash = "sha256:ec53e5ecc142a82432f9c6c677dbbe5a2bfee92b8abf409a9ecb0d425ee0ce75"}, + {file = "tokenizers-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:f18661ece72e39c0dfaa174d6223248a15b457dbd4b0fc07809b8e6d3ca1a234"}, + {file = "tokenizers-0.20.0-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:f7065b1084d8d1a03dc89d9aad69bcbc8415d4bc123c367063eb32958cd85054"}, + {file = "tokenizers-0.20.0-cp37-cp37m-macosx_11_0_arm64.whl", hash = "sha256:e5d4069e4714e3f7ba0a4d3d44f9d84a432cd4e4aa85c3d7dd1f51440f12e4a1"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:799b808529e54b7e1a36350bda2aeb470e8390e484d3e98c10395cee61d4e3c6"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f9baa027cc8a281ad5f7725a93c204d7a46986f88edbe8ef7357f40a23fb9c7"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:010ec7f3f7a96adc4c2a34a3ada41fa14b4b936b5628b4ff7b33791258646c6b"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98d88f06155335b14fd78e32ee28ca5b2eb30fced4614e06eb14ae5f7fba24ed"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e13eb000ef540c2280758d1b9cfa5fe424b0424ae4458f440e6340a4f18b2638"}, + {file = "tokenizers-0.20.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fab3cf066ff426f7e6d70435dc28a9ff01b2747be83810e397cba106f39430b0"}, + {file = "tokenizers-0.20.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:39fa3761b30a89368f322e5daf4130dce8495b79ad831f370449cdacfb0c0d37"}, + {file = "tokenizers-0.20.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c8da0fba4d179ddf2607821575998df3c294aa59aa8df5a6646dc64bc7352bce"}, + {file = "tokenizers-0.20.0-cp37-none-win32.whl", hash = "sha256:fada996d6da8cf213f6e3c91c12297ad4f6cdf7a85c2fadcd05ec32fa6846fcd"}, + {file = "tokenizers-0.20.0-cp37-none-win_amd64.whl", hash = "sha256:7d29aad702279e0760c265fcae832e89349078e3418dd329732d4503259fd6bd"}, + {file = "tokenizers-0.20.0-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:099c68207f3ef0227ecb6f80ab98ea74de559f7b124adc7b17778af0250ee90a"}, + {file = "tokenizers-0.20.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:68012d8a8cddb2eab3880870d7e2086cb359c7f7a2b03f5795044f5abff4e850"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9253bdd209c6aee168deca7d0e780581bf303e0058f268f9bb06859379de19b6"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8f868600ddbcb0545905ed075eb7218a0756bf6c09dae7528ea2f8436ebd2c93"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a9643d9c8c5f99b6aba43fd10034f77cc6c22c31f496d2f0ee183047d948fa0"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c375c6a889aeab44734028bc65cc070acf93ccb0f9368be42b67a98e1063d3f6"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e359f852328e254f070bbd09a19a568421d23388f04aad9f2fb7da7704c7228d"}, + {file = "tokenizers-0.20.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d98b01a309d4387f3b1c1dd68a8b8136af50376cf146c1b7e8d8ead217a5be4b"}, + {file = "tokenizers-0.20.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:459f7537119554c2899067dec1ac74a00d02beef6558f4ee2e99513bf6d568af"}, + {file = "tokenizers-0.20.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:392b87ec89452628c045c9f2a88bc2a827f4c79e7d84bc3b72752b74c2581f70"}, + {file = "tokenizers-0.20.0-cp38-none-win32.whl", hash = "sha256:55a393f893d2ed4dd95a1553c2e42d4d4086878266f437b03590d3f81984c4fe"}, + {file = "tokenizers-0.20.0-cp38-none-win_amd64.whl", hash = "sha256:30ffe33c5c2f2aab8e9a3340d0110dd9f7ace7eec7362e20a697802306bd8068"}, + {file = "tokenizers-0.20.0-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:aa2d4a6fed2a7e3f860c7fc9d48764bb30f2649d83915d66150d6340e06742b8"}, + {file = "tokenizers-0.20.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b5ef0f814084a897e9071fc4a868595f018c5c92889197bdc4bf19018769b148"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc1e1b791e8c3bf4c4f265f180dadaff1c957bf27129e16fdd5e5d43c2d3762c"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b69e55e481459c07885263743a0d3c18d52db19bae8226a19bcca4aaa213fff"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4806b4d82e27a2512bc23057b2986bc8b85824914286975b84d8105ff40d03d9"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9859e9ef13adf5a473ccab39d31bff9c550606ae3c784bf772b40f615742a24f"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef703efedf4c20488a8eb17637b55973745b27997ff87bad88ed499b397d1144"}, + {file = "tokenizers-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6eec0061bab94b1841ab87d10831fdf1b48ebaed60e6d66d66dbe1d873f92bf5"}, + {file = "tokenizers-0.20.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:980f3d0d7e73f845b69087f29a63c11c7eb924c4ad6b358da60f3db4cf24bdb4"}, + {file = "tokenizers-0.20.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7c157550a2f3851b29d7fdc9dc059fcf81ff0c0fc49a1e5173a89d533ed043fa"}, + {file = "tokenizers-0.20.0-cp39-none-win32.whl", hash = "sha256:8a3d2f4d08608ec4f9895ec25b4b36a97f05812543190a5f2c3cd19e8f041e5a"}, + {file = "tokenizers-0.20.0-cp39-none-win_amd64.whl", hash = "sha256:d90188d12afd0c75e537f9a1d92f9c7375650188ee4f48fdc76f9e38afbd2251"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d68e15f1815357b059ec266062340c343ea7f98f7f330602df81ffa3474b6122"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:23f9ecec637b9bc80da5f703808d29ed5329e56b5aa8d791d1088014f48afadc"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f830b318ee599e3d0665b3e325f85bc75ee2d2ca6285f52e439dc22b64691580"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b3dc750def789cb1de1b5a37657919545e1d9ffa667658b3fa9cb7862407a1b8"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e26e6c755ae884c2ea6135cd215bdd0fccafe4ee62405014b8c3cd19954e3ab9"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:a1158c7174f427182e08baa2a8ded2940f2b4a3e94969a85cc9cfd16004cbcea"}, + {file = "tokenizers-0.20.0-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:6324826287a3fc198898d3dcf758fe4a8479e42d6039f4c59e2cedd3cf92f64e"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-macosx_10_12_x86_64.whl", hash = "sha256:7d8653149405bb0c16feaf9cfee327fdb6aaef9dc2998349fec686f35e81c4e2"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8a2dc1e402a155e97309287ca085c80eb1b7fab8ae91527d3b729181639fa51"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07bef67b20aa6e5f7868c42c7c5eae4d24f856274a464ae62e47a0f2cccec3da"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da06e397182ff53789c506c7833220c192952c57e1581a53f503d8d953e2d67e"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:302f7e11a14814028b7fc88c45a41f1bbe9b5b35fd76d6869558d1d1809baa43"}, + {file = "tokenizers-0.20.0-pp37-pypy37_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:055ec46e807b875589dfbe3d9259f9a6ee43394fb553b03b3d1e9541662dbf25"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e3144b8acebfa6ae062e8f45f7ed52e4b50fb6c62f93afc8871b525ab9fdcab3"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:b52aa3fd14b2a07588c00a19f66511cff5cca8f7266ca3edcdd17f3512ad159f"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b8cf52779ffc5d4d63a0170fbeb512372bad0dd014ce92bbb9149756c831124"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:983a45dd11a876124378dae71d6d9761822199b68a4c73f32873d8cdaf326a5b"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6b819c9a19831ebec581e71a7686a54ab45d90faf3842269a10c11d746de0c"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e738cfd80795fcafcef89c5731c84b05638a4ab3f412f97d5ed7765466576eb1"}, + {file = "tokenizers-0.20.0-pp38-pypy38_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:c8842c7be2fadb9c9edcee233b1b7fe7ade406c99b0973f07439985c1c1d0683"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:e47a82355511c373a4a430c4909dc1e518e00031207b1fec536c49127388886b"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:9afbf359004551179a5db19424180c81276682773cff2c5d002f6eaaffe17230"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07eaa8799a92e6af6f472c21a75bf71575de2af3c0284120b7a09297c0de2f3"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0994b2e5fc53a301071806bc4303e4bc3bdc3f490e92a21338146a36746b0872"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b6466e0355b603d10e3cc3d282d350b646341b601e50969464a54939f9848d0"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:1e86594c2a433cb1ea09cfbe596454448c566e57ee8905bd557e489d93e89986"}, + {file = "tokenizers-0.20.0-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:3e14cdef1efa96ecead6ea64a891828432c3ebba128bdc0596e3059fea104ef3"}, + {file = "tokenizers-0.20.0.tar.gz", hash = "sha256:39d7acc43f564c274085cafcd1dae9d36f332456de1a31970296a6b8da4eac8d"}, ] [package.dependencies] @@ -3086,31 +3249,31 @@ files = [ [[package]] name = "torch" -version = "2.4.0" +version = "2.4.1" description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" optional = true python-versions = ">=3.8.0" files = [ - {file = "torch-2.4.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:4ed94583e244af51d6a8d28701ca5a9e02d1219e782f5a01dd401f90af17d8ac"}, - {file = "torch-2.4.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:c4ca297b7bd58b506bfd6e78ffd14eb97c0e7797dcd7965df62f50bb575d8954"}, - {file = "torch-2.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:2497cbc7b3c951d69b276ca51fe01c2865db67040ac67f5fc20b03e41d16ea4a"}, - {file = "torch-2.4.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:685418ab93730efbee71528821ff54005596970dd497bf03c89204fb7e3f71de"}, - {file = "torch-2.4.0-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e743adadd8c8152bb8373543964551a7cb7cc20ba898dc8f9c0cdbe47c283de0"}, - {file = "torch-2.4.0-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:7334325c0292cbd5c2eac085f449bf57d3690932eac37027e193ba775703c9e6"}, - {file = "torch-2.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:97730014da4c57ffacb3c09298c6ce05400606e890bd7a05008d13dd086e46b1"}, - {file = "torch-2.4.0-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:f169b4ea6dc93b3a33319611fcc47dc1406e4dd539844dcbd2dec4c1b96e166d"}, - {file = "torch-2.4.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:997084a0f9784d2a89095a6dc67c7925e21bf25dea0b3d069b41195016ccfcbb"}, - {file = "torch-2.4.0-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:bc3988e8b36d1e8b998d143255d9408d8c75da4ab6dd0dcfd23b623dfb0f0f57"}, - {file = "torch-2.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:3374128bbf7e62cdaed6c237bfd39809fbcfaa576bee91e904706840c3f2195c"}, - {file = "torch-2.4.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:91aaf00bfe1ffa44dc5b52809d9a95129fca10212eca3ac26420eb11727c6288"}, - {file = "torch-2.4.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:cc30457ea5489c62747d3306438af00c606b509d78822a88f804202ba63111ed"}, - {file = "torch-2.4.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a046491aaf96d1215e65e1fa85911ef2ded6d49ea34c8df4d0638879f2402eef"}, - {file = "torch-2.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:688eec9240f3ce775f22e1e1a5ab9894f3d5fe60f3f586deb7dbd23a46a83916"}, - {file = "torch-2.4.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:3af4de2a618fb065e78404c4ba27a818a7b7957eaeff28c6c66ce7fb504b68b8"}, - {file = "torch-2.4.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:618808d3f610d5f180e47a697d4ec90b810953bb1e020f424b2ac7fb0884b545"}, - {file = "torch-2.4.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:ed765d232d23566052ba83632ec73a4fccde00b4c94ad45d63b471b09d63b7a7"}, - {file = "torch-2.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:a2feb98ac470109472fb10dfef38622a7ee08482a16c357863ebc7bc7db7c8f7"}, - {file = "torch-2.4.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8940fc8b97a4c61fdb5d46a368f21f4a3a562a17879e932eb51a5ec62310cb31"}, + {file = "torch-2.4.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:362f82e23a4cd46341daabb76fba08f04cd646df9bfaf5da50af97cb60ca4971"}, + {file = "torch-2.4.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:e8ac1985c3ff0f60d85b991954cfc2cc25f79c84545aead422763148ed2759e3"}, + {file = "torch-2.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:91e326e2ccfb1496e3bee58f70ef605aeb27bd26be07ba64f37dcaac3d070ada"}, + {file = "torch-2.4.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:d36a8ef100f5bff3e9c3cea934b9e0d7ea277cb8210c7152d34a9a6c5830eadd"}, + {file = "torch-2.4.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:0b5f88afdfa05a335d80351e3cea57d38e578c8689f751d35e0ff36bce872113"}, + {file = "torch-2.4.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ef503165f2341942bfdf2bd520152f19540d0c0e34961232f134dc59ad435be8"}, + {file = "torch-2.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:092e7c2280c860eff762ac08c4bdcd53d701677851670695e0c22d6d345b269c"}, + {file = "torch-2.4.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:ddddbd8b066e743934a4200b3d54267a46db02106876d21cf31f7da7a96f98ea"}, + {file = "torch-2.4.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:fdc4fe11db3eb93c1115d3e973a27ac7c1a8318af8934ffa36b0370efe28e042"}, + {file = "torch-2.4.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:18835374f599207a9e82c262153c20ddf42ea49bc76b6eadad8e5f49729f6e4d"}, + {file = "torch-2.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:ebea70ff30544fc021d441ce6b219a88b67524f01170b1c538d7d3ebb5e7f56c"}, + {file = "torch-2.4.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:72b484d5b6cec1a735bf3fa5a1c4883d01748698c5e9cfdbeb4ffab7c7987e0d"}, + {file = "torch-2.4.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:c99e1db4bf0c5347107845d715b4aa1097e601bdc36343d758963055e9599d93"}, + {file = "torch-2.4.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:b57f07e92858db78c5b72857b4f0b33a65b00dc5d68e7948a8494b0314efb880"}, + {file = "torch-2.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:f18197f3f7c15cde2115892b64f17c80dbf01ed72b008020e7da339902742cf6"}, + {file = "torch-2.4.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:5fc1d4d7ed265ef853579caf272686d1ed87cebdcd04f2a498f800ffc53dab71"}, + {file = "torch-2.4.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:40f6d3fe3bae74efcf08cb7f8295eaddd8a838ce89e9d26929d4edd6d5e4329d"}, + {file = "torch-2.4.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:c9299c16c9743001ecef515536ac45900247f4338ecdf70746f2461f9e4831db"}, + {file = "torch-2.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:6bce130f2cd2d52ba4e2c6ada461808de7e5eccbac692525337cfb4c19421846"}, + {file = "torch-2.4.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:a38de2803ee6050309aac032676536c3d3b6a9804248537e38e098d0e14817ec"}, ] [package.dependencies] @@ -3129,6 +3292,7 @@ nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \" nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +setuptools = "*" sympy = "*" triton = {version = "3.0.0", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""} typing-extensions = ">=4.8.0" @@ -3139,13 +3303,13 @@ optree = ["optree (>=0.11.0)"] [[package]] name = "tqdm" -version = "4.66.4" +version = "4.66.5" description = "Fast, Extensible Progress Meter" optional = false python-versions = ">=3.7" files = [ - {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, - {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, + {file = "tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd"}, + {file = "tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad"}, ] [package.dependencies] @@ -3159,13 +3323,13 @@ telegram = ["requests"] [[package]] name = "transformers" -version = "4.43.1" +version = "4.45.0" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" optional = false python-versions = ">=3.8.0" files = [ - {file = "transformers-4.43.1-py3-none-any.whl", hash = "sha256:eb44b731902e062acbaff196ae4896d7cb3494ddf38275aa00a5fcfb5b34f17d"}, - {file = "transformers-4.43.1.tar.gz", hash = "sha256:662252c4d0e31b6684f68f68d5cc8206dd7f83da80eb3235be3dc5b3c9fdbdbd"}, + {file = "transformers-4.45.0-py3-none-any.whl", hash = "sha256:f04a82926676056afb3bbf4df7d76ceb1fc2b2746247a87f3f9be4674adc95d7"}, + {file = "transformers-4.45.0.tar.gz", hash = "sha256:29629f87965acc7b15e458a24580832d85da18ddc119410211747fe778c200ce"}, ] [package.dependencies] @@ -3177,21 +3341,21 @@ pyyaml = ">=5.1" regex = "!=2019.12.17" requests = "*" safetensors = ">=0.4.1" -tokenizers = ">=0.19,<0.20" +tokenizers = ">=0.20,<0.21" tqdm = ">=4.27" [package.extras] -accelerate = ["accelerate (>=0.21.0)"] -agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] -all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision"] +accelerate = ["accelerate (>=0.26.0)"] +agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch"] +all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision"] audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] -benchmark = ["optimum-benchmark (>=0.2.0)"] +benchmark = ["optimum-benchmark (>=0.3.0)"] codecarbon = ["codecarbon (==1.2.0)"] -deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"] -deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] -dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] -dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.19,<0.20)", "urllib3 (<2.0.0)"] -dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.19,<0.20)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +deepspeed = ["accelerate (>=0.26.0)", "deepspeed (>=0.9.3)"] +deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.26.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk (<=3.8.1)", "optuna", "parameterized", "protobuf", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "scipy (<1.13.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] +dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1,<0.14.0)", "libcst", "librosa", "nltk (<=3.8.1)", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.20,<0.21)", "urllib3 (<2.0.0)"] +dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.26.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "libcst", "librosa", "nltk (<=3.8.1)", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rich", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm (<=0.9.16)", "tokenizers (>=0.20,<0.21)", "torch", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)", "scipy (<1.13.0)"] flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] ftfy = ["ftfy"] @@ -3202,26 +3366,27 @@ natten = ["natten (>=0.14.6,<0.15.0)"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] optuna = ["optuna"] -quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "ruff (==0.4.4)", "urllib3 (<2.0.0)"] +quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "isort (>=5.5.4)", "libcst", "rich", "ruff (==0.5.1)", "urllib3 (<2.0.0)"] ray = ["ray[tune] (>=2.7.0)"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] -ruff = ["ruff (==0.4.4)"] +ruff = ["ruff (==0.5.1)"] sagemaker = ["sagemaker (>=2.31.0)"] sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] serving = ["fastapi", "pydantic", "starlette", "uvicorn"] sigopt = ["sigopt"] sklearn = ["scikit-learn"] speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] -testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.4.4)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] +testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "nltk (<=3.8.1)", "parameterized", "psutil", "pydantic", "pytest (>=7.2.0,<8.0.0)", "pytest-rich", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.5.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] tf = ["keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow (>2.9,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"] tf-cpu = ["keras (>2.9,<2.16)", "keras-nlp (>=0.3.1,<0.14.0)", "onnxconverter-common", "tensorflow-cpu (>2.9,<2.16)", "tensorflow-probability (<0.24)", "tensorflow-text (<2.16)", "tf2onnx"] tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] +tiktoken = ["blobfile", "tiktoken"] timm = ["timm (<=0.9.16)"] -tokenizers = ["tokenizers (>=0.19,<0.20)"] -torch = ["accelerate (>=0.21.0)", "torch"] +tokenizers = ["tokenizers (>=0.20,<0.21)"] +torch = ["accelerate (>=0.26.0)", "torch"] torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"] -torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.19,<0.20)", "torch", "tqdm (>=4.27)"] +torchhub = ["filelock", "huggingface-hub (>=0.23.2,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.20,<0.21)", "torch", "tqdm (>=4.27)"] video = ["av (==9.2.0)", "decord (==0.6.0)"] vision = ["Pillow (>=10.0.1,<=15.0)"] @@ -3237,6 +3402,11 @@ files = [ {file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"}, {file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"}, {file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"}, + {file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"}, + {file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"}, + {file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"}, + {file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"}, + {file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"}, ] [package.dependencies] @@ -3280,24 +3450,24 @@ files = [ [[package]] name = "tzdata" -version = "2024.1" +version = "2024.2" description = "Provider of IANA time zone data" optional = true python-versions = ">=2" files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, ] [[package]] name = "urllib3" -version = "2.2.2" +version = "2.2.3" description = "HTTP library with thread-safe connection pooling, file post, and more." optional = false python-versions = ">=3.8" files = [ - {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, - {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, + {file = "urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac"}, + {file = "urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9"}, ] [package.extras] @@ -3401,218 +3571,235 @@ files = [ [[package]] name = "xxhash" -version = "3.4.1" +version = "3.5.0" description = "Python binding for xxHash" optional = true python-versions = ">=3.7" files = [ - {file = "xxhash-3.4.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:91dbfa55346ad3e18e738742236554531a621042e419b70ad8f3c1d9c7a16e7f"}, - {file = "xxhash-3.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:665a65c2a48a72068fcc4d21721510df5f51f1142541c890491afc80451636d2"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb11628470a6004dc71a09fe90c2f459ff03d611376c1debeec2d648f44cb693"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5bef2a7dc7b4f4beb45a1edbba9b9194c60a43a89598a87f1a0226d183764189"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c0f7b2d547d72c7eda7aa817acf8791f0146b12b9eba1d4432c531fb0352228"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00f2fdef6b41c9db3d2fc0e7f94cb3db86693e5c45d6de09625caad9a469635b"}, - {file = "xxhash-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:23cfd9ca09acaf07a43e5a695143d9a21bf00f5b49b15c07d5388cadf1f9ce11"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6a9ff50a3cf88355ca4731682c168049af1ca222d1d2925ef7119c1a78e95b3b"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f1d7c69a1e9ca5faa75546fdd267f214f63f52f12692f9b3a2f6467c9e67d5e7"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:672b273040d5d5a6864a36287f3514efcd1d4b1b6a7480f294c4b1d1ee1b8de0"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:4178f78d70e88f1c4a89ff1ffe9f43147185930bb962ee3979dba15f2b1cc799"}, - {file = "xxhash-3.4.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:9804b9eb254d4b8cc83ab5a2002128f7d631dd427aa873c8727dba7f1f0d1c2b"}, - {file = "xxhash-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c09c49473212d9c87261d22c74370457cfff5db2ddfc7fd1e35c80c31a8c14ce"}, - {file = "xxhash-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:ebbb1616435b4a194ce3466d7247df23499475c7ed4eb2681a1fa42ff766aff6"}, - {file = "xxhash-3.4.1-cp310-cp310-win_arm64.whl", hash = "sha256:25dc66be3db54f8a2d136f695b00cfe88018e59ccff0f3b8f545869f376a8a46"}, - {file = "xxhash-3.4.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:58c49083801885273e262c0f5bbeac23e520564b8357fbb18fb94ff09d3d3ea5"}, - {file = "xxhash-3.4.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b526015a973bfbe81e804a586b703f163861da36d186627e27524f5427b0d520"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36ad4457644c91a966f6fe137d7467636bdc51a6ce10a1d04f365c70d6a16d7e"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:248d3e83d119770f96003271fe41e049dd4ae52da2feb8f832b7a20e791d2920"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2070b6d5bbef5ee031666cf21d4953c16e92c2f8a24a94b5c240f8995ba3b1d0"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2746035f518f0410915e247877f7df43ef3372bf36cfa52cc4bc33e85242641"}, - {file = "xxhash-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a8ba6181514681c2591840d5632fcf7356ab287d4aff1c8dea20f3c78097088"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aac5010869240e95f740de43cd6a05eae180c59edd182ad93bf12ee289484fa"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4cb11d8debab1626181633d184b2372aaa09825bde709bf927704ed72765bed1"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b29728cff2c12f3d9f1d940528ee83918d803c0567866e062683f300d1d2eff3"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:a15cbf3a9c40672523bdb6ea97ff74b443406ba0ab9bca10ceccd9546414bd84"}, - {file = "xxhash-3.4.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:6e66df260fed01ed8ea790c2913271641c58481e807790d9fca8bfd5a3c13844"}, - {file = "xxhash-3.4.1-cp311-cp311-win32.whl", hash = "sha256:e867f68a8f381ea12858e6d67378c05359d3a53a888913b5f7d35fbf68939d5f"}, - {file = "xxhash-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:200a5a3ad9c7c0c02ed1484a1d838b63edcf92ff538770ea07456a3732c577f4"}, - {file = "xxhash-3.4.1-cp311-cp311-win_arm64.whl", hash = "sha256:1d03f1c0d16d24ea032e99f61c552cb2b77d502e545187338bea461fde253583"}, - {file = "xxhash-3.4.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c4bbba9b182697a52bc0c9f8ec0ba1acb914b4937cd4a877ad78a3b3eeabefb3"}, - {file = "xxhash-3.4.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9fd28a9da300e64e434cfc96567a8387d9a96e824a9be1452a1e7248b7763b78"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6066d88c9329ab230e18998daec53d819daeee99d003955c8db6fc4971b45ca3"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:93805bc3233ad89abf51772f2ed3355097a5dc74e6080de19706fc447da99cd3"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64da57d5ed586ebb2ecdde1e997fa37c27fe32fe61a656b77fabbc58e6fbff6e"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a97322e9a7440bf3c9805cbaac090358b43f650516486746f7fa482672593df"}, - {file = "xxhash-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbe750d512982ee7d831838a5dee9e9848f3fb440e4734cca3f298228cc957a6"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:fd79d4087727daf4d5b8afe594b37d611ab95dc8e29fe1a7517320794837eb7d"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:743612da4071ff9aa4d055f3f111ae5247342931dedb955268954ef7201a71ff"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:b41edaf05734092f24f48c0958b3c6cbaaa5b7e024880692078c6b1f8247e2fc"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:a90356ead70d715fe64c30cd0969072de1860e56b78adf7c69d954b43e29d9fa"}, - {file = "xxhash-3.4.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ac56eebb364e44c85e1d9e9cc5f6031d78a34f0092fea7fc80478139369a8b4a"}, - {file = "xxhash-3.4.1-cp312-cp312-win32.whl", hash = "sha256:911035345932a153c427107397c1518f8ce456f93c618dd1c5b54ebb22e73747"}, - {file = "xxhash-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:f31ce76489f8601cc7b8713201ce94b4bd7b7ce90ba3353dccce7e9e1fee71fa"}, - {file = "xxhash-3.4.1-cp312-cp312-win_arm64.whl", hash = "sha256:b5beb1c6a72fdc7584102f42c4d9df232ee018ddf806e8c90906547dfb43b2da"}, - {file = "xxhash-3.4.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6d42b24d1496deb05dee5a24ed510b16de1d6c866c626c2beb11aebf3be278b9"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b685fab18876b14a8f94813fa2ca80cfb5ab6a85d31d5539b7cd749ce9e3624"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:419ffe34c17ae2df019a4685e8d3934d46b2e0bbe46221ab40b7e04ed9f11137"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0e041ce5714f95251a88670c114b748bca3bf80cc72400e9f23e6d0d59cf2681"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc860d887c5cb2f524899fb8338e1bb3d5789f75fac179101920d9afddef284b"}, - {file = "xxhash-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:312eba88ffe0a05e332e3a6f9788b73883752be63f8588a6dc1261a3eaaaf2b2"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:e01226b6b6a1ffe4e6bd6d08cfcb3ca708b16f02eb06dd44f3c6e53285f03e4f"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:9f3025a0d5d8cf406a9313cd0d5789c77433ba2004b1c75439b67678e5136537"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:6d3472fd4afef2a567d5f14411d94060099901cd8ce9788b22b8c6f13c606a93"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:43984c0a92f06cac434ad181f329a1445017c33807b7ae4f033878d860a4b0f2"}, - {file = "xxhash-3.4.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a55e0506fdb09640a82ec4f44171273eeabf6f371a4ec605633adb2837b5d9d5"}, - {file = "xxhash-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:faec30437919555b039a8bdbaba49c013043e8f76c999670aef146d33e05b3a0"}, - {file = "xxhash-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:c9e1b646af61f1fc7083bb7b40536be944f1ac67ef5e360bca2d73430186971a"}, - {file = "xxhash-3.4.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:961d948b7b1c1b6c08484bbce3d489cdf153e4122c3dfb07c2039621243d8795"}, - {file = "xxhash-3.4.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:719a378930504ab159f7b8e20fa2aa1896cde050011af838af7e7e3518dd82de"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:74fb5cb9406ccd7c4dd917f16630d2e5e8cbbb02fc2fca4e559b2a47a64f4940"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5dab508ac39e0ab988039bc7f962c6ad021acd81fd29145962b068df4148c476"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8c59f3e46e7daf4c589e8e853d700ef6607afa037bfad32c390175da28127e8c"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cc07256eff0795e0f642df74ad096f8c5d23fe66bc138b83970b50fc7f7f6c5"}, - {file = "xxhash-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e9f749999ed80f3955a4af0eb18bb43993f04939350b07b8dd2f44edc98ffee9"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7688d7c02149a90a3d46d55b341ab7ad1b4a3f767be2357e211b4e893efbaaf6"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a8b4977963926f60b0d4f830941c864bed16aa151206c01ad5c531636da5708e"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:8106d88da330f6535a58a8195aa463ef5281a9aa23b04af1848ff715c4398fb4"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:4c76a77dbd169450b61c06fd2d5d436189fc8ab7c1571d39265d4822da16df22"}, - {file = "xxhash-3.4.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:11f11357c86d83e53719c592021fd524efa9cf024dc7cb1dfb57bbbd0d8713f2"}, - {file = "xxhash-3.4.1-cp38-cp38-win32.whl", hash = "sha256:0c786a6cd74e8765c6809892a0d45886e7c3dc54de4985b4a5eb8b630f3b8e3b"}, - {file = "xxhash-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:aabf37fb8fa27430d50507deeab2ee7b1bcce89910dd10657c38e71fee835594"}, - {file = "xxhash-3.4.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6127813abc1477f3a83529b6bbcfeddc23162cece76fa69aee8f6a8a97720562"}, - {file = "xxhash-3.4.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ef2e194262f5db16075caea7b3f7f49392242c688412f386d3c7b07c7733a70a"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:71be94265b6c6590f0018bbf73759d21a41c6bda20409782d8117e76cd0dfa8b"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10e0a619cdd1c0980e25eb04e30fe96cf8f4324758fa497080af9c21a6de573f"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa122124d2e3bd36581dd78c0efa5f429f5220313479fb1072858188bc2d5ff1"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17032f5a4fea0a074717fe33477cb5ee723a5f428de7563e75af64bfc1b1e10"}, - {file = "xxhash-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca7783b20e3e4f3f52f093538895863f21d18598f9a48211ad757680c3bd006f"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d77d09a1113899fad5f354a1eb4f0a9afcf58cefff51082c8ad643ff890e30cf"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:21287bcdd299fdc3328cc0fbbdeaa46838a1c05391264e51ddb38a3f5b09611f"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:dfd7a6cc483e20b4ad90224aeb589e64ec0f31e5610ab9957ff4314270b2bf31"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:543c7fcbc02bbb4840ea9915134e14dc3dc15cbd5a30873a7a5bf66039db97ec"}, - {file = "xxhash-3.4.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:fe0a98d990e433013f41827b62be9ab43e3cf18e08b1483fcc343bda0d691182"}, - {file = "xxhash-3.4.1-cp39-cp39-win32.whl", hash = "sha256:b9097af00ebf429cc7c0e7d2fdf28384e4e2e91008130ccda8d5ae653db71e54"}, - {file = "xxhash-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:d699b921af0dcde50ab18be76c0d832f803034d80470703700cb7df0fbec2832"}, - {file = "xxhash-3.4.1-cp39-cp39-win_arm64.whl", hash = "sha256:2be491723405e15cc099ade1280133ccfbf6322d2ef568494fb7d07d280e7eee"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:431625fad7ab5649368c4849d2b49a83dc711b1f20e1f7f04955aab86cd307bc"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc6dbd5fc3c9886a9e041848508b7fb65fd82f94cc793253990f81617b61fe49"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3ff8dbd0ec97aec842476cb8ccc3e17dd288cd6ce3c8ef38bff83d6eb927817"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef73a53fe90558a4096e3256752268a8bdc0322f4692ed928b6cd7ce06ad4fe3"}, - {file = "xxhash-3.4.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:450401f42bbd274b519d3d8dcf3c57166913381a3d2664d6609004685039f9d3"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a162840cf4de8a7cd8720ff3b4417fbc10001eefdd2d21541a8226bb5556e3bb"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b736a2a2728ba45017cb67785e03125a79d246462dfa892d023b827007412c52"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d0ae4c2e7698adef58710d6e7a32ff518b66b98854b1c68e70eee504ad061d8"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6322c4291c3ff174dcd104fae41500e75dad12be6f3085d119c2c8a80956c51"}, - {file = "xxhash-3.4.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:dd59ed668801c3fae282f8f4edadf6dc7784db6d18139b584b6d9677ddde1b6b"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:92693c487e39523a80474b0394645b393f0ae781d8db3474ccdcead0559ccf45"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4603a0f642a1e8d7f3ba5c4c25509aca6a9c1cc16f85091004a7028607ead663"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa45e8cbfbadb40a920fe9ca40c34b393e0b067082d94006f7f64e70c7490a6"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:595b252943b3552de491ff51e5bb79660f84f033977f88f6ca1605846637b7c6"}, - {file = "xxhash-3.4.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:562d8b8f783c6af969806aaacf95b6c7b776929ae26c0cd941d54644ea7ef51e"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:41ddeae47cf2828335d8d991f2d2b03b0bdc89289dc64349d712ff8ce59d0647"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c44d584afdf3c4dbb3277e32321d1a7b01d6071c1992524b6543025fb8f4206f"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd7bddb3a5b86213cc3f2c61500c16945a1b80ecd572f3078ddbbe68f9dabdfb"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9ecb6c987b62437c2f99c01e97caf8d25660bf541fe79a481d05732e5236719c"}, - {file = "xxhash-3.4.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:696b4e18b7023527d5c50ed0626ac0520edac45a50ec7cf3fc265cd08b1f4c03"}, - {file = "xxhash-3.4.1.tar.gz", hash = "sha256:0379d6cf1ff987cd421609a264ce025e74f346e3e145dd106c0cc2e3ec3f99a9"}, + {file = "xxhash-3.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ece616532c499ee9afbb83078b1b952beffef121d989841f7f4b3dc5ac0fd212"}, + {file = "xxhash-3.5.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3171f693dbc2cef6477054a665dc255d996646b4023fe56cb4db80e26f4cc520"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7c5d3e570ef46adaf93fc81b44aca6002b5a4d8ca11bd0580c07eac537f36680"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7cb29a034301e2982df8b1fe6328a84f4b676106a13e9135a0d7e0c3e9f806da"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d0d307d27099bb0cbeea7260eb39ed4fdb99c5542e21e94bb6fd29e49c57a23"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0342aafd421795d740e514bc9858ebddfc705a75a8c5046ac56d85fe97bf196"}, + {file = "xxhash-3.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3dbbd9892c5ebffeca1ed620cf0ade13eb55a0d8c84e0751a6653adc6ac40d0c"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:4cc2d67fdb4d057730c75a64c5923abfa17775ae234a71b0200346bfb0a7f482"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:ec28adb204b759306a3d64358a5e5c07d7b1dd0ccbce04aa76cb9377b7b70296"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:1328f6d8cca2b86acb14104e381225a3d7b42c92c4b86ceae814e5c400dbb415"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:8d47ebd9f5d9607fd039c1fbf4994e3b071ea23eff42f4ecef246ab2b7334198"}, + {file = "xxhash-3.5.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b96d559e0fcddd3343c510a0fe2b127fbff16bf346dd76280b82292567523442"}, + {file = "xxhash-3.5.0-cp310-cp310-win32.whl", hash = "sha256:61c722ed8d49ac9bc26c7071eeaa1f6ff24053d553146d5df031802deffd03da"}, + {file = "xxhash-3.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:9bed5144c6923cc902cd14bb8963f2d5e034def4486ab0bbe1f58f03f042f9a9"}, + {file = "xxhash-3.5.0-cp310-cp310-win_arm64.whl", hash = "sha256:893074d651cf25c1cc14e3bea4fceefd67f2921b1bb8e40fcfeba56820de80c6"}, + {file = "xxhash-3.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:02c2e816896dc6f85922ced60097bcf6f008dedfc5073dcba32f9c8dd786f3c1"}, + {file = "xxhash-3.5.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6027dcd885e21581e46d3c7f682cfb2b870942feeed58a21c29583512c3f09f8"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1308fa542bbdbf2fa85e9e66b1077eea3a88bef38ee8a06270b4298a7a62a166"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c28b2fdcee797e1c1961cd3bcd3d545cab22ad202c846235197935e1df2f8ef7"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:924361811732ddad75ff23e90efd9ccfda4f664132feecb90895bade6a1b4623"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89997aa1c4b6a5b1e5b588979d1da048a3c6f15e55c11d117a56b75c84531f5a"}, + {file = "xxhash-3.5.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:685c4f4e8c59837de103344eb1c8a3851f670309eb5c361f746805c5471b8c88"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbd2ecfbfee70bc1a4acb7461fa6af7748ec2ab08ac0fa298f281c51518f982c"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:25b5a51dc3dfb20a10833c8eee25903fd2e14059e9afcd329c9da20609a307b2"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:a8fb786fb754ef6ff8c120cb96629fb518f8eb5a61a16aac3a979a9dbd40a084"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a905ad00ad1e1c34fe4e9d7c1d949ab09c6fa90c919860c1534ff479f40fd12d"}, + {file = "xxhash-3.5.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:963be41bcd49f53af6d795f65c0da9b4cc518c0dd9c47145c98f61cb464f4839"}, + {file = "xxhash-3.5.0-cp311-cp311-win32.whl", hash = "sha256:109b436096d0a2dd039c355fa3414160ec4d843dfecc64a14077332a00aeb7da"}, + {file = "xxhash-3.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:b702f806693201ad6c0a05ddbbe4c8f359626d0b3305f766077d51388a6bac58"}, + {file = "xxhash-3.5.0-cp311-cp311-win_arm64.whl", hash = "sha256:c4dcb4120d0cc3cc448624147dba64e9021b278c63e34a38789b688fd0da9bf3"}, + {file = "xxhash-3.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:14470ace8bd3b5d51318782cd94e6f94431974f16cb3b8dc15d52f3b69df8e00"}, + {file = "xxhash-3.5.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:59aa1203de1cb96dbeab595ded0ad0c0056bb2245ae11fac11c0ceea861382b9"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:08424f6648526076e28fae6ea2806c0a7d504b9ef05ae61d196d571e5c879c84"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:61a1ff00674879725b194695e17f23d3248998b843eb5e933007ca743310f793"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2f2c61bee5844d41c3eb015ac652a0229e901074951ae48581d58bfb2ba01be"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d32a592cac88d18cc09a89172e1c32d7f2a6e516c3dfde1b9adb90ab5df54a6"}, + {file = "xxhash-3.5.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:70dabf941dede727cca579e8c205e61121afc9b28516752fd65724be1355cc90"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e5d0ddaca65ecca9c10dcf01730165fd858533d0be84c75c327487c37a906a27"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:3e5b5e16c5a480fe5f59f56c30abdeba09ffd75da8d13f6b9b6fd224d0b4d0a2"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:149b7914451eb154b3dfaa721315117ea1dac2cc55a01bfbd4df7c68c5dd683d"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:eade977f5c96c677035ff39c56ac74d851b1cca7d607ab3d8f23c6b859379cab"}, + {file = "xxhash-3.5.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fa9f547bd98f5553d03160967866a71056a60960be00356a15ecc44efb40ba8e"}, + {file = "xxhash-3.5.0-cp312-cp312-win32.whl", hash = "sha256:f7b58d1fd3551b8c80a971199543379be1cee3d0d409e1f6d8b01c1a2eebf1f8"}, + {file = "xxhash-3.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:fa0cafd3a2af231b4e113fba24a65d7922af91aeb23774a8b78228e6cd785e3e"}, + {file = "xxhash-3.5.0-cp312-cp312-win_arm64.whl", hash = "sha256:586886c7e89cb9828bcd8a5686b12e161368e0064d040e225e72607b43858ba2"}, + {file = "xxhash-3.5.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:37889a0d13b0b7d739cfc128b1c902f04e32de17b33d74b637ad42f1c55101f6"}, + {file = "xxhash-3.5.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:97a662338797c660178e682f3bc180277b9569a59abfb5925e8620fba00b9fc5"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f85e0108d51092bdda90672476c7d909c04ada6923c14ff9d913c4f7dc8a3bc"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cd2fd827b0ba763ac919440042302315c564fdb797294d86e8cdd4578e3bc7f3"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:82085c2abec437abebf457c1d12fccb30cc8b3774a0814872511f0f0562c768c"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07fda5de378626e502b42b311b049848c2ef38784d0d67b6f30bb5008642f8eb"}, + {file = "xxhash-3.5.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c279f0d2b34ef15f922b77966640ade58b4ccdfef1c4d94b20f2a364617a493f"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:89e66ceed67b213dec5a773e2f7a9e8c58f64daeb38c7859d8815d2c89f39ad7"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:bcd51708a633410737111e998ceb3b45d3dbc98c0931f743d9bb0a209033a326"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:3ff2c0a34eae7df88c868be53a8dd56fbdf592109e21d4bfa092a27b0bf4a7bf"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:4e28503dccc7d32e0b9817aa0cbfc1f45f563b2c995b7a66c4c8a0d232e840c7"}, + {file = "xxhash-3.5.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a6c50017518329ed65a9e4829154626f008916d36295b6a3ba336e2458824c8c"}, + {file = "xxhash-3.5.0-cp313-cp313-win32.whl", hash = "sha256:53a068fe70301ec30d868ece566ac90d873e3bb059cf83c32e76012c889b8637"}, + {file = "xxhash-3.5.0-cp313-cp313-win_amd64.whl", hash = "sha256:80babcc30e7a1a484eab952d76a4f4673ff601f54d5142c26826502740e70b43"}, + {file = "xxhash-3.5.0-cp313-cp313-win_arm64.whl", hash = "sha256:4811336f1ce11cac89dcbd18f3a25c527c16311709a89313c3acaf771def2d4b"}, + {file = "xxhash-3.5.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:6e5f70f6dca1d3b09bccb7daf4e087075ff776e3da9ac870f86ca316736bb4aa"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e76e83efc7b443052dd1e585a76201e40b3411fe3da7af4fe434ec51b2f163b"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:33eac61d0796ca0591f94548dcfe37bb193671e0c9bcf065789b5792f2eda644"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ec70a89be933ea49222fafc3999987d7899fc676f688dd12252509434636622"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86b8e7f703ec6ff4f351cfdb9f428955859537125904aa8c963604f2e9d3e7"}, + {file = "xxhash-3.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0adfbd36003d9f86c8c97110039f7539b379f28656a04097e7434d3eaf9aa131"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:63107013578c8a730419adc05608756c3fa640bdc6abe806c3123a49fb829f43"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:683b94dbd1ca67557850b86423318a2e323511648f9f3f7b1840408a02b9a48c"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:5d2a01dcce81789cf4b12d478b5464632204f4c834dc2d064902ee27d2d1f0ee"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:a9d360a792cbcce2fe7b66b8d51274ec297c53cbc423401480e53b26161a290d"}, + {file = "xxhash-3.5.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:f0b48edbebea1b7421a9c687c304f7b44d0677c46498a046079d445454504737"}, + {file = "xxhash-3.5.0-cp37-cp37m-win32.whl", hash = "sha256:7ccb800c9418e438b44b060a32adeb8393764da7441eb52aa2aa195448935306"}, + {file = "xxhash-3.5.0-cp37-cp37m-win_amd64.whl", hash = "sha256:c3bc7bf8cb8806f8d1c9bf149c18708cb1c406520097d6b0a73977460ea03602"}, + {file = "xxhash-3.5.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:74752ecaa544657d88b1d1c94ae68031e364a4d47005a90288f3bab3da3c970f"}, + {file = "xxhash-3.5.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:dee1316133c9b463aa81aca676bc506d3f80d8f65aeb0bba2b78d0b30c51d7bd"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:602d339548d35a8579c6b013339fb34aee2df9b4e105f985443d2860e4d7ffaa"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:695735deeddfb35da1677dbc16a083445360e37ff46d8ac5c6fcd64917ff9ade"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1030a39ba01b0c519b1a82f80e8802630d16ab95dc3f2b2386a0b5c8ed5cbb10"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5bc08f33c4966f4eb6590d6ff3ceae76151ad744576b5fc6c4ba8edd459fdec"}, + {file = "xxhash-3.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160e0c19ee500482ddfb5d5570a0415f565d8ae2b3fd69c5dcfce8a58107b1c3"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:f1abffa122452481a61c3551ab3c89d72238e279e517705b8b03847b1d93d738"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:d5e9db7ef3ecbfc0b4733579cea45713a76852b002cf605420b12ef3ef1ec148"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:23241ff6423378a731d84864bf923a41649dc67b144debd1077f02e6249a0d54"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:82b833d5563fefd6fceafb1aed2f3f3ebe19f84760fdd289f8b926731c2e6e91"}, + {file = "xxhash-3.5.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0a80ad0ffd78bef9509eee27b4a29e56f5414b87fb01a888353e3d5bda7038bd"}, + {file = "xxhash-3.5.0-cp38-cp38-win32.whl", hash = "sha256:50ac2184ffb1b999e11e27c7e3e70cc1139047e7ebc1aa95ed12f4269abe98d4"}, + {file = "xxhash-3.5.0-cp38-cp38-win_amd64.whl", hash = "sha256:392f52ebbb932db566973693de48f15ce787cabd15cf6334e855ed22ea0be5b3"}, + {file = "xxhash-3.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bfc8cdd7f33d57f0468b0614ae634cc38ab9202c6957a60e31d285a71ebe0301"}, + {file = "xxhash-3.5.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e0c48b6300cd0b0106bf49169c3e0536408dfbeb1ccb53180068a18b03c662ab"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe1a92cfbaa0a1253e339ccec42dbe6db262615e52df591b68726ab10338003f"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:33513d6cc3ed3b559134fb307aae9bdd94d7e7c02907b37896a6c45ff9ce51bd"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eefc37f6138f522e771ac6db71a6d4838ec7933939676f3753eafd7d3f4c40bc"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a606c8070ada8aa2a88e181773fa1ef17ba65ce5dd168b9d08038e2a61b33754"}, + {file = "xxhash-3.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:42eca420c8fa072cc1dd62597635d140e78e384a79bb4944f825fbef8bfeeef6"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:604253b2143e13218ff1ef0b59ce67f18b8bd1c4205d2ffda22b09b426386898"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:6e93a5ad22f434d7876665444a97e713a8f60b5b1a3521e8df11b98309bff833"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:7a46e1d6d2817ba8024de44c4fd79913a90e5f7265434cef97026215b7d30df6"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:30eb2efe6503c379b7ab99c81ba4a779748e3830241f032ab46bd182bf5873af"}, + {file = "xxhash-3.5.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:c8aa771ff2c13dd9cda8166d685d7333d389fae30a4d2bb39d63ab5775de8606"}, + {file = "xxhash-3.5.0-cp39-cp39-win32.whl", hash = "sha256:5ed9ebc46f24cf91034544b26b131241b699edbfc99ec5e7f8f3d02d6eb7fba4"}, + {file = "xxhash-3.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:220f3f896c6b8d0316f63f16c077d52c412619e475f9372333474ee15133a558"}, + {file = "xxhash-3.5.0-cp39-cp39-win_arm64.whl", hash = "sha256:a7b1d8315d9b5e9f89eb2933b73afae6ec9597a258d52190944437158b49d38e"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:2014c5b3ff15e64feecb6b713af12093f75b7926049e26a580e94dcad3c73d8c"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fab81ef75003eda96239a23eda4e4543cedc22e34c373edcaf744e721a163986"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e2febf914ace002132aa09169cc572e0d8959d0f305f93d5828c4836f9bc5a6"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5d3a10609c51da2a1c0ea0293fc3968ca0a18bd73838455b5bca3069d7f8e32b"}, + {file = "xxhash-3.5.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5a74f23335b9689b66eb6dbe2a931a88fcd7a4c2cc4b1cb0edba8ce381c7a1da"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2b4154c00eb22e4d543f472cfca430e7962a0f1d0f3778334f2e08a7ba59363c"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d30bbc1644f726b825b3278764240f449d75f1a8bdda892e641d4a688b1494ae"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fa0b72f2423e2aa53077e54a61c28e181d23effeaafd73fcb9c494e60930c8e"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:13de2b76c1835399b2e419a296d5b38dc4855385d9e96916299170085ef72f57"}, + {file = "xxhash-3.5.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0691bfcc4f9c656bcb96cc5db94b4d75980b9d5589f2e59de790091028580837"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:297595fe6138d4da2c8ce9e72a04d73e58725bb60f3a19048bc96ab2ff31c692"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc1276d369452040cbb943300dc8abeedab14245ea44056a2943183822513a18"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2061188a1ba352fc699c82bff722f4baacb4b4b8b2f0c745d2001e56d0dfb514"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38c384c434021e4f62b8d9ba0bc9467e14d394893077e2c66d826243025e1f81"}, + {file = "xxhash-3.5.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e6a4dd644d72ab316b580a1c120b375890e4c52ec392d4aef3c63361ec4d77d1"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:531af8845aaadcadf951b7e0c1345c6b9c68a990eeb74ff9acd8501a0ad6a1c9"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ce379bcaa9fcc00f19affa7773084dd09f5b59947b3fb47a1ceb0179f91aaa1"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd1b2281d01723f076df3c8188f43f2472248a6b63118b036e641243656b1b0f"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9c770750cc80e8694492244bca7251385188bc5597b6a39d98a9f30e8da984e0"}, + {file = "xxhash-3.5.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b150b8467852e1bd844387459aa6fbe11d7f38b56e901f9f3b3e6aba0d660240"}, + {file = "xxhash-3.5.0.tar.gz", hash = "sha256:84f2caddf951c9cbf8dc2e22a89d4ccf5d86391ac6418fe81e3c67d0cf60b45f"}, ] [[package]] name = "yarl" -version = "1.9.4" +version = "1.12.1" description = "Yet another URL library" optional = true -python-versions = ">=3.7" +python-versions = ">=3.8" files = [ - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"}, - {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"}, - {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"}, - {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"}, - {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"}, - {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:35a2b9396879ce32754bd457d31a51ff0a9d426fd9e0e3c33394bf4b9036b099"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c7d56b293cc071e82532f70adcbd8b61909eec973ae9d2d1f9b233f3d943f2c"}, - {file = "yarl-1.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d8a1c6c0be645c745a081c192e747c5de06e944a0d21245f4cf7c05e457c36e0"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b3c1ffe10069f655ea2d731808e76e0f452fc6c749bea04781daf18e6039525"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:549d19c84c55d11687ddbd47eeb348a89df9cb30e1993f1b128f4685cd0ebbf8"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a7409f968456111140c1c95301cadf071bd30a81cbd7ab829169fb9e3d72eae9"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e23a6d84d9d1738dbc6e38167776107e63307dfc8ad108e580548d1f2c587f42"}, - {file = "yarl-1.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d8b889777de69897406c9fb0b76cdf2fd0f31267861ae7501d93003d55f54fbe"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:03caa9507d3d3c83bca08650678e25364e1843b484f19986a527630ca376ecce"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4e9035df8d0880b2f1c7f5031f33f69e071dfe72ee9310cfc76f7b605958ceb9"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:c0ec0ed476f77db9fb29bca17f0a8fcc7bc97ad4c6c1d8959c507decb22e8572"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:ee04010f26d5102399bd17f8df8bc38dc7ccd7701dc77f4a68c5b8d733406958"}, - {file = "yarl-1.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:49a180c2e0743d5d6e0b4d1a9e5f633c62eca3f8a86ba5dd3c471060e352ca98"}, - {file = "yarl-1.9.4-cp311-cp311-win32.whl", hash = "sha256:81eb57278deb6098a5b62e88ad8281b2ba09f2f1147c4767522353eaa6260b31"}, - {file = "yarl-1.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d1d2532b340b692880261c15aee4dc94dd22ca5d61b9db9a8a361953d36410b1"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0d2454f0aef65ea81037759be5ca9947539667eecebca092733b2eb43c965a81"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:44d8ffbb9c06e5a7f529f38f53eda23e50d1ed33c6c869e01481d3fafa6b8142"}, - {file = "yarl-1.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:aaaea1e536f98754a6e5c56091baa1b6ce2f2700cc4a00b0d49eca8dea471074"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3777ce5536d17989c91696db1d459574e9a9bd37660ea7ee4d3344579bb6f129"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9fc5fc1eeb029757349ad26bbc5880557389a03fa6ada41703db5e068881e5f2"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ea65804b5dc88dacd4a40279af0cdadcfe74b3e5b4c897aa0d81cf86927fee78"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa102d6d280a5455ad6a0f9e6d769989638718e938a6a0a2ff3f4a7ff8c62cc4"}, - {file = "yarl-1.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09efe4615ada057ba2d30df871d2f668af661e971dfeedf0c159927d48bbeff0"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:008d3e808d03ef28542372d01057fd09168419cdc8f848efe2804f894ae03e51"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6f5cb257bc2ec58f437da2b37a8cd48f666db96d47b8a3115c29f316313654ff"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:992f18e0ea248ee03b5a6e8b3b4738850ae7dbb172cc41c966462801cbf62cf7"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0e9d124c191d5b881060a9e5060627694c3bdd1fe24c5eecc8d5d7d0eb6faabc"}, - {file = "yarl-1.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3986b6f41ad22988e53d5778f91855dc0399b043fc8946d4f2e68af22ee9ff10"}, - {file = "yarl-1.9.4-cp312-cp312-win32.whl", hash = "sha256:4b21516d181cd77ebd06ce160ef8cc2a5e9ad35fb1c5930882baff5ac865eee7"}, - {file = "yarl-1.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:a9bd00dc3bc395a662900f33f74feb3e757429e545d831eef5bb280252631984"}, - {file = "yarl-1.9.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:63b20738b5aac74e239622d2fe30df4fca4942a86e31bf47a81a0e94c14df94f"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d7f7de27b8944f1fee2c26a88b4dabc2409d2fea7a9ed3df79b67277644e17"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c74018551e31269d56fab81a728f683667e7c28c04e807ba08f8c9e3bba32f14"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ca06675212f94e7a610e85ca36948bb8fc023e458dd6c63ef71abfd482481aa5"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5aef935237d60a51a62b86249839b51345f47564208c6ee615ed2a40878dccdd"}, - {file = "yarl-1.9.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2b134fd795e2322b7684155b7855cc99409d10b2e408056db2b93b51a52accc7"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d25039a474c4c72a5ad4b52495056f843a7ff07b632c1b92ea9043a3d9950f6e"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f7d6b36dd2e029b6bcb8a13cf19664c7b8e19ab3a58e0fefbb5b8461447ed5ec"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:957b4774373cf6f709359e5c8c4a0af9f6d7875db657adb0feaf8d6cb3c3964c"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:d7eeb6d22331e2fd42fce928a81c697c9ee2d51400bd1a28803965883e13cead"}, - {file = "yarl-1.9.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:6a962e04b8f91f8c4e5917e518d17958e3bdee71fd1d8b88cdce74dd0ebbf434"}, - {file = "yarl-1.9.4-cp37-cp37m-win32.whl", hash = "sha256:f3bc6af6e2b8f92eced34ef6a96ffb248e863af20ef4fde9448cc8c9b858b749"}, - {file = "yarl-1.9.4-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4d7a90a92e528aadf4965d685c17dacff3df282db1121136c382dc0b6014d2"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ec61d826d80fc293ed46c9dd26995921e3a82146feacd952ef0757236fc137be"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8be9e837ea9113676e5754b43b940b50cce76d9ed7d2461df1af39a8ee674d9f"}, - {file = "yarl-1.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bef596fdaa8f26e3d66af846bbe77057237cb6e8efff8cd7cc8dff9a62278bbf"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2d47552b6e52c3319fede1b60b3de120fe83bde9b7bddad11a69fb0af7db32f1"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:84fc30f71689d7fc9168b92788abc977dc8cefa806909565fc2951d02f6b7d57"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4aa9741085f635934f3a2583e16fcf62ba835719a8b2b28fb2917bb0537c1dfa"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:206a55215e6d05dbc6c98ce598a59e6fbd0c493e2de4ea6cc2f4934d5a18d130"}, - {file = "yarl-1.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07574b007ee20e5c375a8fe4a0789fad26db905f9813be0f9fef5a68080de559"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5a2e2433eb9344a163aced6a5f6c9222c0786e5a9e9cac2c89f0b28433f56e23"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:6ad6d10ed9b67a382b45f29ea028f92d25bc0bc1daf6c5b801b90b5aa70fb9ec"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:6fe79f998a4052d79e1c30eeb7d6c1c1056ad33300f682465e1b4e9b5a188b78"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:a825ec844298c791fd28ed14ed1bffc56a98d15b8c58a20e0e08c1f5f2bea1be"}, - {file = "yarl-1.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8619d6915b3b0b34420cf9b2bb6d81ef59d984cb0fde7544e9ece32b4b3043c3"}, - {file = "yarl-1.9.4-cp38-cp38-win32.whl", hash = "sha256:686a0c2f85f83463272ddffd4deb5e591c98aac1897d65e92319f729c320eece"}, - {file = "yarl-1.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:a00862fb23195b6b8322f7d781b0dc1d82cb3bcac346d1e38689370cc1cc398b"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:604f31d97fa493083ea21bd9b92c419012531c4e17ea6da0f65cacdcf5d0bd27"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:8a854227cf581330ffa2c4824d96e52ee621dd571078a252c25e3a3b3d94a1b1"}, - {file = "yarl-1.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ba6f52cbc7809cd8d74604cce9c14868306ae4aa0282016b641c661f981a6e91"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a6327976c7c2f4ee6816eff196e25385ccc02cb81427952414a64811037bbc8b"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8397a3817d7dcdd14bb266283cd1d6fc7264a48c186b986f32e86d86d35fbac5"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0381b4ce23ff92f8170080c97678040fc5b08da85e9e292292aba67fdac6c34"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23d32a2594cb5d565d358a92e151315d1b2268bc10f4610d098f96b147370136"}, - {file = "yarl-1.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ddb2a5c08a4eaaba605340fdee8fc08e406c56617566d9643ad8bf6852778fc7"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:26a1dc6285e03f3cc9e839a2da83bcbf31dcb0d004c72d0730e755b33466c30e"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:18580f672e44ce1238b82f7fb87d727c4a131f3a9d33a5e0e82b793362bf18b4"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:29e0f83f37610f173eb7e7b5562dd71467993495e568e708d99e9d1944f561ec"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:1f23e4fe1e8794f74b6027d7cf19dc25f8b63af1483d91d595d4a07eca1fb26c"}, - {file = "yarl-1.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:db8e58b9d79200c76956cefd14d5c90af54416ff5353c5bfd7cbe58818e26ef0"}, - {file = "yarl-1.9.4-cp39-cp39-win32.whl", hash = "sha256:c7224cab95645c7ab53791022ae77a4509472613e839dab722a72abe5a684575"}, - {file = "yarl-1.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:824d6c50492add5da9374875ce72db7a0733b29c2394890aef23d533106e2b15"}, - {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"}, - {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:64c5b0f2b937fe40d0967516eee5504b23cb247b8b7ffeba7213a467d9646fdc"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2e430ac432f969ef21770645743611c1618362309e3ad7cab45acd1ad1a540ff"}, + {file = "yarl-1.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3e26e64f42bce5ddf9002092b2c37b13071c2e6413d5c05f9fa9de58ed2f7749"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0103c52f8dfe5d573c856322149ddcd6d28f51b4d4a3ee5c4b3c1b0a05c3d034"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b63465b53baeaf2122a337d4ab57d6bbdd09fcadceb17a974cfa8a0300ad9c67"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17d4dc4ff47893a06737b8788ed2ba2f5ac4e8bb40281c8603920f7d011d5bdd"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8b54949267bd5704324397efe9fbb6aa306466dee067550964e994d309db5f1"}, + {file = "yarl-1.12.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:10b690cd78cbaca2f96a7462f303fdd2b596d3978b49892e4b05a7567c591572"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c85ab016e96a975afbdb9d49ca90f3bca9920ef27c64300843fe91c3d59d8d20"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c1caa5763d1770216596e0a71b5567f27aac28c95992110212c108ec74589a48"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:595bbcdbfc4a9c6989d7489dca8510cba053ff46b16c84ffd95ac8e90711d419"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e64f0421892a207d3780903085c1b04efeb53b16803b23d947de5a7261b71355"}, + {file = "yarl-1.12.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:319c206e83e46ec2421b25b300c8482b6fe8a018baca246be308c736d9dab267"}, + {file = "yarl-1.12.1-cp310-cp310-win32.whl", hash = "sha256:da045bd1147d12bd43fb032296640a7cc17a7f2eaba67495988362e99db24fd2"}, + {file = "yarl-1.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:aebbd47df77190ada603157f0b3670d578c110c31746ecc5875c394fdcc59a99"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:28389a68981676bf74e2e199fe42f35d1aa27a9c98e3a03e6f58d2d3d054afe1"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f736f54565f8dd7e3ab664fef2bc461d7593a389a7f28d4904af8d55a91bd55f"}, + {file = "yarl-1.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dee0496d5f1a8f57f0f28a16f81a2033fc057a2cf9cd710742d11828f8c80e2"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8981a94a27ac520a398302afb74ae2c0be1c3d2d215c75c582186a006c9e7b0"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ff54340fc1129e8e181827e2234af3ff659b4f17d9bbe77f43bc19e6577fadec"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:54c8cee662b5f8c30ad7eedfc26123f845f007798e4ff1001d9528fe959fd23c"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e97a29b37830ba1262d8dfd48ddb5b28ad4d3ebecc5d93a9c7591d98641ec737"}, + {file = "yarl-1.12.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c89894cc6f6ddd993813e79244b36b215c14f65f9e4f1660b1f2ba9e5594b95"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:712ba8722c0699daf186de089ddc4677651eb9875ed7447b2ad50697522cbdd9"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6e9a9f50892153bad5046c2a6df153224aa6f0573a5a8ab44fc54a1e886f6e21"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:1d4017e78fb22bc797c089b746230ad78ecd3cdb215bc0bd61cb72b5867da57e"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:f494c01b28645c431239863cb17af8b8d15b93b0d697a0320d5dd34cd9d7c2fa"}, + {file = "yarl-1.12.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:de4544b1fb29cf14870c4e2b8a897c0242449f5dcebd3e0366aa0aa3cf58a23a"}, + {file = "yarl-1.12.1-cp311-cp311-win32.whl", hash = "sha256:7564525a4673fde53dee7d4c307a961c0951918f0b8c7f09b2c9e02067cf6504"}, + {file = "yarl-1.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:f23bb1a7a6e8e8b612a164fdd08e683bcc16c76f928d6dbb7bdbee2374fbfee6"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:a3e2aff8b822ab0e0bdbed9f50494b3a35629c4b9488ae391659973a37a9f53f"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:22dda2799c8d39041d731e02bf7690f0ef34f1691d9ac9dfcb98dd1e94c8b058"}, + {file = "yarl-1.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:18c2a7757561f05439c243f517dbbb174cadfae3a72dee4ae7c693f5b336570f"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:835010cc17d0020e7931d39e487d72c8e01c98e669b6896a8b8c9aa8ca69a949"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e2254fe137c4a360b0a13173a56444f756252c9283ba4d267ca8e9081cd140ea"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6a071d2c3d39b4104f94fc08ab349e9b19b951ad4b8e3b6d7ea92d6ef7ccaf8"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:73a183042ae0918c82ce2df38c3db2409b0eeae88e3afdfc80fb67471a95b33b"}, + {file = "yarl-1.12.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:326b8a079a9afcac0575971e56dabdf7abb2ea89a893e6949b77adfeb058b50e"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:126309c0f52a2219b3d1048aca00766429a1346596b186d51d9fa5d2070b7b13"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:ba1c779b45a399cc25f511c681016626f69e51e45b9d350d7581998722825af9"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:af1107299cef049ad00a93df4809517be432283a0847bcae48343ebe5ea340dc"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:20d817c0893191b2ab0ba30b45b77761e8dfec30a029b7c7063055ca71157f84"}, + {file = "yarl-1.12.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d4f818f6371970d6a5d1e42878389bbfb69dcde631e4bbac5ec1cb11158565ca"}, + {file = "yarl-1.12.1-cp312-cp312-win32.whl", hash = "sha256:0ac33d22b2604b020569a82d5f8a03ba637ba42cc1adf31f616af70baf81710b"}, + {file = "yarl-1.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:fd24996e12e1ba7c397c44be75ca299da14cde34d74bc5508cce233676cc68d0"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dea360778e0668a7ad25d7727d03364de8a45bfd5d808f81253516b9f2217765"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1f50a37aeeb5179d293465e522fd686080928c4d89e0ff215e1f963405ec4def"}, + {file = "yarl-1.12.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0274b1b7a9c9c32b7bf250583e673ff99fb9fccb389215841e2652d9982de740"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4f3ab9eb8ab2d585ece959c48d234f7b39ac0ca1954a34d8b8e58a52064bdb3"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8d31dd0245d88cf7239e96e8f2a99f815b06e458a5854150f8e6f0e61618d41b"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a96198d5d26f40557d986c1253bfe0e02d18c9d9b93cf389daf1a3c9f7c755fa"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddae504cfb556fe220efae65e35be63cd11e3c314b202723fc2119ce19f0ca2e"}, + {file = "yarl-1.12.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bce00f3b1f7f644faae89677ca68645ed5365f1c7f874fdd5ebf730a69640d38"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:eee5ff934b0c9f4537ff9596169d56cab1890918004791a7a06b879b3ba2a7ef"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4ea99e64b2ad2635e0f0597b63f5ea6c374791ff2fa81cdd4bad8ed9f047f56f"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:5c667b383529520b8dd6bd496fc318678320cb2a6062fdfe6d3618da6b8790f6"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:d920401941cb898ef089422e889759dd403309eb370d0e54f1bdf6ca07fef603"}, + {file = "yarl-1.12.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:501a1576716032cc6d48c7c47bcdc42d682273415a8f2908e7e72cb4625801f3"}, + {file = "yarl-1.12.1-cp313-cp313-win32.whl", hash = "sha256:24416bb5e221e29ddf8aac5b97e94e635ca2c5be44a1617ad6fe32556df44294"}, + {file = "yarl-1.12.1-cp313-cp313-win_amd64.whl", hash = "sha256:71af3766bb46738d12cc288d9b8de7ef6f79c31fd62757e2b8a505fe3680b27f"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c924deab8105f86980983eced740433fb7554a7f66db73991affa4eda99d5402"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5fb475a4cdde582c9528bb412b98f899680492daaba318231e96f1a0a1bb0d53"}, + {file = "yarl-1.12.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:36ee0115b9edca904153a66bb74a9ff1ce38caff015de94eadfb9ba8e6ecd317"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2631c9d7386bd2d4ce24ecc6ebf9ae90b3efd713d588d90504eaa77fec4dba01"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2376d8cf506dffd0e5f2391025ae8675b09711016656590cb03b55894161fcfa"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:24197ba3114cc85ddd4091e19b2ddc62650f2e4a899e51b074dfd52d56cf8c72"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfdf419bf5d3644f94cd7052954fc233522f5a1b371fc0b00219ebd9c14d5798"}, + {file = "yarl-1.12.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8112f640a4f7e7bf59f7cabf0d47a29b8977528c521d73a64d5cc9e99e48a174"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:607d12f0901f6419a8adceb139847c42c83864b85371f58270e42753f9780fa6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:664380c7ed524a280b6a2d5d9126389c3e96cd6e88986cdb42ca72baa27421d6"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:0d0a5e87bc48d76dfcfc16295201e9812d5f33d55b4a0b7cad1025b92bf8b91b"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:eff6bac402719c14e17efe845d6b98593c56c843aca6def72080fbede755fd1f"}, + {file = "yarl-1.12.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:22839d1d1eab9e4b427828a88a22beb86f67c14d8ff81175505f1cc8493f3500"}, + {file = "yarl-1.12.1-cp38-cp38-win32.whl", hash = "sha256:717f185086bb9d817d4537dd18d5df5d657598cd00e6fc22e4d54d84de266c1d"}, + {file = "yarl-1.12.1-cp38-cp38-win_amd64.whl", hash = "sha256:71978ba778948760cff528235c951ea0ef7a4f9c84ac5a49975f8540f76c3f73"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:30ffc046ebddccb3c4cac72c1a3e1bc343492336f3ca86d24672e90ccc5e788a"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f10954b233d4df5cc3137ffa5ced97f8894152df817e5d149bf05a0ef2ab8134"}, + {file = "yarl-1.12.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2e912b282466444023610e4498e3795c10e7cfd641744524876239fcf01d538d"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6af871f70cfd5b528bd322c65793b5fd5659858cdfaa35fbe563fb99b667ed1f"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c3e4e1f7b08d1ec6b685ccd3e2d762219c550164fbf524498532e39f9413436e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9a7ee79183f0b17dcede8b6723e7da2ded529cf159a878214be9a5d3098f5b1e"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96c8ff1e1dd680e38af0887927cab407a4e51d84a5f02ae3d6eb87233036c763"}, + {file = "yarl-1.12.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e9905fc2dc1319e4c39837b906a024cf71b1261cc66b0cd89678f779c0c61f5"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:01549468858b87d36f967c97d02e6e54106f444aeb947ed76f8f71f85ed07cec"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:96b34830bd6825ca0220bf005ea99ac83eb9ce51301ddb882dcf613ae6cd95fb"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:2aee7594d2c2221c717a8e394bbed4740029df4c0211ceb0f04815686e99c795"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:15871130439ad10abb25a4631120d60391aa762b85fcab971411e556247210a0"}, + {file = "yarl-1.12.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:838dde2cb570cfbb4cab8a876a0974e8b90973ea40b3ac27a79b8a74c8a2db15"}, + {file = "yarl-1.12.1-cp39-cp39-win32.whl", hash = "sha256:eacbcf30efaca7dc5cb264228ffecdb95fdb1e715b1ec937c0ce6b734161e0c8"}, + {file = "yarl-1.12.1-cp39-cp39-win_amd64.whl", hash = "sha256:76a59d1b63de859398bc7764c860a769499511463c1232155061fe0147f13e01"}, + {file = "yarl-1.12.1-py3-none-any.whl", hash = "sha256:dc3192a81ecd5ff954cecd690327badd5a84d00b877e1573f7c9097ce13e5bfb"}, + {file = "yarl-1.12.1.tar.gz", hash = "sha256:5b860055199aec8d6fe4dcee3c5196ce506ca198a50aab0059ffd26e8e815828"}, ] [package.dependencies] @@ -3621,23 +3808,28 @@ multidict = ">=4.0" [[package]] name = "zipp" -version = "3.19.2" +version = "3.20.2" description = "Backport of pathlib-compatible object wrapper for zip files" optional = false python-versions = ">=3.8" files = [ - {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, - {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, + {file = "zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350"}, + {file = "zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29"}, ] [package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)"] +cover = ["pytest-cov"] doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] -test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-ignore-flaky"] +type = ["pytest-mypy"] [extras] accelerate = ["accelerate"] bnb = ["bitsandbytes"] marlin = ["marlin-kernels", "marlin-kernels", "marlin-kernels", "marlin-kernels"] +moe = ["moe-kernels", "moe-kernels", "moe-kernels", "moe-kernels"] outlines = ["outlines"] peft = ["peft"] quantize = ["accelerate", "datasets", "texttable"] @@ -3646,4 +3838,4 @@ torch = ["torch"] [metadata] lock-version = "2.0" python-versions = ">=3.9,<3.13" -content-hash = "0ff7a244a409b616490cb238995bbe28dedf67ccb8855edafa2b71ee2e777dbd" +content-hash = "be5965e4e13fed32347983dba1690661f3e59a50d59fa26d4f2a8345418dd5a1" diff --git a/server/pyproject.toml b/server/pyproject.toml index 57deb1b8..ef67deb1 100644 --- a/server/pyproject.toml +++ b/server/pyproject.toml @@ -23,10 +23,10 @@ opentelemetry-api = "^1.25.0" opentelemetry-exporter-otlp = "^1.25.0" opentelemetry-instrumentation-grpc = "^0.46b0" hf-transfer = "^0.1.2" -sentencepiece = "^0.1.97" -tokenizers = "^0.19.1" +sentencepiece = "^0.2" +tokenizers = "^0.20" huggingface-hub = "^0.23" -transformers = "^4.43" +transformers = "^4.45" einops = "^0.6.1" texttable = { version = "^1.6.7", optional = true } datasets = { version = "^2.14.0", optional = true } @@ -46,6 +46,12 @@ marlin-kernels = [ { url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true }, { url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true }, ] +moe-kernels = [ + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true }, + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", python = "~3.10", optional = true }, + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true }, + { url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true }, +] rich = "^13.7.1" [tool.poetry.extras] @@ -53,6 +59,7 @@ torch = ["torch"] accelerate = ["accelerate"] bnb = ["bitsandbytes"] marlin = ["marlin-kernels"] +moe = ["moe-kernels"] peft = ["peft"] quantize = ["texttable", "datasets", "accelerate"] outlines = ["outlines"] diff --git a/server/requirements_cuda.txt b/server/requirements_cuda.txt index eb521bd6..5de75b6b 100644 --- a/server/requirements_cuda.txt +++ b/server/requirements_cuda.txt @@ -1,19 +1,19 @@ -certifi==2024.7.4 ; python_version >= "3.9" and python_version < "3.13" +certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" -filelock==3.15.4 ; python_version >= "3.9" and python_version < "3.13" -fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13" -googleapis-common-protos==1.63.2 ; python_version >= "3.9" and python_version < "3.13" +filelock==3.16.1 ; python_version >= "3.9" and python_version < "3.13" +fsspec==2024.6.1 ; python_version >= "3.9" and python_version < "3.13" +googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" -grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio==1.65.1 ; python_version >= "3.9" and python_version < "3.13" +grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13" -idna==3.7 ; python_version >= "3.9" and python_version < "3.13" +idna==3.10 ; python_version >= "3.9" and python_version < "3.13" importlib-metadata==7.1.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13" @@ -32,23 +32,23 @@ opentelemetry-semantic-conventions==0.46b0 ; python_version >= "3.9" and python_ packaging==24.1 ; python_version >= "3.9" and python_version < "3.13" pillow==10.4.0 ; python_version >= "3.9" and python_version < "3.13" prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13" -protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" +protobuf==4.25.5 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13" -pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" -regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13" +pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13" +regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13" -rich==13.7.1 ; python_version >= "3.9" and python_version < "3.13" -safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" +rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13" +safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13" -sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" -setuptools==71.1.0 ; python_version >= "3.9" and python_version < "3.13" -tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" -tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13" -transformers==4.43.1 ; python_version >= "3.9" and python_version < "3.13" +sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13" +setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13" +tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13" +tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13" +transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13" -urllib3==2.2.2 ; python_version >= "3.9" and python_version < "3.13" +urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" -zipp==3.19.2 ; python_version >= "3.9" and python_version < "3.13" +zipp==3.20.2 ; python_version >= "3.9" and python_version < "3.13" diff --git a/server/requirements_intel.txt b/server/requirements_intel.txt index eb521bd6..5de75b6b 100644 --- a/server/requirements_intel.txt +++ b/server/requirements_intel.txt @@ -1,19 +1,19 @@ -certifi==2024.7.4 ; python_version >= "3.9" and python_version < "3.13" +certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" -filelock==3.15.4 ; python_version >= "3.9" and python_version < "3.13" -fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13" -googleapis-common-protos==1.63.2 ; python_version >= "3.9" and python_version < "3.13" +filelock==3.16.1 ; python_version >= "3.9" and python_version < "3.13" +fsspec==2024.6.1 ; python_version >= "3.9" and python_version < "3.13" +googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" -grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio==1.65.1 ; python_version >= "3.9" and python_version < "3.13" +grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13" -idna==3.7 ; python_version >= "3.9" and python_version < "3.13" +idna==3.10 ; python_version >= "3.9" and python_version < "3.13" importlib-metadata==7.1.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13" @@ -32,23 +32,23 @@ opentelemetry-semantic-conventions==0.46b0 ; python_version >= "3.9" and python_ packaging==24.1 ; python_version >= "3.9" and python_version < "3.13" pillow==10.4.0 ; python_version >= "3.9" and python_version < "3.13" prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13" -protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" +protobuf==4.25.5 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13" -pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" -regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13" +pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13" +regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13" -rich==13.7.1 ; python_version >= "3.9" and python_version < "3.13" -safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" +rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13" +safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13" -sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" -setuptools==71.1.0 ; python_version >= "3.9" and python_version < "3.13" -tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" -tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13" -transformers==4.43.1 ; python_version >= "3.9" and python_version < "3.13" +sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13" +setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13" +tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13" +tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13" +transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13" -urllib3==2.2.2 ; python_version >= "3.9" and python_version < "3.13" +urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" -zipp==3.19.2 ; python_version >= "3.9" and python_version < "3.13" +zipp==3.20.2 ; python_version >= "3.9" and python_version < "3.13" diff --git a/server/requirements_rocm.txt b/server/requirements_rocm.txt index eb521bd6..5de75b6b 100644 --- a/server/requirements_rocm.txt +++ b/server/requirements_rocm.txt @@ -1,19 +1,19 @@ -certifi==2024.7.4 ; python_version >= "3.9" and python_version < "3.13" +certifi==2024.8.30 ; python_version >= "3.9" and python_version < "3.13" charset-normalizer==3.3.2 ; python_version >= "3.9" and python_version < "3.13" click==8.1.7 ; python_version >= "3.9" and python_version < "3.13" colorama==0.4.6 ; python_version >= "3.9" and python_version < "3.13" and (sys_platform == "win32" or platform_system == "Windows") deprecated==1.2.14 ; python_version >= "3.9" and python_version < "3.13" einops==0.6.1 ; python_version >= "3.9" and python_version < "3.13" -filelock==3.15.4 ; python_version >= "3.9" and python_version < "3.13" -fsspec==2024.5.0 ; python_version >= "3.9" and python_version < "3.13" -googleapis-common-protos==1.63.2 ; python_version >= "3.9" and python_version < "3.13" +filelock==3.16.1 ; python_version >= "3.9" and python_version < "3.13" +fsspec==2024.6.1 ; python_version >= "3.9" and python_version < "3.13" +googleapis-common-protos==1.65.0 ; python_version >= "3.9" and python_version < "3.13" grpc-interceptor==0.15.4 ; python_version >= "3.9" and python_version < "3.13" -grpcio-reflection==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio-status==1.62.2 ; python_version >= "3.9" and python_version < "3.13" -grpcio==1.65.1 ; python_version >= "3.9" and python_version < "3.13" +grpcio-reflection==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio-status==1.62.3 ; python_version >= "3.9" and python_version < "3.13" +grpcio==1.66.1 ; python_version >= "3.9" and python_version < "3.13" hf-transfer==0.1.8 ; python_version >= "3.9" and python_version < "3.13" huggingface-hub==0.23.5 ; python_version >= "3.9" and python_version < "3.13" -idna==3.7 ; python_version >= "3.9" and python_version < "3.13" +idna==3.10 ; python_version >= "3.9" and python_version < "3.13" importlib-metadata==7.1.0 ; python_version >= "3.9" and python_version < "3.13" loguru==0.6.0 ; python_version >= "3.9" and python_version < "3.13" markdown-it-py==3.0.0 ; python_version >= "3.9" and python_version < "3.13" @@ -32,23 +32,23 @@ opentelemetry-semantic-conventions==0.46b0 ; python_version >= "3.9" and python_ packaging==24.1 ; python_version >= "3.9" and python_version < "3.13" pillow==10.4.0 ; python_version >= "3.9" and python_version < "3.13" prometheus-client==0.20.0 ; python_version >= "3.9" and python_version < "3.13" -protobuf==4.25.3 ; python_version >= "3.9" and python_version < "3.13" +protobuf==4.25.5 ; python_version >= "3.9" and python_version < "3.13" py-cpuinfo==9.0.0 ; python_version >= "3.9" and python_version < "3.13" pygments==2.18.0 ; python_version >= "3.9" and python_version < "3.13" -pyyaml==6.0.1 ; python_version >= "3.9" and python_version < "3.13" -regex==2024.5.15 ; python_version >= "3.9" and python_version < "3.13" +pyyaml==6.0.2 ; python_version >= "3.9" and python_version < "3.13" +regex==2024.9.11 ; python_version >= "3.9" and python_version < "3.13" requests==2.32.3 ; python_version >= "3.9" and python_version < "3.13" -rich==13.7.1 ; python_version >= "3.9" and python_version < "3.13" -safetensors==0.4.3 ; python_version >= "3.9" and python_version < "3.13" +rich==13.8.1 ; python_version >= "3.9" and python_version < "3.13" +safetensors==0.4.5 ; python_version >= "3.9" and python_version < "3.13" scipy==1.13.1 ; python_version >= "3.9" and python_version < "3.13" -sentencepiece==0.1.99 ; python_version >= "3.9" and python_version < "3.13" -setuptools==71.1.0 ; python_version >= "3.9" and python_version < "3.13" -tokenizers==0.19.1 ; python_version >= "3.9" and python_version < "3.13" -tqdm==4.66.4 ; python_version >= "3.9" and python_version < "3.13" -transformers==4.43.1 ; python_version >= "3.9" and python_version < "3.13" +sentencepiece==0.2.0 ; python_version >= "3.9" and python_version < "3.13" +setuptools==75.1.0 ; python_version >= "3.9" and python_version < "3.13" +tokenizers==0.20.0 ; python_version >= "3.9" and python_version < "3.13" +tqdm==4.66.5 ; python_version >= "3.9" and python_version < "3.13" +transformers==4.45.0 ; python_version >= "3.9" and python_version < "3.13" typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13" typing-extensions==4.12.2 ; python_version >= "3.9" and python_version < "3.13" -urllib3==2.2.2 ; python_version >= "3.9" and python_version < "3.13" +urllib3==2.2.3 ; python_version >= "3.9" and python_version < "3.13" win32-setctime==1.1.0 ; python_version >= "3.9" and python_version < "3.13" and sys_platform == "win32" wrapt==1.16.0 ; python_version >= "3.9" and python_version < "3.13" -zipp==3.19.2 ; python_version >= "3.9" and python_version < "3.13" +zipp==3.20.2 ; python_version >= "3.9" and python_version < "3.13" diff --git a/server/text_generation_server/cli.py b/server/text_generation_server/cli.py index 10aa3a3b..db390234 100644 --- a/server/text_generation_server/cli.py +++ b/server/text_generation_server/cli.py @@ -30,6 +30,10 @@ class Dtype(str, Enum): bloat16 = "bfloat16" +class KVCacheDtype(str, Enum): + fp8_e5m2 = "fp8_e5m2" + + @app.command() def serve( model_id: str, @@ -38,6 +42,7 @@ def serve( quantize: Optional[Quantization] = None, speculate: Optional[int] = None, dtype: Optional[Dtype] = None, + kv_cache_dtype: Optional[KVCacheDtype] = None, trust_remote_code: bool = False, uds_path: Path = "/tmp/text-generation-server", logger_level: str = "INFO", @@ -97,6 +102,7 @@ def serve( # Downgrade enum into str for easier management later on quantize = None if quantize is None else quantize.value dtype = None if dtype is None else dtype.value + kv_cache_dtype = None if kv_cache_dtype is None else kv_cache_dtype.value if dtype is not None and quantize not in { None, "bitsandbytes", @@ -114,6 +120,7 @@ def serve( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, uds_path, max_input_tokens, diff --git a/server/text_generation_server/layers/attention/__init__.py b/server/text_generation_server/layers/attention/__init__.py index 56fc5319..cc7f0caa 100644 --- a/server/text_generation_server/layers/attention/__init__.py +++ b/server/text_generation_server/layers/attention/__init__.py @@ -1,29 +1,47 @@ -from text_generation_server.utils.import_utils import SYSTEM import os +from text_generation_server.utils.import_utils import SYSTEM + from .common import Seqlen if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false": raise ImportError("`USE_FLASH_ATTENTION` is false.") if SYSTEM == "cuda": from .cuda import ( + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, attention, paged_attention, reshape_and_cache, - SUPPORTS_WINDOWING, ) elif SYSTEM == "rocm": - from .rocm import attention, paged_attention, reshape_and_cache, SUPPORTS_WINDOWING + from .rocm import ( + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, + attention, + paged_attention, + reshape_and_cache, + ) elif SYSTEM == "ipex": - from .ipex import attention, paged_attention, reshape_and_cache, SUPPORTS_WINDOWING + from .ipex import ( + PREFILL_IN_KV_CACHE, + SUPPORTS_WINDOWING, + attention, + paged_attention, + reshape_and_cache, + ) else: raise ImportError(f"System {SYSTEM} doesn't support flash/paged attention") +# KVCache needs `reshape_and_cache`, so ensure that it is defined already. +from .kv_cache import KVCache __all__ = [ "attention", "paged_attention", "reshape_and_cache", + "PREFILL_IN_KV_CACHE", "SUPPORTS_WINDOWING", + "KVCache", "Seqlen", ] diff --git a/server/text_generation_server/layers/attention/common.py b/server/text_generation_server/layers/attention/common.py index 855f4dfc..d6e512c0 100644 --- a/server/text_generation_server/layers/attention/common.py +++ b/server/text_generation_server/layers/attention/common.py @@ -1,4 +1,5 @@ from dataclasses import dataclass +from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.models.globals import ATTENTION import torch from typing import Optional @@ -65,5 +66,7 @@ else: max_k: int def clamp(self, max): + if SYSTEM == "rocm": + return self raise NotImplementedError("Not implemented seqlen for paged") return Seqlen(torch.clamp(self.input_lengths, max=max)) diff --git a/server/text_generation_server/layers/attention/cuda.py b/server/text_generation_server/layers/attention/cuda.py index 4b588b5c..cd3ea369 100644 --- a/server/text_generation_server/layers/attention/cuda.py +++ b/server/text_generation_server/layers/attention/cuda.py @@ -287,16 +287,14 @@ elif V2: else: def attention( - q, - k, - v, - key_cache: torch.Tensor, - value_cache: torch.Tensor, - cu_seqlens, - max_s, - softmax_scale, - window_size_left=-1, - causal=None, + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + seqlen: Seqlen, + block_tables: torch.Tensor, + softmax_scale: float, + window_size_left: int = -1, + causal: bool = True, softcap=None, ): if window_size_left != -1: @@ -338,16 +336,30 @@ else: k, v, out, - cu_seqlens, - cu_seqlens, - max_s, - max_s, + seqlen.cu_seqlen_q, + seqlen.cu_seqlen_q, + seqlen.max_q, + seqlen.max_k, 0.0, softmax_scale, False, - True, + causal, False, 0, None, ) return out + + +# Prefill in the cache with every kind of attention, unless we +# have a configuration that requires flash-attention v1, which +# does not support block tables. +PREFILL_IN_KV_CACHE = ATTENTION != "paged" or V2 + +__all__ = [ + "PREFILL_IN_KV_CACHE", + "SUPPORTS_WINDOWING", + "attention", + "paged_attention", + "reshape_and_cache", +] diff --git a/server/text_generation_server/layers/attention/flashinfer.py b/server/text_generation_server/layers/attention/flashinfer.py index e1ef62c5..d603c6f5 100644 --- a/server/text_generation_server/layers/attention/flashinfer.py +++ b/server/text_generation_server/layers/attention/flashinfer.py @@ -50,7 +50,8 @@ def use_prefill_with_paged_kv_state( num_kv_heads: int, head_size: int, page_size: int, - query_dtype: str = "float16", + dtype: torch.dtype, + window_left: int, ): """ Context manager to set the active flashinfer prefill state to the given @@ -90,8 +91,9 @@ def use_prefill_with_paged_kv_state( num_qo_heads=num_heads, num_kv_heads=num_kv_heads, head_dim=head_size, - q_data_type=query_dtype, + q_data_type=dtype, page_size=page_size, + window_left=window_left, ) yield finally: @@ -119,7 +121,8 @@ def use_prefill_state( num_heads: int, num_kv_heads: int, head_size: int, - query_dtype: str = "float16", + dtype: torch.dtype, + window_left: int, ): """ Context manager to set the active flashinfer prefill state to the given @@ -135,7 +138,8 @@ def use_prefill_state( num_qo_heads=num_heads, num_kv_heads=num_kv_heads, head_dim=head_size, - q_data_type=query_dtype, + q_data_type=dtype, + window_left=window_left, ) yield finally: @@ -152,11 +156,13 @@ def create_decode_state( ): """Create a decode state.""" workspace_buffer = get_workspace(device) + num_groups = num_heads // num_kv_heads return flashinfer.BatchDecodeWithPagedKVCacheWrapper( workspace_buffer, kv_layout="NHD", use_cuda_graph=False, - use_tensor_cores=num_heads // num_kv_heads > 4, + # Taken from https://github.com/flashinfer-ai/flashinfer/blob/33ef95700981ba70f4cab63b8931e562bc795b21/python/flashinfer/decode.py#L57-L60 + use_tensor_cores=num_groups not in [1, 2, 4, 8], ) @@ -175,6 +181,7 @@ def create_decode_state_cuda_graphs( therefore stored as part of the state. """ workspace_buffer = get_workspace(device) + num_groups = num_heads // num_kv_heads return flashinfer.BatchDecodeWithPagedKVCacheWrapper( workspace_buffer, kv_layout="NHD", @@ -182,7 +189,8 @@ def create_decode_state_cuda_graphs( paged_kv_indices_buffer=block_tables, paged_kv_indptr_buffer=block_tables_ptr, paged_kv_last_page_len_buffer=last_page_len, - use_tensor_cores=num_heads // num_kv_heads > 4, + # Taken from https://github.com/flashinfer-ai/flashinfer/blob/33ef95700981ba70f4cab63b8931e562bc795b21/python/flashinfer/decode.py#L57-L60 + use_tensor_cores=num_groups not in [1, 2, 4, 8], ) @@ -196,7 +204,8 @@ def use_decode_state( num_kv_heads: int, head_size: int, page_size: int, - query_dtype: str = "float16", + dtype: torch.dtype, + window_left: int, ): """ Context manager to set the active flashinfer decoding state to the given @@ -231,7 +240,9 @@ def use_decode_state( num_kv_heads=num_kv_heads, head_dim=head_size, page_size=page_size, - q_data_type=query_dtype, + data_type=dtype, + q_data_type=dtype, + window_left=window_left, ) yield finally: diff --git a/server/text_generation_server/layers/attention/ipex.py b/server/text_generation_server/layers/attention/ipex.py index d0eadc75..131c9bb0 100644 --- a/server/text_generation_server/layers/attention/ipex.py +++ b/server/text_generation_server/layers/attention/ipex.py @@ -5,6 +5,7 @@ from text_generation_server.layers.attention import Seqlen from typing import Optional SUPPORTS_WINDOWING = False +PREFILL_IN_KV_CACHE = False def attention( @@ -79,3 +80,12 @@ def paged_attention( None, ) return out + + +__all__ = [ + "PREFILL_IN_KV_CACHE", + "SUPPORTS_WINDOWING", + "attention", + "paged_attention", + "reshape_and_cache", +] diff --git a/server/text_generation_server/layers/attention/kv_cache.py b/server/text_generation_server/layers/attention/kv_cache.py new file mode 100644 index 00000000..ced4b5b4 --- /dev/null +++ b/server/text_generation_server/layers/attention/kv_cache.py @@ -0,0 +1,121 @@ +from typing import Tuple + +import torch +from text_generation_server.models.globals import ATTENTION, BLOCK_SIZE +from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.layers.attention import reshape_and_cache + + +class KVCache: + """ + Key-value cache for attention layers. + """ + + kv_cache: Tuple[torch.Tensor, torch.Tensor] + + def __init__( + self, + *, + num_blocks: int, + num_heads: int, + head_size: int, + dtype: torch.dtype, + device: torch.device, + ): + """Construct the key-value cache for a layer.""" + + if ( + dtype == torch.float8_e5m2 + and (ATTENTION != "flashinfer" + or SYSTEM != "cuda") + ): + raise ValueError( + "float8_e5m2 KV cache is currently only supported for flashinfer on CUDA" + ) + + element_size = torch.tensor([], dtype=dtype).element_size() + if SYSTEM == "ipex" and device.type == "xpu": + x = 1 + else: + x = BLOCK_SIZE // element_size + + if ATTENTION in {"flashdecoding", "flashinfer"}: + self.kv_cache = ( + torch.empty( + (num_blocks, BLOCK_SIZE, num_heads, head_size), + dtype=dtype, + device=device, + ), + torch.empty( + (num_blocks, BLOCK_SIZE, num_heads, head_size), + dtype=dtype, + device=device, + ), + ) + elif SYSTEM == "ipex" and device == torch.device("cpu"): + self.kv_cache = ( + torch.empty( + (num_blocks, num_heads, BLOCK_SIZE, head_size), + dtype=dtype, + device=device, + ), + torch.empty( + (num_blocks, num_heads, BLOCK_SIZE, head_size), + dtype=dtype, + device=device, + ), + ) + else: + self.kv_cache = ( + torch.zeros( + (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x), + dtype=dtype, + device=device, + ), + torch.zeros( + (num_blocks, num_heads, head_size, BLOCK_SIZE), + dtype=dtype, + device=device, + ), + ) + + @property + def key(self): + """Get the key cache.""" + + return self.kv_cache[0] + + @property + def value(self): + """Get the value cache.""" + + return self.kv_cache[1] + + def store( + self, + *, + key: torch.Tensor, + value: torch.Tensor, + slots: torch.Tensor, + ): + """Store the key and value at the given slots.""" + + key_cache = self.kv_cache[0] + value_cache = self.kv_cache[1] + + if ATTENTION in {"flashdecoding", "flashinfer"}: + # TODO: add scale + key = key.to(key_cache.dtype) + value = value.to(value_cache.dtype) + if key_cache.dtype == torch.float8_e5m2: + # Torch index_put does not support float8_e5m2 yet, so + # put as raw data instead. + key_cache = key_cache.view(torch.uint8) + value_cache = value_cache.view(torch.uint8) + key = key.view(torch.uint8) + value = value.view(torch.uint8) + shape = key_cache.shape + key_cache.view(-1, shape[-2], shape[-1])[slots] = key + value_cache.view(-1, shape[-2], shape[-1])[slots] = value + else: + reshape_and_cache(key, value, key_cache, value_cache, slots) diff --git a/server/text_generation_server/layers/attention/rocm.py b/server/text_generation_server/layers/attention/rocm.py index 16ce8d2b..01d4685a 100644 --- a/server/text_generation_server/layers/attention/rocm.py +++ b/server/text_generation_server/layers/attention/rocm.py @@ -1,4 +1,5 @@ import os +from typing import Optional import torch from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.models.globals import ATTENTION @@ -8,13 +9,28 @@ from loguru import logger major, minor = torch.cuda.get_device_capability() is_sm75 = major == 7 and minor == 5 -_PARTITION_SIZE = 512 + +_PARTITION_SIZE_V1V2 = 512 +_PARTITION_SIZE_CUSTOM = 256 use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"} ENGINE = "triton" if use_triton else "ck" +PREFILL_IN_KV_CACHE = False + +use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0" try: - from vllm._C import cache_ops + if use_rocm_custom_paged_attn: + from vllm._custom_C import paged_attention_custom +except ImportError as e: + log_master( + logger.info, + f"Custom Paged Attention not available. Complete error: {e}", + ) + use_rocm_custom_paged_attn = False + +try: + import vllm._custom_ops as ops except Exception as e: raise ImportError( f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}" @@ -33,9 +49,7 @@ def reshape_and_cache( key_cache.view(-1, shape[-2], shape[-1])[slots] = key value_cache.view(-1, shape[-2], shape[-1])[slots] = value else: - cache_ops.reshape_and_cache( - key, value, key_cache, value_cache, slots, "auto", 1.0 - ) + ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0) def paged_attention( @@ -45,8 +59,9 @@ def paged_attention( kv_head_mapping: torch.Tensor, softmax_scale: float, block_tables: torch.Tensor, - input_lengths: Seqlen, + seqlen: Seqlen, max_s: int, + softcap: Optional[float] = None, ): # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py # Copyright 2023 The vLLM team. All rights @@ -65,11 +80,31 @@ def paged_attention( # limitations under the License. # + if softcap is not None: + raise RuntimeError("Paged attention doesn't support softcapping") + # value_cache => [num_blocks, num_heads, head_size, block_size] block_size = value_cache.shape[3] num_seqs, num_heads, head_size = query.shape + + num_kv_heads = key_cache.shape[1] + gqa_ratio = num_heads // num_kv_heads + use_custom = ( + use_rocm_custom_paged_attn + and (query.dtype == torch.half or query.dtype == torch.bfloat16) + and (head_size == 128 or head_size == 64) + and (block_size == 16 or block_size == 32) + and (gqa_ratio >= 1 and gqa_ratio <= 16) + and max_s <= 32768 + ) + + if not use_custom: + _PARTITION_SIZE = _PARTITION_SIZE_V1V2 + else: + _PARTITION_SIZE = _PARTITION_SIZE_CUSTOM + max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE - input_lengths = input_lengths.input_lengths + input_lengths = seqlen.input_lengths out = torch.empty_like(query) @@ -78,9 +113,13 @@ def paged_attention( # V1 to avoid the overhead of reduction. Also, if the number of # sequences or heads is large, we use V1 since there is enough work # to parallelize. - from vllm._C import ops + import vllm._custom_ops as ops - use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512) + use_v1 = ( + max_s <= 8192 + and (max_num_partitions == 1 or num_seqs * num_heads > 512) + and not use_custom + ) if use_v1: ops.paged_attention_v1( out, @@ -112,24 +151,44 @@ def paged_attention( ) max_logits = torch.empty_like(exp_sums) - ops.paged_attention_v2( - out, - exp_sums, - max_logits, - tmp_output, - query, - key_cache, - value_cache, - kv_head_mapping, - softmax_scale, - block_tables, - input_lengths, - block_size, - max_s, - None, - "auto", - 1.0, - ) + if not use_custom: + ops.paged_attention_v2( + out, + exp_sums, + max_logits, + tmp_output, + query, + key_cache, + value_cache, + kv_head_mapping, + softmax_scale, + block_tables, + input_lengths, + block_size, + max_s, + None, + "auto", + 1.0, + ) + else: + paged_attention_custom( + out, + exp_sums, + max_logits, + tmp_output, + query, + key_cache, + value_cache, + num_kv_heads, + softmax_scale, + block_tables, + input_lengths, + block_size, + max_s, + None, + "auto", + ) + return out @@ -156,7 +215,6 @@ if ENGINE != "triton": "or install flash attention with `cd server && make install install-flash-attention`" ) from e else: - for idx in range(torch.cuda.device_count()): name = torch.cuda.get_device_name(idx) if "MI210" not in name and "MI250" not in name: @@ -173,13 +231,14 @@ if ENGINE == "ck": def attention( q, - k, - v, - cu_seqlens, - max_s, - softmax_scale, - window_size_left=-1, - causal=True, + key_cache: torch.Tensor, + value_cache: torch.Tensor, + seqlen: Seqlen, + block_tables: torch.Tensor, + softmax_scale: float, + window_size_left: int = -1, + causal: bool = True, + softcap: float = 0.0, ): if window_size_left <= 0 and window_size_left != -1: raise ValueError("`window_size_left` must be > 0 or -1") @@ -189,46 +248,57 @@ if ENGINE == "ck": # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load. return flash_attn_2_cuda.varlen_fwd( q, - k, - v, + key_cache, + value_cache, out, - cu_seqlens, - cu_seqlens, - max_s, - max_s, + seqlen.cu_seqlen_q, + seqlen.cu_seqlen_q, + None, + None, + None, + None, + seqlen.max_q, + seqlen.max_k, 0.0, softmax_scale, False, causal, + window_size_left, + 0, + softcap, False, None, - ) + )[0] elif ENGINE == "triton": from .flash_attn_triton import triton_attention def attention( q, - k, - v, - cu_seqlens, - max_s, - softmax_scale, - window_size_left=-1, - causal=True, + key_cache: torch.Tensor, + value_cache: torch.Tensor, + seqlen: Seqlen, + block_tables: torch.Tensor, + softmax_scale: float, + window_size_left: int = -1, + causal: bool = True, + softcap: Optional[float] = None, ): + if softcap is not None: + raise NotImplementedError("softcap is only available with CK flash attn") + out = torch.empty_like(q) # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load. output, _ = triton_attention( q, - k, - v, + key_cache, + value_cache, out, - cu_seqlens, - cu_seqlens, - max_s, - max_s, + seqlen.cu_seqlen_q, + seqlen.cu_seqlen_q, + seqlen.max_q, + seqlen.max_k, causal, softmax_scale, ) @@ -236,3 +306,11 @@ elif ENGINE == "triton": else: raise RuntimeError(f"Unknown attention engine {ENGINE}") + +__all__ = [ + "PREFILL_IN_KV_CACHE", + "SUPPORTS_WINDOWING", + "attention", + "paged_attention", + "reshape_and_cache", +] diff --git a/server/text_generation_server/layers/fp8.py b/server/text_generation_server/layers/fp8.py index 59b08b55..61dd5115 100644 --- a/server/text_generation_server/layers/fp8.py +++ b/server/text_generation_server/layers/fp8.py @@ -87,9 +87,11 @@ class HybridFP8UnquantLoader(WeightsLoader): if w.dtype == torch.float8_e4m3fn: # FP8 branch - scale = weights.get_tensor( - f"{prefix}.weight_scale", to_dtype=False - ).reshape(-1) + scale = ( + weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) + .reshape(-1) + .expand(w.shape[0]) + ) return Fp8Weight( weight=w, weight_scale=scale, @@ -113,9 +115,16 @@ class HybridFP8UnquantLoader(WeightsLoader): if w.dtype == torch.float8_e4m3fn: # FP8 branch - scale = weights.get_packed_sharded( - f"{prefix}.weight_scale", dim=0, block_sizes=block_sizes, to_dtype=False - ).reshape(-1) + scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) + if scale.numel() > 1: + scale = weights.get_packed_sharded( + f"{prefix}.weight_scale", + dim=0, + block_sizes=block_sizes, + to_dtype=False, + ) + scale = scale.reshape(-1).expand(w.shape[0]) + return Fp8Weight( weight=w, weight_scale=scale, @@ -132,16 +141,19 @@ class HybridFP8UnquantLoader(WeightsLoader): w = [ weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes ] + shapes = [x.shape for x in w] + # Concat then send to the device w = torch.cat(w, dim=dim).to(weights.device) # FP8 branch if w.dtype == torch.float8_e4m3fn: scale = [ - weights.get_sharded(f"{p}.weight_scale", dim=0, to_dtype=False) - for p in prefixes + _load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape) + for p, shape in zip(prefixes, shapes) ] scale = torch.cat(scale, dim=0).reshape(-1) + return Fp8Weight( weight=w, weight_scale=scale, @@ -157,9 +169,11 @@ class HybridFP8UnquantLoader(WeightsLoader): w = weights.get_sharded(f"{prefix}.weight", dim=1) # FP8 branch if w.dtype == torch.float8_e4m3fn: - scale = weights.get_tensor( - f"{prefix}.weight_scale", to_dtype=False - ).reshape(-1) + scale = ( + weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False) + .reshape(-1) + .expand(w.shape[0]) + ) return Fp8Weight( weight=w, weight_scale=scale, @@ -182,6 +196,9 @@ class Fp8Weight(Weight): def get_linear(self, bias: torch.Tensor): if self.weight_scale is None: return get_fp8_linear().from_unquant(self.weight, bias, self.dtype) + # This is not checked by the fbgemm kernels, but they require contiguous + # memory. Can be non-contiguous when we e.g. expand from scalars. + self.weight_scale = self.weight_scale.contiguous() return get_fp8_linear().from_fp8( self.weight, self.weight_scale, self.activation_scale_ub, bias, self.dtype ) @@ -222,6 +239,9 @@ class Fp8Linear(torch.nn.Module): @classmethod def from_fp8(cls, weight, scale, input_scale, bias, dtype): + if FBGEMM_DYN_AVAILABLE: + # fbgemm needs float32 scales. + scale = scale.float() return cls( qweight=weight, scale=scale, @@ -256,3 +276,10 @@ class Fp8Linear(torch.nn.Module): bias=self.bias, ) return output + + +def _load_scalar_or_matrix_scale(weights: Weights, prefix: str, shape: torch.Size): + scale = weights.get_tensor(prefix, to_dtype=False) + if scale.numel() > 1: + scale = weights.get_sharded(prefix, dim=0, to_dtype=False) + return scale.reshape(-1).expand(shape[0]) diff --git a/server/text_generation_server/layers/linear.py b/server/text_generation_server/layers/linear.py index 12d7f83a..08306d57 100644 --- a/server/text_generation_server/layers/linear.py +++ b/server/text_generation_server/layers/linear.py @@ -1,12 +1,21 @@ import torch from text_generation_server.utils.import_utils import SYSTEM from torch.nn import functional as F +import os if SYSTEM == "rocm": - try: - from vllm import _custom_C - except Exception as e: - raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}") + ROCM_USE_SKINNY_GEMM = os.getenv("ROCM_USE_SKINNY_GEMM", "True").lower() in ( + "true", + "1", + ) + + if ROCM_USE_SKINNY_GEMM: + try: + from vllm import _custom_C + except Exception as e: + raise ImportError( + f"Could not load `vllm._custom_C` for ROCm skinny gemm. Full error: {e}" + ) class FastLinear(torch.nn.Module): @@ -48,6 +57,14 @@ class FastLinearROCm(torch.nn.Module): else: self.bias = None + self.cu_count = torch.cuda.get_device_properties( + device="cuda" + ).multi_processor_count + self.use_skinny_gemm = ( + ROCM_USE_SKINNY_GEMM + and "gfx1" not in torch.cuda.get_device_properties("cuda").gcnArchName + ) + @classmethod def load(cls, config, prefix: str, weights, bias: bool): weight = weights.get_tensor(f"{prefix}.weight") @@ -61,7 +78,11 @@ class FastLinearROCm(torch.nn.Module): weight = self.weight bias = self.bias - if SYSTEM == "rocm" and inp.numel() // inp.shape[-1] == 1: + if ( + self.use_skinny_gemm + and inp.dtype == torch.float16 + and inp.shape[-1] % 8 == 0 + ): batched = False inp_shape = inp.shape @@ -69,13 +90,16 @@ class FastLinearROCm(torch.nn.Module): inp = inp.view(-1, inp_shape[-1]) batched = True - m, k = weight.shape[0], inp_shape[1] - out = torch.empty( - inp_shape[0], weight.shape[0], dtype=inp.dtype, device="cuda" - ) - if (k == 8192 and (m == 1280 or m == 7168)) or (k == 3584 and m == 8192): - _custom_C.LLMM1(weight, inp, out, 8) - elif k <= 8192 and k % 8 == 0 and m % 4 == 0: + m, n, k = weight.shape[0], inp_shape[0], inp_shape[1] + if m > 8 and n <= 4: + out = torch.empty( + inp_shape[0], weight.shape[0], dtype=inp.dtype, device=weight.device + ) + _custom_C.wvSpltK(weight, inp, out, n, self.cu_count) + elif m % 4 == 0 and n == 1 and k <= 8192: + out = torch.empty( + inp_shape[0], weight.shape[0], dtype=inp.dtype, device=weight.device + ) _custom_C.LLMM1(weight, inp, out, 4) else: out = F.linear(inp, weight) diff --git a/server/text_generation_server/layers/marlin/gptq.py b/server/text_generation_server/layers/marlin/gptq.py index c7663b60..0a785d94 100644 --- a/server/text_generation_server/layers/marlin/gptq.py +++ b/server/text_generation_server/layers/marlin/gptq.py @@ -109,7 +109,6 @@ class GPTQMarlinWeightsLoader(WeightsLoader): prefix: str, block_sizes: Union[int, List[int]], ): - try: qweight = weights.get_packed_sharded( f"{prefix}.qweight", dim=1, block_sizes=block_sizes @@ -352,7 +351,7 @@ def repack_gptq_for_marlin( scales = permute_scales(scales) - is_full_k = not (desc_act and sharded_infeatures) + is_full_k = not (desc_act and groupsize != -1 and sharded_infeatures) return GPTQMarlinWeight( qweight=repacked, diff --git a/server/text_generation_server/layers/moe/__init__.py b/server/text_generation_server/layers/moe/__init__.py new file mode 100644 index 00000000..2c46ca02 --- /dev/null +++ b/server/text_generation_server/layers/moe/__init__.py @@ -0,0 +1,257 @@ +from typing import Optional, Protocol, runtime_checkable + +import torch +import torch.nn as nn +from loguru import logger +from transformers.activations import ACT2FN + +from text_generation_server.layers import ( + TensorParallelColumnLinear, + TensorParallelRowLinear, +) +from text_generation_server.layers.fp8 import HybridFP8UnquantLoader +from text_generation_server.layers.marlin import GPTQMarlinWeightsLoader +from text_generation_server.layers.moe.gptq_marlin import ( + GPTQMarlinSparseMoELayer, + can_use_marlin_moe_gemm, +) +from text_generation_server.layers.moe.unquantized import UnquantizedSparseMoELayer +from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.utils.log import log_once +from text_generation_server.utils.weights import ( + DefaultWeightsLoader, + Weights, + UnquantizedWeight, +) + +if SYSTEM == "rocm": + from .fused_moe_rocm import grouped_topk + from vllm.model_executor.layers.fused_moe import fused_topk +elif SYSTEM != "ipex": + from moe_kernels.fused_moe import fused_topk, grouped_topk + + +# NOTE: we are using a protocol here, because multiple inherance is not nice. +# We need `Module`, and `Module` -> some abstract class -> some concrete +# class inheritance is whacky. + + +@runtime_checkable +class MoELayer(Protocol): + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + hidden_act: str = "silu", + ): ... + + def forward( + self, x: torch.Tensor, *, gating_output: torch.Tensor + ) -> torch.Tensor: ... + + +class DenseMoELayer(nn.Module): + """ + Layer for MoE that applies *all* experts to each tokens and then weights + their outputs based on the calculated routing. This layer is much slower + than `SparseMoELayer` and should only be used when no fused kernels are + available (e.g. for unsupported quantizers). + """ + + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + hidden_act: str = "silu", + ): + super().__init__() + + log_once( + logger.info, + "No fused layers are available for this model type, using (slower) dense MoE layer", + ) + + assert (n_expert_group is None) == ( + topk_group is None + ), "n_expert_group and topk_group must both be None or have some value" + + self.n_expert_group = n_expert_group + self.n_experts = n_experts + self.renormalize = renormalize + self.topk = topk + self.topk_group = topk_group + + if "gelu" in hidden_act: + self.act = lambda x: torch.nn.functional.gelu( + x, + approximate=( + "tanh" + if hidden_act in ["gelu_fast", "gelu_pytorch_tanh"] + else "none" + ), + ) + elif "silu" in hidden_act: + self.act = torch.nn.functional.silu + else: + self.act = ACT2FN[hidden_act] + + self.gate_proj = [ + TensorParallelColumnLinear.load( + None, + prefix=f"{prefix}.{i}.{gate_proj_name}", + weights=weights, + bias=False, + ) + for i in range(self.n_experts) + ] + self.up_proj = [ + TensorParallelColumnLinear.load( + None, + prefix=f"{prefix}.{i}.{up_proj_name}", + weights=weights, + bias=False, + ) + for i in range(self.n_experts) + ] + self.down_proj = [ + TensorParallelRowLinear.load( + None, + prefix=f"{prefix}.{i}.{down_proj_name}", + weights=weights, + bias=False, + ) + for i in range(self.n_experts) + ] + + self.process_group = weights.process_group + + def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: + """ + x: (sequence_length, model_dim) + gating_output: (sequence_length, n_experts) + """ + # optional reshape + input_shape = x.shape + x = x.view(-1, input_shape[-1]) + + if self.n_expert_group is not None and self.topk_group is not None: + topk_weights, topk_ids = grouped_topk( + x, + gating_output, + self.topk, + renormalize=self.renormalize, + num_expert_group=self.n_expert_group, + topk_group=self.topk_group, + ) + else: + topk_weights, topk_ids = fused_topk( + x, gating_output, self.topk, self.renormalize + ) + topk_weights = topk_weights.to(x.dtype) + + weights = torch.zeros( + topk_ids.shape[0], self.n_experts, dtype=x.dtype, device=x.device + ) + + weights.scatter_(1, topk_ids.long(), topk_weights.to(weights.dtype)) + + out = torch.zeros_like(x) + for i in range(self.n_experts): + h = self.act(self.gate_proj[i](x)) * self.up_proj[i](x) + h = self.down_proj[i](h, reduce=False) + out += h * weights[:, i].view(-1, 1) + + return out + + +class SparseMoELayer(nn.Module): + """ + Layer for MoE that uses fused kernels to only apply the active experts + for each token (rather than applying all experts and selecting the + outputs of active experts). + """ + + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + ): + super().__init__() + + if ( + isinstance(weights.loader, DefaultWeightsLoader) + and isinstance(weights.loader.weight_class, UnquantizedWeight) + ) or isinstance(weights.loader, HybridFP8UnquantLoader): + cls = UnquantizedSparseMoELayer + elif isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym: + cls = GPTQMarlinSparseMoELayer + else: + raise ValueError( + f"Unsupported weights loader: {weights.loader}, sparse MoE is only supported for unquantized and GPTQ weights" + ) + + log_once( + logger.info, + "Using MoE layer wih fused gemm", + ) + + self.moe = cls( + n_expert_group=n_expert_group, + n_experts=n_experts, + prefix=prefix, + renormalize=renormalize, + topk=topk, + topk_group=topk_group, + weights=weights, + gate_proj_name=gate_proj_name, + up_proj_name=up_proj_name, + down_proj_name=down_proj_name, + ) + + def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: + return self.moe(x, gating_output=gating_output) + + @staticmethod + def is_supported(weights: Weights) -> bool: + return ( + ( + isinstance(weights.loader, DefaultWeightsLoader) + and isinstance(weights.loader.weight_class, UnquantizedWeight) + ) + or isinstance(weights.loader, HybridFP8UnquantLoader) + or ( + isinstance(weights.loader, GPTQMarlinWeightsLoader) + and can_use_marlin_moe_gemm( + quant_method=weights.loader.quant_method, + quantize=weights.loader.quantize, + sym=weights.loader.sym, + ) + ) + ) diff --git a/server/text_generation_server/layers/moe/fused_moe_rocm.py b/server/text_generation_server/layers/moe/fused_moe_rocm.py new file mode 100644 index 00000000..68accb99 --- /dev/null +++ b/server/text_generation_server/layers/moe/fused_moe_rocm.py @@ -0,0 +1,52 @@ +# coding=utf-8 +# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Tuple + +import torch +import torch.distributed + + +# TODO: Remove the functions once moe_kernel are built for ROCM +def grouped_topk( + hidden_states: torch.Tensor, + gating_output: torch.Tensor, + topk: int, + renormalize: bool, + num_expert_group: int = 0, + topk_group: int = 0, +) -> Tuple[torch.Tensor, torch.Tensor]: + scores = torch.softmax(gating_output, dim=-1) + num_token = scores.shape[0] + group_scores = ( + scores.view(num_token, num_expert_group, -1).max(dim=-1).values + ) # [n, n_group] + group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[ + 1 + ] # [n, top_k_group] + group_mask = torch.zeros_like(group_scores) # [n, n_group] + group_mask.scatter_(1, group_idx, 1) # [n, n_group] + score_mask = ( + group_mask.unsqueeze(-1) + .expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group) + .reshape(num_token, -1) + ) # [n, e] + tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] + topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False) + + if renormalize: + topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True) + + return topk_weights, topk_ids diff --git a/server/text_generation_server/layers/moe/gptq_marlin.py b/server/text_generation_server/layers/moe/gptq_marlin.py new file mode 100644 index 00000000..3217cdc2 --- /dev/null +++ b/server/text_generation_server/layers/moe/gptq_marlin.py @@ -0,0 +1,215 @@ +from dataclasses import dataclass +from typing import List, Optional + +import torch +import torch.nn as nn + +from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.utils.weights import Weights +from text_generation_server.layers.marlin.gptq import ( + GPTQMarlinWeight, + GPTQMarlinWeightsLoader, +) + +if SYSTEM == "cuda": + from moe_kernels.fused_marlin_moe import fused_marlin_moe +else: + fused_marlin_moe = None + + +try: + major, _minor = torch.cuda.get_device_capability() + has_sm_8_0 = major >= 8 +except Exception: + has_sm_8_0 = False + + +def can_use_marlin_moe_gemm( + *, + quant_method: str, + quantize: str, + sym: bool, +): + return ( + SYSTEM == "cuda" + and fused_marlin_moe is not None + and has_sm_8_0 + and quantize == "gptq" + and quant_method == "gptq" + and sym + ) + + +@dataclass +class GPTQMarlinMoEWeight: + qweight: torch.Tensor + qzeros: torch.Tensor + scales: torch.Tensor + g_idx: torch.Tensor + perm: torch.Tensor + is_full_k: bool + + +class GPTQMarlinSparseMoELayer(nn.Module): + """ + MoE layer that uses a fused GPTQ-Marlin kernel. + """ + + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + ): + super().__init__() + + if not ( + isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym + ): + raise ValueError( + f"Unsupported weights loader: {weights.loader}, only GPTQMarlinWeightsLoader with symmetric quantization is supported" + ) + + assert (n_expert_group is None) == ( + topk_group is None + ), "n_expert_group and topk_group must both be None or have some value" + + self.n_expert_group = n_expert_group + self.topk = topk + self.topk_group = topk_group + self.renormalize = renormalize + + self.gate_up_proj = _load_expert_multi_weights_col( + prefix=prefix, + n_experts=n_experts, + names=[gate_proj_name, up_proj_name], + weights=weights, + ) + + self.down_proj = _load_expert_weights_row( + prefix=prefix, n_experts=n_experts, name=down_proj_name, weights=weights + ) + + self.bits = weights.loader.bits + + def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: + return fused_marlin_moe( + x, + w1=self.gate_up_proj.qweight, + w2=self.down_proj.qweight, + g_idx1=self.gate_up_proj.g_idx, + g_idx2=self.down_proj.g_idx, + perm1=self.gate_up_proj.perm, + perm2=self.down_proj.perm, + w1_scale=self.gate_up_proj.scales, + w2_scale=self.down_proj.scales, + is_full_k1=self.gate_up_proj.is_full_k, + is_full_k2=self.down_proj.is_full_k, + gating_output=gating_output, + topk=self.topk, + renormalize=self.renormalize, + use_grouped_topk=self.n_expert_group is not None, + num_expert_group=self.n_expert_group, + topk_group=self.topk_group, + num_bits=self.bits, + ) + + +def _load_expert_multi_weights_col( + *, + prefix: str, + n_experts: int, + names: List[str], + weights: Weights, +) -> GPTQMarlinMoEWeight: + moe_weight = None + for i in range(n_experts): + weight = weights.get_multi_weights_col( + [f"{prefix}.{i}.{name}" for name in names], 0 + ) + assert isinstance(weight, GPTQMarlinWeight) + moe_weight = _pack_weight( + n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight + ) + assert moe_weight is not None + return moe_weight + + +def _load_expert_weights_row( + *, + prefix: str, + n_experts: int, + name: str, + weights: Weights, +) -> GPTQMarlinMoEWeight: + moe_weight = None + for i in range(n_experts): + weight = weights.get_weights_row( + f"{prefix}.{i}.{name}", + ) + assert isinstance(weight, GPTQMarlinWeight) + moe_weight = _pack_weight( + n_experts=n_experts, expert=i, weight=weight, moe_weight=moe_weight + ) + assert moe_weight is not None + return moe_weight + + +def _pack_weight( + *, + n_experts: int, + expert: int, + moe_weight: Optional[GPTQMarlinMoEWeight], + weight: GPTQMarlinWeight, +) -> GPTQMarlinMoEWeight: + if moe_weight is None: + qweight = torch.empty( + (n_experts,) + weight.qweight.shape, + dtype=weight.qweight.dtype, + device=weight.qweight.device, + ) + qzeros = torch.empty( + (n_experts,) + weight.qzeros.shape, + dtype=weight.qzeros.dtype, + device=weight.qzeros.device, + ) + scales = torch.empty( + (n_experts,) + weight.scales.shape, + dtype=weight.scales.dtype, + device=weight.scales.device, + ) + g_idx = torch.empty( + (n_experts,) + weight.g_idx.shape, + dtype=weight.g_idx.dtype, + device=weight.g_idx.device, + ) + perm = torch.empty( + (n_experts,) + weight.perm.shape, + dtype=weight.perm.dtype, + device=weight.perm.device, + ) + + moe_weight = GPTQMarlinMoEWeight( + qweight=qweight, + qzeros=qzeros, + scales=scales, + g_idx=g_idx, + perm=perm, + is_full_k=weight.is_full_k, + ) + + moe_weight.qweight[expert] = weight.qweight + moe_weight.qzeros[expert] = weight.qzeros + moe_weight.scales[expert] = weight.scales + moe_weight.g_idx[expert] = weight.g_idx + moe_weight.perm[expert] = weight.perm + + return moe_weight diff --git a/server/text_generation_server/layers/moe/unquantized.py b/server/text_generation_server/layers/moe/unquantized.py new file mode 100644 index 00000000..d9d62c0e --- /dev/null +++ b/server/text_generation_server/layers/moe/unquantized.py @@ -0,0 +1,138 @@ +from typing import Optional + +import torch +import torch.nn as nn + +from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.utils.weights import UnquantizedWeight, Weights + +if SYSTEM == "rocm": + from vllm.model_executor.layers.fused_moe import fused_moe +elif SYSTEM != "ipex": + from moe_kernels.fused_moe import fused_moe + + +class UnquantizedSparseMoELayer(nn.Module): + def __init__( + self, + *, + n_expert_group: Optional[int], + n_experts: int, + prefix: str, + renormalize: bool, + topk: int, + topk_group: Optional[int], + weights: Weights, + gate_proj_name: str = "gate_proj", + up_proj_name: str = "up_proj", + down_proj_name: str = "down_proj", + ): + super().__init__() + + assert (n_expert_group is None) == ( + topk_group is None + ), "n_expert_group and topk_group must both be None or have some value" + + self.n_expert_group = n_expert_group + self.topk = topk + self.topk_group = topk_group + self.renormalize = renormalize + + self.gate_up_proj = _load_expert_multi_weights_col( + prefix=prefix, + n_experts=n_experts, + gate_proj_name=gate_proj_name, + up_proj_name=up_proj_name, + weights=weights, + ) + + self.down_proj = _load_expert_weights_row( + prefix=prefix, + n_experts=n_experts, + name=down_proj_name, + weights=weights, + ) + + def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor: + if SYSTEM == "rocm": + return fused_moe( + x, + self.gate_up_proj, + self.down_proj, + gating_output, + self.topk, + renormalize=self.renormalize, + inplace=True, + ) + + return fused_moe( + x, + w1=self.gate_up_proj, + w2=self.down_proj, + gating_output=gating_output, + topk=self.topk, + renormalize=self.renormalize, + inplace=True, + use_grouped_topk=self.n_expert_group is not None, + num_expert_group=self.n_expert_group, + topk_group=self.topk_group, + ) + + +def _load_expert_multi_weights_col( + *, + prefix: str, + n_experts: int, + gate_proj_name: str, + up_proj_name: str, + weights: Weights, +) -> torch.Tensor: + all_weight = None + for i in range(n_experts): + weight = weights.get_multi_weights_col( + [f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0 + ) + + assert isinstance(weight, UnquantizedWeight) + + if all_weight is None: + all_weight = torch.empty( + (n_experts,) + weight.weight.shape, + dtype=weight.weight.dtype, + device=weight.weight.device, + ) + + all_weight[i] = weight.weight + + assert all_weight is not None + + return all_weight + + +def _load_expert_weights_row( + *, + prefix: str, + n_experts: int, + name: str, + weights: Weights, +) -> torch.Tensor: + all_weight = None + for i in range(n_experts): + weight = weights.get_weights_row( + f"{prefix}.{i}.{name}", + ) + + assert isinstance(weight, UnquantizedWeight) + + if all_weight is None: + all_weight = torch.empty( + (n_experts,) + weight.weight.shape, + dtype=weight.weight.dtype, + device=weight.weight.device, + ) + + all_weight[i] = weight.weight + + assert all_weight is not None + + return all_weight diff --git a/server/text_generation_server/layers/rotary.py b/server/text_generation_server/layers/rotary.py index fc4a59b9..a2076bb2 100644 --- a/server/text_generation_server/layers/rotary.py +++ b/server/text_generation_server/layers/rotary.py @@ -166,6 +166,20 @@ class PositionRotaryEmbedding(nn.Module): 1 + math.log(scale) / math.log(original_max_position_embeddings) ) + # if short_mscale and long_mscale are provided we need to scale the freqs + # using the Phi3LongRoPEScaledRotaryEmbedding + if ("short_mscale" in rope_scaling) and ("long_mscale" in rope_scaling): + short_mscale = rope_scaling["short_mscale"] + long_mscale = rope_scaling["long_mscale"] + return Phi3LongRoPEScaledRotaryEmbedding( + short_inv_freq=short_inv_freq, + long_inv_freq=long_inv_freq, + max_position_embeddings=config.max_position_embeddings, + short_mscale=short_mscale, + long_mscale=long_mscale, + original_max_position_embeddings=original_max_position_embeddings, + ) + return SuRotaryEmbedding( short_inv_freq=short_inv_freq, long_inv_freq=long_inv_freq, @@ -287,6 +301,7 @@ class SuRotaryEmbedding(PositionRotaryEmbedding): # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached + or self._cos_cached is None or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): @@ -308,6 +323,63 @@ class SuRotaryEmbedding(PositionRotaryEmbedding): self._sin_cached = (torch.sin(freqs) * self.scaling_factor).to(dtype) +class Phi3LongRoPEScaledRotaryEmbedding(PositionRotaryEmbedding): + def __init__( + self, + short_inv_freq: torch.Tensor, + long_inv_freq: torch.Tensor, + max_position_embeddings: int, + short_mscale: float, + long_mscale: float, + original_max_position_embeddings: int, + ): + super(PositionRotaryEmbedding, self).__init__() + self.short_inv_freq = short_inv_freq + self.long_inv_freq = long_inv_freq + self.max_position_embeddings = max_position_embeddings + self.short_mscale = short_mscale + self.long_mscale = long_mscale + self.original_max_position_embeddings = original_max_position_embeddings + + # cache + self._seq_len_cached = 0 + self._cos_cached = None + self._sin_cached = None + self._cos_k_cached = None + self._sin_k_cached = None + self.dynamic_args = None + + def _update_cos_sin_cache(self, dtype, device, seqlen): + if ( + seqlen > self._seq_len_cached + or self._cos_cached is None + or self._cos_cached.device != device + or self._cos_cached.dtype != dtype + ): + self._seq_len_cached = seqlen + t = torch.arange(seqlen, device=device, dtype=self.short_inv_freq.dtype) + + short_freqs = torch.outer( + t[: self.original_max_position_embeddings], + self.short_inv_freq.to(device=t.device), + ) + + long_freqs = torch.outer( + t[self.original_max_position_embeddings :], + self.long_inv_freq.to(device=t.device), + ) + + short_freqs = short_freqs * self.short_mscale + long_freqs = long_freqs * self.long_mscale + + freqs = torch.empty((seqlen, short_freqs.shape[1]), device=device) + freqs[: self.original_max_position_embeddings] = short_freqs + freqs[self.original_max_position_embeddings :] = long_freqs + + self._cos_cached = torch.cos(freqs).to(dtype) + self._sin_cached = torch.sin(freqs).to(dtype) + + class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__(self, dim, max_position_embeddings, base, device, scaling_factor): inv_freq = _create_inv_freq(dim, base, device) @@ -467,7 +539,6 @@ def apply_llama3_scaling( elif wavelen > low_freq_wavelen: new_freqs.append(freq / scaling_factor) else: - assert low_freq_wavelen != high_freq_wavelen smooth = (original_max_position_embeddings / wavelen - low_freq_factor) / ( high_freq_factor - low_freq_factor diff --git a/server/text_generation_server/models/__init__.py b/server/text_generation_server/models/__init__.py index fc530b38..17eed976 100644 --- a/server/text_generation_server/models/__init__.py +++ b/server/text_generation_server/models/__init__.py @@ -32,6 +32,9 @@ from text_generation_server.models.custom_modeling.phi_modeling import ( PhiConfig, PhiForCausalLM, ) +from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import ( + PhiMoEConfig, +) from text_generation_server.models.custom_modeling.t5_modeling import ( T5ForConditionalGeneration, ) @@ -73,6 +76,7 @@ FLASH_ATTENTION = True try: from text_generation_server.models.flash_causal_lm import FlashCausalLM from text_generation_server.models.vlm_causal_lm import VlmCausalLM + from text_generation_server.models.mllama_causal_lm import MllamaCausalLM from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import ( FlashDeepseekV2ForCausalLM, DeepseekV2Config, @@ -109,7 +113,11 @@ try: from text_generation_server.models.custom_modeling.flash_phi_modeling import ( FlashPhiForCausalLM, ) - from text_generation_server.models.idefics import IDEFICSSharded + from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM + from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch + from text_generation_server.models.custom_modeling.mllama import ( + MllamaForConditionalGeneration, + ) from text_generation_server.models.custom_modeling.llava_next import ( LlavaNextForConditionalGeneration, ) @@ -146,7 +154,7 @@ except ImportError as e: if FLASH_ATTENTION: __all__.append(FlashCausalLM) - __all__.append(IDEFICSSharded) + __all__.append(IdeficsCausalLM) MAMBA_AVAILABLE = True try: @@ -237,6 +245,11 @@ class ModelType(enum.Enum): "name": "Phi", "url": "https://huggingface.co/microsoft/phi-1_5", } + PHI_MOE = { + "type": "phimoe", + "name": "PhiMoe", + "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct", + } BAICHUAN = { "type": "baichuan", "name": "Baichuan", @@ -308,6 +321,12 @@ class ModelType(enum.Enum): "url": "https://huggingface.co/HuggingFaceM4/idefics-9b", "multimodal": True, } + MLLAMA = { + "type": "mllama", + "name": "Mllama", + "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct", + "multimodal": True, + } __GLOBALS = locals() @@ -323,6 +342,7 @@ def get_model( quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], + kv_cache_dtype: Optional[str], trust_remote_code: bool, max_input_tokens: int, ) -> Model: @@ -334,6 +354,7 @@ def get_model( model_type = config_dict.get("model_type", None) quantization_config = config_dict.get("quantization_config", None) + compression_config = config_dict.get("compression_config", None) if quantization_config is not None and quantize is None: method = quantization_config.get("quant_method", None) if method in {"gptq", "awq", "exl2"}: @@ -344,6 +365,23 @@ def get_model( quantize = "fp8" else: log_master(logger.warning, f"Unknown quantization method {method}") + elif compression_config is not None: + # TODO: at some point we should probably fully parse the compression + # configuration to know which parameters are compressed. + config_groups = compression_config.get("config_groups") + if config_groups is not None: + for _, group in config_groups.items(): + weights_config = group.get("weights") + if weights_config is not None: + if ( + weights_config["type"] == "float" + and weights_config["num_bits"] == 8 + ): + log_master( + logger.info, "Auto selecting quantization method fp8" + ) + quantize = "fp8" + break if dtype is None: if quantize in ["awq", "exl2", "gptq", "marlin"]: @@ -366,6 +404,13 @@ def get_model( else: raise RuntimeError(f"Unknown dtype {dtype}") + if kv_cache_dtype is None: + kv_cache_dtype = dtype + elif kv_cache_dtype == "fp8_e5m2": + kv_cache_dtype = torch.float8_e5m2 + else: + raise RuntimeError(f"Unknown kv_cache_dtype: {kv_cache_dtype}") + if speculate is not None: set_speculate(speculate) else: @@ -526,6 +571,7 @@ def get_model( speculator=speculator, default_dtype=torch.bfloat16, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=DeepseekV2Config, @@ -580,6 +626,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, aliases={"transformer.wte.weight": ["lm_head.weight"]}, @@ -631,6 +678,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -666,6 +714,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -704,6 +753,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, config_class=GPTNeoXConfig, @@ -737,6 +787,31 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, + trust_remote_code=trust_remote_code, + lora_adapter_ids=lora_adapter_ids, + ) + else: + return CausalLM.fallback( + model_id, + revision, + quantize=quantize, + speculator=speculator, + dtype=dtype, + trust_remote_code=trust_remote_code, + ) + + elif model_type == PHI_MOE: + if FLASH_ATTENTION: + return FlashCausalLM( + model_id=model_id, + model_class=FlashLlamaForCausalLM, + config_class=PhiMoEConfig, + revision=revision, + quantize=quantize, + speculator=speculator, + dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -768,7 +843,6 @@ def get_model( ) elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3: - print(f">>> model_type: {model_type}") if FLASH_ATTENTION: return FlashCausalLM( model_id=model_id, @@ -777,6 +851,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -800,6 +875,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -825,6 +901,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -851,6 +928,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -875,6 +953,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Dbrx works better in bfloat16. default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -905,6 +984,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], @@ -923,6 +1003,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, aliases={ "lm_head.weight": ["transformer.word_embeddings.weight"], "transformer.word_embeddings.weight": ["lm_head.weight"], @@ -950,6 +1031,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -974,6 +1056,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -998,6 +1081,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -1024,6 +1108,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, ) @@ -1068,7 +1153,7 @@ def get_model( ) if model_type == IDEFICS: if FLASH_ATTENTION: - return IDEFICSSharded( + return IdeficsCausalLM( model_id, revision, quantize=quantize, @@ -1078,6 +1163,22 @@ def get_model( ) else: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) + if model_type == MLLAMA: + if FLASH_ATTENTION: + return MllamaCausalLM( + model_id=model_id, + model_class=MllamaForConditionalGeneration, + batch_class=MllamaCausalLMBatch, + revision=revision, + quantize=quantize, + speculator=speculator, + dtype=dtype, + default_dtype=torch.bfloat16, + trust_remote_code=trust_remote_code, + lora_adapter_ids=lora_adapter_ids, + ) + else: + raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama")) if model_type == IDEFICS2: if FLASH_ATTENTION: return VlmCausalLM( @@ -1087,6 +1188,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, lora_adapter_ids=lora_adapter_ids, # XXX: Extremely important to cap resolution in order to limit @@ -1104,6 +1206,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, # Works better for these models default_dtype=torch.bfloat16, trust_remote_code=trust_remote_code, @@ -1122,6 +1225,7 @@ def get_model( quantize=quantize, speculator=speculator, dtype=dtype, + kv_cache_dtype=kv_cache_dtype, trust_remote_code=trust_remote_code, ) else: @@ -1194,6 +1298,7 @@ def get_model_with_lora_adapters( quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], + kv_cache_dtype: Optional[str], trust_remote_code: bool, max_input_tokens: int, adapter_to_index: Dict[str, int], @@ -1207,6 +1312,7 @@ def get_model_with_lora_adapters( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, max_input_tokens, ) diff --git a/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py b/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py index 374ccb10..d0425fec 100644 --- a/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_cohere_modeling.py @@ -28,7 +28,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.utils.import_utils import SYSTEM @@ -39,6 +38,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, ) @@ -290,15 +290,15 @@ class FlashCohereAttention(torch.nn.Module): self.rotary_emb(query, key, cos, sin) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -307,8 +307,8 @@ class FlashCohereAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py b/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py index 0dc88098..b2b0cecb 100644 --- a/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py @@ -28,8 +28,8 @@ if SYSTEM != "ipex": from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, + PREFILL_IN_KV_CACHE, ) from text_generation_server.layers import ( FastLinear, @@ -329,15 +329,15 @@ class DbrxAttention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -346,8 +346,8 @@ class DbrxAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py index f62dfe66..af77af8e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_deepseek_v2_modeling.py @@ -13,10 +13,14 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, Dict, List, Optional, Tuple +from typing import List, Optional, Tuple, Type import torch import torch.distributed +from torch import nn +from transformers.activations import ACT2FN +from transformers.configuration_utils import PretrainedConfig + from text_generation_server.layers import ( FastLinear, SpeculativeHead, @@ -26,18 +30,16 @@ from text_generation_server.layers import ( get_linear, ) from text_generation_server.layers.attention import ( + Seqlen, attention, paged_attention, - reshape_and_cache, - Seqlen, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import FastRMSNorm +from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.weights import Weights -from torch import nn -from transformers.activations import ACT2FN -from transformers.configuration_utils import PretrainedConfig if SYSTEM == "rocm": try: @@ -152,44 +154,6 @@ class DeepseekV2Config(PretrainedConfig): ) -def _load_experts(config, prefix: str, mat: str, weights: Weights): - if config.quantize is not None: - raise NotImplementedError( - "Deepseek V2 does not support weight quantization yet." - ) - - assert mat in ["gate_proj", "up_proj", "down_proj"] - - world_size = weights.process_group.size() - rank = weights.process_group.rank() - - assert ( - config.moe_intermediate_size % world_size == 0 - ), f"The chosen size {config.moe_intermediate_size} is not compatible with sharding on {world_size} shards" - - block_size = config.moe_intermediate_size // world_size - start = rank * block_size - stop = (rank + 1) * block_size - - tensor = torch.empty( - (config.n_routed_experts * block_size, config.hidden_size), - dtype=weights.dtype, - device=weights.device, - ) - - for i in range(config.n_routed_experts): - slice_ = weights._get_slice(f"{prefix}.{i}.{mat}.weight") - - if mat == "down_proj": - expert_slice = slice_[:, start:stop].t().contiguous() - else: - expert_slice = slice_[start:stop] - tensor[i * block_size : (i + 1) * block_size] = expert_slice.to( - dtype=weights.dtype - ).to(device=weights.device) - return tensor - - class DeepseekV2Attention(torch.nn.Module): def __init__( self, @@ -356,15 +320,15 @@ class DeepseekV2Attention(torch.nn.Module): value, (0, self.head_pad_size - self.value_head_size), value=0 ) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -373,8 +337,8 @@ class DeepseekV2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, @@ -425,6 +389,7 @@ class DeepseekV2MLP(nn.Module): if ( SYSTEM == "rocm" and self.hidden_act == "silu" + and hidden_states.dtype == torch.float16 and hidden_states.shape[0] == 1 and not self.quantize ): @@ -444,41 +409,36 @@ class DeepseekV2MLP(nn.Module): ) -class BlockSparseMoE(nn.Module): - def __init__(self, prefix, config: DeepseekV2Config, weights): +class DeepseekV2MoE(nn.Module): + def __init__( + self, + prefix, + config: DeepseekV2Config, + moe_layer_cls: Type[MoELayer], + weights, + ): super().__init__() self.hidden_dim = config.hidden_size self.moe_intermediate_size = ( config.moe_intermediate_size // weights.process_group.size() ) - self.n_routed_experts = config.n_routed_experts - self.n_expert_group = config.n_group - self.topk_group = config.topk_group - self.top_k = config.num_experts_per_tok - self.norm_topk_prob = config.norm_topk_prob self.routed_scaling_factor = config.routed_scaling_factor - gate_proj = _load_experts( - config, f"{prefix}.experts", "gate_proj", weights - ).view(self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim) - - up_proj = _load_experts(config, f"{prefix}.experts", "up_proj", weights).view( - self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim - ) - - self.gate_up_proj = torch.cat([gate_proj, up_proj], dim=1) - - self.down_proj = ( - _load_experts(config, f"{prefix}.experts", "down_proj", weights) - .view(self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim) - .transpose(1, 2) - .contiguous() - ) - # Gating self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) + self.moe_layer = moe_layer_cls( + prefix=f"{prefix}.experts", + n_experts=config.n_routed_experts, + n_expert_group=config.n_group, + renormalize=config.norm_topk_prob, + topk=config.num_experts_per_tok, + topk_group=config.topk_group, + weights=weights, + ) + assert isinstance(self.moe_layer, MoELayer) + if config.n_shared_experts is not None: self.shared_experts = DeepseekV2MLP( prefix=f"{prefix}.shared_experts", @@ -499,25 +459,8 @@ class BlockSparseMoE(nn.Module): shared_output = None router_logits = self.gate(x) - topk_weights, topk_ids = grouped_topk( - x, - router_logits, - self.top_k, - renormalize=self.norm_topk_prob, - num_expert_group=self.n_expert_group, - topk_group=self.topk_group, - ) - out = ( - fused_experts( - x, - self.gate_up_proj, - self.down_proj, - topk_weights, - topk_ids, - inplace=True, - ) - * self.routed_scaling_factor - ) + + out = self.moe_layer(x, gating_output=router_logits) if shared_output is not None: out = out + shared_output @@ -529,96 +472,6 @@ class BlockSparseMoE(nn.Module): return out.view(*x.shape) -class DenseMoE(nn.Module): - def __init__(self, prefix: str, config: DeepseekV2Config, weights: Weights): - super().__init__() - - self.hidden_dim = config.hidden_size - self.moe_intermediate_size = config.moe_intermediate_size - self.n_routed_experts = config.n_routed_experts - self.n_expert_group = config.n_group - self.topk_group = config.topk_group - self.top_k = config.num_experts_per_tok - self.norm_topk_prob = config.norm_topk_prob - self.routed_scaling_factor = config.routed_scaling_factor - - # Gating - # - # Seems like no one quantizes the gate. - self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) - - self.experts = [ - DeepseekV2MLP( - f"{prefix}.experts.{i}", config, weights, self.moe_intermediate_size - ) - for i in range(self.n_routed_experts) - ] - - if config.n_shared_experts is not None: - self.shared_experts = DeepseekV2MLP( - prefix=f"{prefix}.shared_experts", - config=config, - weights=weights, - intermediate_size=config.moe_intermediate_size - * config.n_shared_experts, - ) - else: - self.shared_experts = None - - self.process_group = weights.process_group - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - x: (sequence_length, model_dim) - gate_logits: (sequence_length, n_experts) - """ - # optional reshape - input_shape = x.shape - x = x.view(-1, input_shape[-1]) - - if self.shared_experts is not None: - shared_output = self.shared_experts(x, reduce=False) - else: - shared_output = None - - # gate_logits: (sequence_length, n_experts) - router_logits = self.gate(x) - - topk_weights, topk_ids = grouped_topk( - x, - router_logits, - self.top_k, - renormalize=self.norm_topk_prob, - num_expert_group=self.n_expert_group, - topk_group=self.topk_group, - ) - - out = self.moe_infer_gpu(x, topk_ids, topk_weights) * self.routed_scaling_factor - - if shared_output is not None: - out = out + shared_output - - # Reduce sum - if self.process_group.size() > 1: - torch.distributed.all_reduce(out, group=self.process_group) - - return out - - def moe_infer_gpu( - self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor - ): - weights = torch.zeros( - topk_ids.shape[0], len(self.experts), dtype=x.dtype, device=x.device - ) - weights.scatter_(1, topk_ids, topk_weight) - - out = x.new_zeros(x.shape[0], self.hidden_dim) - for i, expert in enumerate(self.experts): - # Add expert output to out with masking - out += expert(x, reduce=False) * weights[:, i].view(-1, 1) - return out - - class DeepseekV2Layer(nn.Module): def __init__(self, prefix, layer_id, config, weights): super().__init__() @@ -635,8 +488,12 @@ class DeepseekV2Layer(nn.Module): and layer_id >= config.first_k_dense_replace and layer_id % config.moe_layer_freq == 0 ): - moe_cls = BlockSparseMoE if config.quantize is None else DenseMoE - self.mlp = moe_cls(f"{prefix}.mlp", config, weights) + moe_layer_cls = ( + SparseMoELayer + if SparseMoELayer.is_supported(weights) + else DenseMoELayer + ) + self.mlp = DeepseekV2MoE(f"{prefix}.mlp", config, moe_layer_cls, weights) else: self.mlp = DeepseekV2MLP( prefix=f"{prefix}.mlp", @@ -799,183 +656,3 @@ class FlashDeepseekV2ForCausalLM(torch.nn.Module): hidden_states = hidden_states[lm_head_indices] logits, speculative_logits = self.lm_head(hidden_states) return logits, speculative_logits - - -# Functions below are from vLLM: -# -# https://github.com/vllm-project/vllm/blob/f7160d946a0a07703e72d81ba9ecf3913f192605/vllm/model_executor/layers/fused_moe/fused_moe.py#L397 -# -# Remove after we have synced our version with upstream. - - -def grouped_topk( - hidden_states: torch.Tensor, - gating_output: torch.Tensor, - topk: int, - renormalize: bool, - num_expert_group: int = 0, - topk_group: int = 0, -) -> Tuple[torch.Tensor, torch.Tensor]: - scores = torch.softmax(gating_output, dim=-1) - num_token = scores.shape[0] - group_scores = ( - scores.view(num_token, num_expert_group, -1).max(dim=-1).values - ) # [n, n_group] - group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[ - 1 - ] # [n, top_k_group] - group_mask = torch.zeros_like(group_scores) # [n, n_group] - group_mask.scatter_(1, group_idx, 1) # [n, n_group] - score_mask = ( - group_mask.unsqueeze(-1) - .expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group) - .reshape(num_token, -1) - ) # [n, e] - tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e] - topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False) - - if renormalize: - topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True) - - return topk_weights, topk_ids - - -def get_default_config( - M: int, - E: int, - N: int, - K: int, - topk: int, - dtype: Optional[str], -) -> Dict[str, int]: - config = { - "BLOCK_SIZE_M": 64, - "BLOCK_SIZE_N": 64, - "BLOCK_SIZE_K": 32, - "GROUP_SIZE_M": 8, - } - if M <= E: - config = { - "BLOCK_SIZE_M": 16, - "BLOCK_SIZE_N": 32, - "BLOCK_SIZE_K": 64, - "GROUP_SIZE_M": 1, - } - return config - - -def fused_experts( - hidden_states: torch.Tensor, - w1: torch.Tensor, - w2: torch.Tensor, - topk_weights: torch.Tensor, - topk_ids: torch.Tensor, - inplace: bool = False, - override_config: Optional[Dict[str, Any]] = None, - use_fp8: bool = False, - w1_scale: Optional[torch.Tensor] = None, - w2_scale: Optional[torch.Tensor] = None, - a1_scale: Optional[torch.Tensor] = None, - a2_scale: Optional[torch.Tensor] = None, -): - # Check constraints. - assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch" - assert topk_weights.shape == topk_ids.shape, "topk shape mismatch" - assert hidden_states.is_contiguous(), "Hidden_states must be contiguous" - assert w1.is_contiguous(), "Expert weights1 must be contiguous" - assert w2.is_contiguous(), "Expert weights2 must be contiguous" - assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16] - - import triton.language as tl - from vllm import _custom_ops as ops - from vllm.model_executor.layers.fused_moe.fused_moe import ( - get_moe_configs, - invoke_fused_moe_kernel, - moe_align_block_size, - ) - - M, _ = hidden_states.shape - E, N, _ = w1.shape - - if override_config: - config = override_config - else: - # First try to load optimal config from the file - configs = get_moe_configs(E, w2.shape[2], "float8" if use_fp8 else None) - - if configs: - # If an optimal configuration map has been found, look up the - # optimal config - config = configs[min(configs.keys(), key=lambda x: abs(x - M))] - else: - # Else use the default config - config = get_default_config( - M, E, N, w1.shape[2], topk_ids.shape[1], "float8" if use_fp8 else None - ) - - intermediate_cache1 = torch.empty( - (M, topk_ids.shape[1], N), - device=hidden_states.device, - dtype=hidden_states.dtype, - ) - intermediate_cache2 = torch.empty( - (M * topk_ids.shape[1], N // 2), - device=hidden_states.device, - dtype=hidden_states.dtype, - ) - intermediate_cache3 = torch.empty( - (M, topk_ids.shape[1], w2.shape[1]), - device=hidden_states.device, - dtype=hidden_states.dtype, - ) - - sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size( - topk_ids, config["BLOCK_SIZE_M"], E - ) - compute_type = tl.bfloat16 if hidden_states.dtype == torch.bfloat16 else tl.float16 - - invoke_fused_moe_kernel( - hidden_states, - w1, - intermediate_cache1, - a1_scale, - w1_scale, - topk_weights, - topk_ids, - sorted_token_ids, - expert_ids, - num_tokens_post_padded, - False, - topk_ids.shape[1], - config, - compute_type=compute_type, - use_fp8=use_fp8, - ) - - ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N)) - - invoke_fused_moe_kernel( - intermediate_cache2, - w2, - intermediate_cache3, - a2_scale, - w2_scale, - topk_weights, - topk_ids, - sorted_token_ids, - expert_ids, - num_tokens_post_padded, - True, - 1, - config, - compute_type=compute_type, - use_fp8=use_fp8, - ) - - if inplace: - return torch.sum( - intermediate_cache3.view(*intermediate_cache3.shape), - dim=1, - out=hidden_states, - ) - return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1) diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py index e12bff00..03b9b2a0 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py @@ -25,11 +25,9 @@ from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -38,7 +36,10 @@ from text_generation_server.layers import ( TensorParallelEmbedding, SpeculativeHead, get_linear, + TensorParallelMultiAdapterLinear, + TensorParallelAdapterRowLinear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, @@ -161,7 +162,9 @@ def _load_gqa(config, prefix: str, weights): class FlashGemma2Attention(torch.nn.Module): - def __init__(self, prefix: str, config, weights, causal: bool, is_sliding: bool): + def __init__( + self, prefix: str, config, weights, layer_id, causal: bool, is_sliding: bool + ): super().__init__() self.num_heads = config.num_attention_heads self.head_size = config.head_dim @@ -192,14 +195,32 @@ class FlashGemma2Attention(torch.nn.Module): ) self.softcap = config.attn_logit_softcapping - self.query_key_value = load_attention(config, prefix, weights) + query_key_value = load_attention(config, prefix, weights) + self.query_key_value = TensorParallelMultiAdapterLinear.load( + query_key_value, + layer_id, + ["q_proj", "k_proj", "v_proj"], + sizes=[ + self.head_size * config.num_attention_heads, + self.head_size * config.num_key_value_heads, + self.head_size * config.num_key_value_heads, + ], + process_group=weights.process_group, + ) - self.o_proj = TensorParallelRowLinear.load( + o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.o_proj", weights=weights, bias=False, ) + self.o_proj = TensorParallelAdapterRowLinear.load( + o_proj, + layer_id, + "o_proj", + process_group=weights.process_group, + ) + self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device @@ -216,8 +237,9 @@ class FlashGemma2Attention(torch.nn.Module): slots, seqlen, max_s, + adapter_data, ): - qkv = self.query_key_value(hidden_states) + qkv = self.query_key_value(hidden_states, adapter_data) query, kv = qkv.split( [ self.head_size * self.num_heads, @@ -230,15 +252,15 @@ class FlashGemma2Attention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -250,8 +272,8 @@ class FlashGemma2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, @@ -260,11 +282,13 @@ class FlashGemma2Attention(torch.nn.Module): softcap=self.softcap, ) - return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) + return self.o_proj( + attn_output.view(-1, self.num_heads * self.head_size), adapter_data + ) class Gemma2MLP(nn.Module): - def __init__(self, prefix, config, weights): + def __init__(self, prefix, config, weights, layer_id): super().__init__() act = config.hidden_activation self.act = ( @@ -278,40 +302,65 @@ class Gemma2MLP(nn.Module): ) ) # Fuse gate and up proj - self.gate_up_proj = TensorParallelColumnLinear.load_multi( + gate_up_proj = TensorParallelColumnLinear.load_multi( config, prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], weights=weights, dim=0, bias=False, ) - self.down_proj = TensorParallelRowLinear.load( + self.gate_up_proj = TensorParallelMultiAdapterLinear.load( + gate_up_proj, + layer_id, + ["gate_proj", "up_proj"], + sizes=[ + config.intermediate_size, + config.intermediate_size, + ], + process_group=weights.process_group, + ) + + down_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.down_proj", weights=weights, bias=False, ) + self.down_proj = TensorParallelAdapterRowLinear.load( + down_proj, + layer_id, + "down_proj", + process_group=weights.process_group, + ) + self.intermediate_size = ( config.intermediate_size // weights.process_group.size() ) - def forward(self, hidden_states): - gate_up_states = self.gate_up_proj(hidden_states) + def forward(self, hidden_states, adapter_data): + gate_up_states = self.gate_up_proj(hidden_states, adapter_data) gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) - return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) + return self.down_proj( + self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], adapter_data + ) class FlashGemma2Layer(nn.Module): - def __init__(self, prefix: str, config, weights, causal: bool, is_sliding: bool): + def __init__( + self, prefix: str, config, weights, layer_id, causal: bool, is_sliding: bool + ): super().__init__() self.self_attn = FlashGemma2Attention( prefix=f"{prefix}.self_attn", config=config, weights=weights, + layer_id=layer_id, causal=causal, is_sliding=is_sliding, ) - self.mlp = Gemma2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights) + self.mlp = Gemma2MLP( + prefix=f"{prefix}.mlp", config=config, weights=weights, layer_id=layer_id + ) self.input_layernorm = Gemma2FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps @@ -344,6 +393,7 @@ class FlashGemma2Layer(nn.Module): slots, seqlen, max_s, + adapter_data, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) @@ -358,6 +408,7 @@ class FlashGemma2Layer(nn.Module): slots, seqlen, max_s, + adapter_data, ) # faster post attention rms norm @@ -366,7 +417,7 @@ class FlashGemma2Layer(nn.Module): res = normed_attn_res_output pre_normed, _ = self.pre_feedforward_layernorm(normed_attn_res_output) - mlp_output = self.mlp(pre_normed) + mlp_output = self.mlp(pre_normed, adapter_data) post_hidden_states, _ = self.post_feedforward_layernorm(mlp_output) return post_hidden_states, normed_attn_res_output @@ -385,6 +436,7 @@ class FlashGemma2Model(torch.nn.Module): prefix=f"{prefix}.layers.{layer_id}", config=config, weights=weights, + layer_id=layer_id, causal=causal, is_sliding=layer_id % 2 == 0, ) @@ -409,6 +461,7 @@ class FlashGemma2Model(torch.nn.Module): slots: torch.Tensor, seqlen: Seqlen, max_s: int, + adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = inputs_embeds @@ -431,6 +484,7 @@ class FlashGemma2Model(torch.nn.Module): slots, seqlen, max_s, + adapter_data, ) hidden_states, _ = self.norm(hidden_states, residual) @@ -492,6 +546,7 @@ class FlashGemma2ForCausalLM(torch.nn.Module): slots, seqlen, max_s, + adapter_data, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py index 77ae4b35..f3c46901 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py @@ -25,12 +25,11 @@ from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, + PREFILL_IN_KV_CACHE, ) from text_generation_server.layers import ( TensorParallelRowLinear, @@ -224,15 +223,15 @@ class FlashGemmaAttention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -242,8 +241,8 @@ class FlashGemmaAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py index 411c4ce1..94a8898d 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gpt2_modeling.py @@ -24,11 +24,10 @@ import torch.distributed from torch import nn from transformers.activations import ACT2FN from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -224,15 +223,15 @@ class FlashGPT2Attention(torch.nn.Module): key = key.view(-1, self.num_heads, self.head_size) value = value.view(-1, self.num_heads, self.head_size) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -241,8 +240,8 @@ class FlashGPT2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py index ef071d46..f0a1270e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gptj_modeling.py @@ -28,7 +28,6 @@ from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -38,6 +37,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) @@ -185,15 +185,15 @@ class FlashGPTJAttention(torch.nn.Module): else: self.rotary_emb(query, key, cos, sin) - reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=key, value=value, slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key, - kv_cache[1] if SYSTEM != "ipex" else value, + kv_cache.key if PREFILL_IN_KV_CACHE else key, + kv_cache.value if PREFILL_IN_KV_CACHE else value, seqlen, block_tables, self.softmax_scale, @@ -202,8 +202,8 @@ class FlashGPTJAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py index 7d639e35..fbe45d79 100644 --- a/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_llama_modeling.py @@ -19,7 +19,7 @@ # limitations under the License. from contextlib import contextmanager -from typing import List, Optional, Tuple +from typing import List, Optional, Tuple, Type import torch import torch.distributed @@ -27,11 +27,12 @@ import torch.distributed from torch import nn from transformers.activations import ACT2FN +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE, KVCache +from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -45,12 +46,19 @@ from text_generation_server.layers import ( from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, + FastLayerNorm, +) +from text_generation_server.layers import ( + FastLinear, ) from text_generation_server.utils.weights import ( Weights, ) from text_generation_server.layers.fp8 import HybridFP8UnquantLoader +if SYSTEM != "ipex": + pass + if SYSTEM == "rocm": try: from vllm import _custom_C @@ -193,7 +201,7 @@ class FlashLlamaAttention(torch.nn.Module): cos, sin, cu_seqlen_prefill, - kv_cache, + kv_cache: KVCache, block_tables, slots, seqlen, @@ -213,15 +221,15 @@ class FlashLlamaAttention(torch.nn.Module): self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -230,8 +238,8 @@ class FlashLlamaAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, @@ -244,6 +252,42 @@ class FlashLlamaAttention(torch.nn.Module): ) +class Phi3MoE(nn.Module): + def __init__( + self, prefix: str, config, moe_layer_cls: Type[MoELayer], weights: Weights + ): + super().__init__() + + # gating + self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) + + self.moe = moe_layer_cls( + prefix=f"{prefix}.experts", + n_experts=config.num_local_experts, + n_expert_group=None, + renormalize=True, + topk=config.num_experts_per_tok, + topk_group=None, + weights=weights, + gate_proj_name="w1", + up_proj_name="w3", + down_proj_name="w2", + ) + + self.process_group = weights.process_group + + def forward(self, x, adapter_data) -> torch.Tensor: + # router_logits: (num_tokens, n_experts) + router_logits = self.gate(x) + out = self.moe(x, gating_output=router_logits) + + # Reduce sum + if self.process_group.size() > 1: + torch.distributed.all_reduce(out, group=self.process_group) + + return out.view(*x.shape) + + class LlamaMLP(nn.Module): def __init__(self, prefix, config, weights, index): super().__init__() @@ -315,12 +359,17 @@ class LlamaMLP(nn.Module): # TODO: This is a hotfix to be removed & properly refactored. self.quantize = config.quantize + self.hidden_size = config.hidden_size + def forward(self, hidden_states, adapter_data): if ( SYSTEM == "rocm" and self.hidden_act == "silu" + and hidden_states.dtype == torch.float16 and hidden_states.shape[0] == 1 and not self.quantize + and self.hidden_size + != 16384 # TODO: Temporary workaround for `LLMM_Silu` kernel not working with LLama3.1 405B; needs refactoring once fixed. ): out = torch.empty( hidden_states.shape[0], @@ -352,18 +401,40 @@ class FlashLlamaLayer(nn.Module): weights=weights, ) - self.mlp = LlamaMLP( - prefix=f"{prefix}.mlp", config=config, weights=weights, index=index - ) - - self.input_layernorm = FastRMSNorm.load( - prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps - ) - self.post_attention_layernorm = FastRMSNorm.load( - prefix=f"{prefix}.post_attention_layernorm", - weights=weights, - eps=config.rms_norm_eps, - ) + if config.model_type == "phimoe": + moe_layer_cls = ( + SparseMoELayer + if SparseMoELayer.is_supported(weights) + else DenseMoELayer + ) + self.dense = Phi3MoE( + f"{prefix}.block_sparse_moe", config, moe_layer_cls, weights + ) + # with moe the layernorms are are not rmsnorms and they have bias + self.input_layernorm = FastLayerNorm.load( + prefix=f"{prefix}.input_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + self.post_attention_layernorm = FastLayerNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + else: + self.dense = LlamaMLP( + prefix=f"{prefix}.mlp", config=config, weights=weights, index=index + ) + self.input_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.input_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + self.post_attention_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) def forward( self, @@ -378,6 +449,7 @@ class FlashLlamaLayer(nn.Module): seqlen, max_s, adapter_data, + cross_attention_states, ): normed_hidden_states, res = self.input_layernorm(hidden_states, residual) @@ -400,7 +472,7 @@ class FlashLlamaLayer(nn.Module): attn_output, res ) - mlp_output = self.mlp(normed_attn_res_output, adapter_data) + mlp_output = self.dense(normed_attn_res_output, adapter_data) return mlp_output, attn_res @@ -415,6 +487,7 @@ class FlashLlamaModel(torch.nn.Module): # Skip fp8 quant for first and last layers self.layers = nn.ModuleList() + self.cross_attention_layers = getattr(config, "cross_attention_layers", []) with no_fp8(weights): self.layers.append( FlashLlamaLayer( @@ -427,22 +500,38 @@ class FlashLlamaModel(torch.nn.Module): ) ) - self.layers.extend( - [ - FlashLlamaLayer( - index=layer_id, - prefix=( - f"model.layers.{layer_id}" - if not prefix - else f"{prefix}.model.layers.{layer_id}" - ), - config=config, - weights=weights, + # Skip first and last layers + for layer_id in range(1, config.num_hidden_layers - 1): + if layer_id in self.cross_attention_layers: + from text_generation_server.models.custom_modeling.mllama import ( + FlashLlamaCrossLayer, + ) + + self.layers.append( + FlashLlamaCrossLayer( + index=layer_id, + prefix=( + f"model.layers.{layer_id}" + if not prefix + else f"{prefix}.model.layers.{layer_id}" + ), + config=config, + weights=weights, + ) + ) + else: + self.layers.append( + FlashLlamaLayer( + index=layer_id, + prefix=( + f"model.layers.{layer_id}" + if not prefix + else f"{prefix}.model.layers.{layer_id}" + ), + config=config, + weights=weights, + ) ) - # Skip first and last layers - for layer_id in range(1, config.num_hidden_layers - 1) - ] - ) with no_fp8(weights): last_layer_id = config.num_hidden_layers - 1 @@ -484,6 +573,7 @@ class FlashLlamaModel(torch.nn.Module): true_max_s: int, prefill_cache_indices: Optional[torch.Tensor], adapter_data, + cross_attention_states=None, ) -> torch.Tensor: hidden_states = inputs_embeds @@ -507,6 +597,7 @@ class FlashLlamaModel(torch.nn.Module): seqlen, max_s, adapter_data, + cross_attention_states, ) hidden_states, _ = self.norm(hidden_states, residual) @@ -553,6 +644,7 @@ class FlashLlamaForCausalLM(torch.nn.Module): prefill_cache_indices: Optional[torch.Tensor] = None, lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, + cross_attention_states=None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: inputs_embeds = self.embed_tokens(input_ids) hidden_states = self.model( @@ -567,6 +659,7 @@ class FlashLlamaForCausalLM(torch.nn.Module): true_max_s=max_s, prefill_cache_indices=prefill_cache_indices, adapter_data=adapter_data, + cross_attention_states=cross_attention_states, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] diff --git a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py index cdd23796..8974035e 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mistral_modeling.py @@ -30,7 +30,6 @@ from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -41,6 +40,7 @@ from text_generation_server.layers import ( TensorParallelMultiAdapterLinear, TensorParallelAdapterRowLinear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, @@ -209,17 +209,15 @@ class MistralAttention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -229,8 +227,8 @@ class MistralAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, @@ -302,6 +300,7 @@ class MistralMLP(nn.Module): if ( SYSTEM == "rocm" and self.hidden_act == "silu" + and hidden_states.dtype == torch.float16 and hidden_states.shape[0] == 1 and not self.quantize ): diff --git a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py index c36e97f6..e7bc8320 100644 --- a/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_mixtral_modeling.py @@ -18,39 +18,30 @@ # See the License for the specific language governing permissions and # limitations under the License. +from typing import List, Optional, Tuple, Type + import torch import torch.distributed - - from torch import nn -from text_generation_server.utils.import_utils import SYSTEM - -if SYSTEM != "ipex": - from vllm.model_executor.layers.fused_moe import fused_moe -from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig -from typing import Optional, List, Tuple -from text_generation_server.layers.attention import ( - paged_attention, - attention, - reshape_and_cache, - Seqlen, -) from text_generation_server.layers import ( FastLinear, - TensorParallelRowLinear, + SpeculativeHead, TensorParallelColumnLinear, TensorParallelEmbedding, - SpeculativeHead, + TensorParallelRowLinear, get_linear, ) -from text_generation_server.layers.layernorm import ( - FastRMSNorm, -) -from text_generation_server.layers.rotary import ( - PositionRotaryEmbedding, +from text_generation_server.layers.attention import ( + Seqlen, + attention, + paged_attention, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE +from text_generation_server.layers.layernorm import FastRMSNorm +from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer +from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.utils.weights import UnquantizedWeight @@ -266,17 +257,15 @@ class MixtralAttention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -286,8 +275,8 @@ class MixtralAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, @@ -316,59 +305,35 @@ def round_up(x: torch.Tensor, value: int): return torch.div(x + (value - 1), value, rounding_mode="trunc") * value -class BlockSparseMoE(nn.Module): - def __init__(self, prefix, config: MixtralConfig, weights): +class MixtralMoE(nn.Module): + def __init__( + self, prefix, config: MixtralConfig, moe_layer_cls: Type[MoELayer], weights + ): super().__init__() - self.hidden_dim = config.hidden_size - self.ffn_dim = config.intermediate_size // weights.process_group.size() - self.num_experts = config.num_local_experts - self.top_k = config.num_experts_per_tok - - act = config.hidden_act - if "gelu" in act: - self.act = lambda x: torch.nn.functional.gelu( - x, - approximate=( - "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" - ), - ) - elif "silu" in act: - self.act = torch.nn.functional.silu - else: - self.act = ACT2FN[act] # gating self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) - # merged expert weights, all of size (n_experts * ffn_dim, hidden_dim) - w1 = _load_experts(config, f"{prefix}.experts", "w1", weights).view( - self.num_experts, self.ffn_dim, self.hidden_dim - ) - w3 = _load_experts(config, f"{prefix}.experts", "w3", weights).view( - self.num_experts, self.ffn_dim, self.hidden_dim - ) - self.w13 = torch.cat([w1, w3], dim=1) - self.w2 = ( - _load_experts(config, f"{prefix}.experts", "w2", weights) - .view(self.num_experts, self.ffn_dim, self.hidden_dim) - .transpose(1, 2) - .contiguous() + self.moe = moe_layer_cls( + n_expert_group=None, + n_experts=config.num_local_experts, + prefix=f"{prefix}.experts", + renormalize=True, + topk=config.num_experts_per_tok, + topk_group=None, + weights=weights, + gate_proj_name="w1", + up_proj_name="w3", + down_proj_name="w2", ) + assert isinstance(self.moe, MoELayer) self.process_group = weights.process_group def forward(self, x: torch.Tensor) -> torch.Tensor: # router_logits: (num_tokens, n_experts) router_logits = self.gate(x) - out = fused_moe( - x, - self.w13, - self.w2, - router_logits, - self.top_k, - renormalize=True, - inplace=True, - ) + out = self.moe(x, gating_output=router_logits) # Reduce sum if self.process_group.size() > 1: @@ -377,95 +342,6 @@ class BlockSparseMoE(nn.Module): return out.view(*x.shape) -class DenseMoE(nn.Module): - def __init__(self, prefix, config: MixtralConfig, weights): - super().__init__() - self.hidden_dim = config.hidden_size - self.ffn_dim = config.intermediate_size // weights.process_group.size() - self.num_experts = config.num_local_experts - self.top_k = config.num_experts_per_tok - - act = config.hidden_act - if "gelu" in act: - self.act = lambda x: torch.nn.functional.gelu( - x, - approximate=( - "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" - ), - ) - elif "silu" in act: - self.act = torch.nn.functional.silu - else: - self.act = ACT2FN[act] - - # gating - self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False) - - self.w1 = [ - TensorParallelColumnLinear.load( - config, prefix=f"{prefix}.experts.{i}.w1", weights=weights, bias=False - ) - for i in range(self.num_experts) - ] - self.w3 = [ - TensorParallelColumnLinear.load( - config, prefix=f"{prefix}.experts.{i}.w3", weights=weights, bias=False - ) - for i in range(self.num_experts) - ] - self.w2 = [ - TensorParallelRowLinear.load( - config, prefix=f"{prefix}.experts.{i}.w2", weights=weights, bias=False - ) - for i in range(self.num_experts) - ] - - self.process_group = weights.process_group - - def forward(self, x: torch.Tensor) -> torch.Tensor: - """ - x: (sequence_length, model_dim) - gate_logits: (sequence_length, n_experts) - """ - # optional reshape - input_shape = x.shape - x = x.view(-1, input_shape[-1]) - - # gate_logits: (sequence_length, n_experts) - gate_logits = self.gate(x) - # all_probs: (sequence_length, n_experts) and upcast for softmax - all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) - - if self.top_k < self.num_experts: - _, not_selected_experts = torch.topk( - all_probs, - self.num_experts - self.top_k, - largest=False, - sorted=False, - dim=1, - ) - # Mask not selected experts - all_probs.scatter_(1, not_selected_experts, 0) - - # Re-normalize - weights = all_probs / all_probs.sum(dim=1, keepdim=True) - weights = weights.to(x.dtype) - - # Final output tensor - out = x.new_zeros(x.shape[0], self.hidden_dim) - for i in range(self.num_experts): - h = self.act(self.w1[i](x)) * self.w3[i](x) - h = self.w2[i](h, reduce=False) - # Add expert output to out with masking - out += h * weights[:, i].view(-1, 1) - - # Reduce sum - if self.process_group.size() > 1: - torch.distributed.all_reduce(out, group=self.process_group) - - return out - - class MixtralLayer(nn.Module): def __init__(self, prefix: str, layer_id, config, weights): super().__init__() @@ -475,8 +351,12 @@ class MixtralLayer(nn.Module): prefix=f"{prefix}.self_attn", config=config, weights=weights ) - moe_cls = BlockSparseMoE if config.quantize is None else DenseMoE - self.moe = moe_cls(f"{prefix}.block_sparse_moe", config, weights) + moe_layer_cls = ( + SparseMoELayer if SparseMoELayer.is_supported(weights) else DenseMoELayer + ) + self.moe = MixtralMoE( + f"{prefix}.block_sparse_moe", config, moe_layer_cls, weights + ) self.input_layernorm = FastRMSNorm.load( prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps diff --git a/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py b/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py index 454e45eb..bcbea442 100644 --- a/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_neox_modeling.py @@ -26,11 +26,9 @@ from transformers.activations import ACT2FN from transformers.modeling_utils import PreTrainedModel from transformers.models.gpt_neox import GPTNeoXConfig as TransformersGPTNeoXConfig from typing import Optional, List, Tuple -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -40,6 +38,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, ) @@ -165,15 +164,15 @@ class FlashNeoxAttention(torch.nn.Module): qkv[:, 0] = torch.cat((query_rot, query_pass), dim=-1) qkv[:, 1] = torch.cat((key_rot, key_pass), dim=-1) - reshape_and_cache(qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=qkv[:, 1], value=qkv[:, 2], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( qkv[:, 0], - kv_cache[0] if SYSTEM != "ipex" else qkv[:, 1], - kv_cache[1] if SYSTEM != "ipex" else qkv[:, 2], + kv_cache.key if PREFILL_IN_KV_CACHE else qkv[:, 1], + kv_cache.value if PREFILL_IN_KV_CACHE else qkv[:, 2], seqlen, block_tables, self.softmax_scale, @@ -182,8 +181,8 @@ class FlashNeoxAttention(torch.nn.Module): else: attn_output = paged_attention( qkv[:, 0], - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py b/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py index d044b492..0024f2bb 100644 --- a/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_pali_gemma_modeling.py @@ -48,7 +48,7 @@ class PaliGemmaForConditionalGeneration(nn.Module): bias=True, ) - self.vocab_size = config.vocab_size + self.vocab_size = config.text_config.vocab_size self.config = config text_config = config.text_config diff --git a/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py b/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py index e2d9bbbc..cb7b6ee2 100644 --- a/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_phi_modeling.py @@ -9,7 +9,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -19,13 +18,13 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, ) from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) -from text_generation_server.utils.import_utils import SYSTEM class PhiConfig(PretrainedConfig): @@ -188,14 +187,14 @@ class FlashPhiAttention(torch.nn.Module): ) # Reshape key and value and cache - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -204,8 +203,8 @@ class FlashPhiAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_phi_moe_modeling.py b/server/text_generation_server/models/custom_modeling/flash_phi_moe_modeling.py new file mode 100644 index 00000000..bb585cc4 --- /dev/null +++ b/server/text_generation_server/models/custom_modeling/flash_phi_moe_modeling.py @@ -0,0 +1,254 @@ +# coding=utf-8 +# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""PyTorch Phi-MoE model.""" + +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + + +logger = logging.get_logger(__name__) + + +PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "microsoft/Phi-3.5-MoE-instruct": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct/resolve/main/config.json", +} + + +class PhiMoEConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the + [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32064): + Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`PhiMoEModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 6400): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 8): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to `4096*32`): + The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention + allows sequence of up to 4096*32 tokens. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + The id of the padding token. + bos_token_id (`int`, *optional*, defaults to 1): + The id of the "beginning-of-sequence" token. + eos_token_id (`int`, *optional*, defaults to 2): + The id of the "end-of-sequence" token. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`dict`, *optional*): + The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must + contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and + `original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must + be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of + the attention head size and the `original_max_position_embeddings` must be an integer. + sliding_window (`int`, *optional*): + Sliding window attention window size. If not specified, will default to `262144`. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + num_experts_per_tok (`int`, *optional*, defaults to 2): + The number of experts to root per-token, can be also interpreted as the `top-p` routing + parameter + num_local_experts (`int`, *optional*, defaults to 16): + Number of experts per Sparse MLP layer. + output_router_logits (`bool`, *optional*, defaults to `False`): + Whether or not the router logits should be returned by the model. Enabeling this will also + allow the model to output the auxiliary loss. See [here]() for more details + router_aux_loss_coef (`float`, *optional*, defaults to 0.0): + The aux loss factor for the total loss. + router_jitter_noise (`float`, *optional*, defaults to 0.01): + Amount of noise to add to the router. + + ```python + >>> from transformers import PhiMoEModel, PhiMoEConfig + + >>> # Initializing a Phi-3 style configuration + >>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct") + + >>> # Initializing a model from the configuration + >>> model = PhiMoEModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "phimoe" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32064, + hidden_size=4096, + intermediate_size=6400, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=8, + hidden_act="silu", + max_position_embeddings=4096 * 32, + initializer_range=0.02, + rms_norm_eps=1e-5, + use_cache=True, + pad_token_id=None, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + rope_theta=1e6, + rope_scaling=None, + sliding_window=None, + attention_dropout=0.0, + num_experts_per_tok=2, + num_local_experts=16, + output_router_logits=False, + router_aux_loss_coef=0.001, + router_jitter_noise=0.01, + input_jitter_noise=0.0, + attention_bias=False, + lm_head_bias=False, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.sliding_window = sliding_window + self.attention_bias = attention_bias + self.lm_head_bias = lm_head_bias + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + + self.num_experts_per_tok = num_experts_per_tok + self.num_local_experts = num_local_experts + self.output_router_logits = output_router_logits + self.router_aux_loss_coef = router_aux_loss_coef + self.router_jitter_noise = router_jitter_noise + self.input_jitter_noise = input_jitter_noise + + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6: + raise ValueError( + "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, " + f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) + rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) + rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None) + rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None) + original_max_position_embeddings = self.rope_scaling.get( + "original_max_position_embeddings", None + ) + if rope_scaling_type is None or rope_scaling_type not in ["longrope"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}" + ) + if not ( + isinstance(rope_scaling_short_factor, list) + and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor) + ): + raise ValueError( + f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}" + ) + if ( + not len(rope_scaling_short_factor) + == self.hidden_size // self.num_attention_heads // 2 + ): + raise ValueError( + f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}" + ) + if not ( + isinstance(rope_scaling_long_factor, list) + and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor) + ): + raise ValueError( + f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}" + ) + if ( + not len(rope_scaling_long_factor) + == self.hidden_size // self.num_attention_heads // 2 + ): + raise ValueError( + f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}" + ) + if not isinstance(rope_scaling_short_mscale, (int, float)): + raise ValueError( + f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}" + ) + if not isinstance(rope_scaling_long_mscale, (int, float)): + raise ValueError( + f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}" + ) + if not isinstance(original_max_position_embeddings, int): + raise ValueError( + f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}" + ) diff --git a/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py index 999b72e7..8185885f 100644 --- a/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_qwen2_modeling.py @@ -8,7 +8,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -17,11 +16,11 @@ from text_generation_server.layers import ( TensorParallelEmbedding, SpeculativeHead, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, ) -from text_generation_server.utils.import_utils import SYSTEM def load_attention(config, prefix, weights): @@ -128,17 +127,15 @@ class Qwen2Attention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -148,8 +145,8 @@ class Qwen2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py b/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py index edc54c09..dac8ecf9 100644 --- a/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_rw_modeling.py @@ -5,7 +5,6 @@ import torch.distributed from torch import nn from transformers.configuration_utils import PretrainedConfig from transformers.modeling_utils import PreTrainedModel -from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.layers import ( SpeculativeHead, TensorParallelColumnLinear, @@ -13,12 +12,12 @@ from text_generation_server.layers import ( TensorParallelRowLinear, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import FastLayerNorm from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.attention import ( attention, paged_attention, - reshape_and_cache, Seqlen, ) @@ -200,15 +199,15 @@ class FlashRWAttention(torch.nn.Module): # Inplace rotary self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) - reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots) + kv_cache.store(key=kv[:, 0], value=kv[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, 1], seqlen, block_tables, self.softmax_scale, @@ -217,8 +216,8 @@ class FlashRWAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, @@ -312,12 +311,8 @@ class FlashRWLargeAttention(torch.nn.Module): # Inplace rotary self.rotary_emb(query, torch.select(kv, dim=2, index=0), cos, sin) - reshape_and_cache( - kv[:, :, 0].contiguous(), - kv[:, :, 1].contiguous(), - kv_cache[0], - kv_cache[1], - slots, + kv_cache.store( + key=kv[:, :, 0].contiguous(), value=kv[:, :, 1].contiguous(), slots=slots ) # Prefill @@ -325,8 +320,8 @@ class FlashRWLargeAttention(torch.nn.Module): # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv[:, :, 0].contiguous(), - kv_cache[1] if SYSTEM != "ipex" else kv[:, :, 1].contiguous(), + kv_cache.key if PREFILL_IN_KV_CACHE else kv[:, :, 0].contiguous(), + kv_cache.value if PREFILL_IN_KV_CACHE else kv[:, :, 1].contiguous(), seqlen, block_tables, self.softmax_scale, @@ -335,8 +330,8 @@ class FlashRWLargeAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py b/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py index f97b4409..5972d436 100644 --- a/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py @@ -8,7 +8,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -18,11 +17,11 @@ from text_generation_server.layers import ( TensorParallelEmbedding, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.gptq import GPTQWeightsLoader from text_generation_server.layers.layernorm import ( FastLayerNorm, ) -from text_generation_server.utils.import_utils import SYSTEM def load_multi_mqa( @@ -284,17 +283,15 @@ class FlashMQAttention(torch.nn.Module): query = query.view(-1, self.num_heads, self.head_size) key_value = key_value.view(-1, 2, 1, self.head_size) - reshape_and_cache( - key_value[:, 0], key_value[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=key_value[:, 0], value=key_value[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else key_value[:, 0], - kv_cache[1] if SYSTEM != "ipex" else key_value[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else key_value[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else key_value[:, 1], seqlen, block_tables, self.softmax_scale, @@ -303,8 +300,8 @@ class FlashMQAttention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py index 6aa7fa21..037238b8 100644 --- a/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_starcoder2_modeling.py @@ -29,7 +29,6 @@ from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, - reshape_and_cache, Seqlen, ) from text_generation_server.layers import ( @@ -39,6 +38,7 @@ from text_generation_server.layers import ( SpeculativeHead, get_linear, ) +from text_generation_server.layers.attention import PREFILL_IN_KV_CACHE from text_generation_server.layers.layernorm import ( FastLayerNorm, FastRMSNorm, @@ -47,7 +47,6 @@ from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) from text_generation_server.utils.weights import UnquantizedWeight -from text_generation_server.utils.import_utils import SYSTEM class Starcoder2Config(PretrainedConfig): @@ -233,17 +232,15 @@ class Starcoder2Attention(torch.nn.Module): else: kv_to_cache = kv - reshape_and_cache( - kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots - ) + kv_cache.store(key=kv_to_cache[:, 0], value=kv_to_cache[:, 1], slots=slots) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query, - kv_cache[0] if SYSTEM != "ipex" else kv_to_cache[:, 0], - kv_cache[1] if SYSTEM != "ipex" else kv_to_cache[:, 1], + kv_cache.key if PREFILL_IN_KV_CACHE else kv_to_cache[:, 0], + kv_cache.value if PREFILL_IN_KV_CACHE else kv_to_cache[:, 1], seqlen, block_tables, self.softmax_scale, @@ -253,8 +250,8 @@ class Starcoder2Attention(torch.nn.Module): else: attn_output = paged_attention( query, - kv_cache[0], - kv_cache[1], + kv_cache.key, + kv_cache.value, self.kv_head_mapping, self.softmax_scale, block_tables, diff --git a/server/text_generation_server/models/custom_modeling/mllama.py b/server/text_generation_server/models/custom_modeling/mllama.py new file mode 100644 index 00000000..6e091a74 --- /dev/null +++ b/server/text_generation_server/models/custom_modeling/mllama.py @@ -0,0 +1,1031 @@ +# coding=utf-8 +# Copyright 2024 the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Mllama model.""" + +from typing import Optional, Tuple, List + +import torch +import torch.utils.checkpoint +from torch import nn +from text_generation_server.utils.import_utils import SYSTEM + +if SYSTEM == "ipex": + import intel_extension_for_pytorch as ipex +else: + import flash_attn_2_cuda + +from transformers.activations import ACT2FN +import torch.nn.functional as F + +from text_generation_server.layers import ( + TensorParallelColumnLinear, + TensorParallelEmbedding, + TensorParallelRowLinear, + FastLinear, +) +from text_generation_server.layers.attention import ( + Seqlen, +) +from text_generation_server.models.custom_modeling.flash_llama_modeling import ( + FlashLlamaForCausalLM, +) + + +def _prepare_aspect_ratio_attention_mask( + aspect_ratio_mask: torch.Tensor, + num_patches: int, + target_length: int, + dtype: torch.dtype, +) -> torch.Tensor: + # Expand aspect ratio mask to target_length + batch_size, max_num_tiles = aspect_ratio_mask.shape + attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype) + attention_mask = attention_mask.repeat(1, 1, target_length, 1) + + # Mask padding patches + pad_patches = target_length - num_patches + attention_mask[:, :, -pad_patches:] = 0 + + # Invert the mask (0 -> 1, 1 -> 0) + attention_mask = 1 - attention_mask + + # Reshape to 2D and create 4D attention mask + # (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length) + attention_mask = attention_mask.reshape( + batch_size, max_num_tiles * target_length, 1 + ) + attention_mask = ( + attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min + ) + attention_mask = attention_mask.unsqueeze(1) + + return attention_mask + + +# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position +def _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask: torch.Tensor, + sequence_length: int, + target_length: int, + dtype: torch.dtype, + device: torch.device, + min_dtype: float, + cache_position: torch.Tensor, + batch_size: int, +): + """ + Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape + `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. + + Args: + attention_mask (`torch.Tensor`): + A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. + sequence_length (`int`): + The sequence length being processed. + target_length (`int`): + The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. + dtype (`torch.dtype`): + The dtype to use for the 4D attention mask. + device (`torch.device`): + The device to plcae the 4D attention mask on. + min_dtype (`float`): + The minimum value representable with the dtype `dtype`. + cache_position (`torch.Tensor`): + Indices depicting the position of the input sequence tokens in the sequence. + batch_size (`torch.Tensor`): + Batch size. + """ + if attention_mask is not None and attention_mask.dim() == 4: + # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. + causal_mask = attention_mask + else: + causal_mask = torch.full( + (sequence_length, target_length), + fill_value=min_dtype, + dtype=dtype, + device=device, + ) + if sequence_length != 1: + causal_mask = torch.triu(causal_mask, diagonal=1) + causal_mask *= torch.arange( + target_length, device=device + ) > cache_position.reshape(-1, 1) + causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) + if attention_mask is not None: + causal_mask = ( + causal_mask.clone() + ) # copy to contiguous memory for in-place edit + mask_length = attention_mask.shape[-1] + padding_mask = ( + causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] + ) + padding_mask = padding_mask == 0 + causal_mask[:, :, :, :mask_length] = causal_mask[ + :, :, :, :mask_length + ].masked_fill(padding_mask, min_dtype) + + return causal_mask + + +def _prepare_cross_attention_mask( + cross_attention_mask: torch.Tensor, + num_vision_tokens: int, + dtype: str, +) -> Tuple[torch.Tensor, torch.Tensor]: + # reshape so it can be used by attn module + batch_size, text_total_length, *_ = cross_attention_mask.shape + cross_attention_mask = cross_attention_mask.repeat_interleave( + num_vision_tokens, dim=3 + ) + cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1) + cross_attention_mask = cross_attention_mask.unsqueeze(1) + + # invert the mask + inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype) + cross_attention_mask = inverted_cross_attn_mask.masked_fill( + inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min + ) + + # apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's + # last dimension contains negative infinity values, otherwise it's 1 + negative_inf_value = torch.finfo(dtype).min + full_text_row_masked_out_mask = ( + (cross_attention_mask != negative_inf_value) + .any(dim=-1) + .type_as(cross_attention_mask)[..., None] + ) + cross_attention_mask *= full_text_row_masked_out_mask + + return cross_attention_mask, full_text_row_masked_out_mask + + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision +class MllamaVisionMLP(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = TensorParallelColumnLinear.load( + prefix=f"{prefix}.fc1", weights=weights, config=config, bias=True + ) + self.fc2 = TensorParallelRowLinear.load( + prefix=f"{prefix}.fc2", weights=weights, config=config, bias=True + ) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +class MllamaVisionSdpaAttention(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + + self.embed_dim = config.hidden_size + self.head_dim = config.hidden_size // config.attention_heads + self.num_heads = config.attention_heads // weights.process_group.size() + + self.qkv_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], + dim=0, + weights=weights, + bias=False, + ) + self.o_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.o_proj", + weights=weights, + bias=False, + ) + + def forward( + self, + hidden_state: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + qkv = self.qkv_proj(hidden_state) + query, key, value = qkv.split( + [ + self.head_dim * self.num_heads, + self.head_dim * self.num_heads, + self.head_dim * self.num_heads, + ], + dim=2, + ) + + batch_size, q_seq_len, _ = query.shape + _, kv_seq_len, _ = key.shape + + query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim) + key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) + value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) + + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + attn_output = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(batch_size, q_seq_len, -1) + + output = self.o_proj(attn_output) + return output + + +class MllamaVisionEncoderLayer(nn.Module): + def __init__(self, *, prefix, config, weights, is_gated: bool): + super().__init__() + + self.hidden_size = config.hidden_size + self.num_attention_heads = config.attention_heads + self.is_gated = is_gated + self.intermediate_size = config.intermediate_size + + self.self_attn = MllamaVisionSdpaAttention( + prefix=f"{prefix}.self_attn", config=config, weights=weights + ) + self.mlp = MllamaVisionMLP( + prefix=f"{prefix}.mlp", config=config, weights=weights + ) + + self.input_layernorm = nn.LayerNorm.load( + prefix=f"{prefix}.input_layernorm", weights=weights, eps=1e-05 + ) + self.post_attention_layernorm = nn.LayerNorm.load( + prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=1e-05 + ) + + # there used to be an if else here, no code path + if is_gated: + self.gate_attn = nn.Parameter( + weights.get_tensor(f"{prefix}.gate_attn"), requires_grad=False + ) + self.gate_ffn = nn.Parameter( + weights.get_tensor(f"{prefix}.gate_ffn"), requires_grad=False + ) + + def forward( + self, + hidden_state: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + # Self Attention + residual = hidden_state + hidden_state = self.input_layernorm(hidden_state) + hidden_state = self.self_attn(hidden_state, attention_mask=attention_mask) + gate_attn = 1 if not self.is_gated else self.gate_attn.tanh() + hidden_state = residual + gate_attn * hidden_state + + # Feed forward + residual = hidden_state + hidden_state = self.post_attention_layernorm(hidden_state) + hidden_state = self.mlp(hidden_state) + gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh() + hidden_state = residual + gate_ffn * hidden_state + return hidden_state + + +class MllamaVisionEncoder(nn.Module): + def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int): + super().__init__() + self.config = config + self.layers = [ + MllamaVisionEncoderLayer( + prefix=f"{prefix}.layers.{i}", + config=config, + weights=weights, + is_gated=is_gated, + ) + for i in range(num_layers) + ] + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + encoder_states = [hidden_states] + for encoder_layer in self.layers: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + ) + + hidden_states = layer_outputs + encoder_states.append(hidden_states) + + return hidden_states, encoder_states + + +class MllamaPrecomputedAspectRatioEmbedding(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.max_num_tiles = config.max_num_tiles + self.hidden_size = config.hidden_size + self.max_aspect_ratio_id = config.max_aspect_ratio_id + + self.embedding = TensorParallelEmbedding( + prefix=f"{prefix}.embedding", weights=weights + ) + self.gate = nn.Parameter( + weights.get_tensor(f"{prefix}.gate"), requires_grad=False + ) + + def forward( + self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor + ) -> torch.Tensor: + embeddings = self.embedding(aspect_ratio_ids) + embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size) + + # Always gated. + embeddings = embeddings * self.gate.tanh() + + hidden_state = hidden_state + embeddings + return hidden_state + + +class MllamaPrecomputedPositionEmbedding(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.max_num_tiles = config.max_num_tiles + self.max_aspect_ratio_id = config.max_aspect_ratio_id + self.num_patches = (config.image_size // config.patch_size) ** 2 + 1 + self.hidden_size = config.hidden_size + self.scale = config.hidden_size**-0.5 + + self.gate = nn.Parameter( + weights.get_tensor(f"{prefix}.gate"), requires_grad=False + ) + + # position embedding + embedding = nn.Parameter( + weights.get_tensor(f"{prefix}.embedding"), requires_grad=False + ) + self.gated_position_embedding = (1 - self.gate.tanh()) * embedding + self.tile_embedding = TensorParallelEmbedding( + prefix=f"{prefix}.tile_embedding", weights=weights + ) + + def forward( + self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor + ) -> torch.Tensor: + # position embeddings + hidden_state = hidden_state + self.gated_position_embedding.view( + 1, 1, self.num_patches, self.hidden_size + ) + + # precomputed tile position embeddings + tile_position_embedding = self.tile_embedding(aspect_ratio_ids) + batch_size = hidden_state.shape[0] + tile_position_embedding = tile_position_embedding.reshape( + batch_size, self.max_num_tiles, self.num_patches, self.hidden_size + ) + gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding + hidden_state = hidden_state + gated_tile_position_embedding + + return hidden_state + + +class MllamaVisionModel(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.image_size = config.image_size + self.patch_size = config.patch_size + self.max_num_tiles = config.max_num_tiles + self.hidden_size = config.hidden_size + self.num_channels = config.num_channels + self.intermediate_layers_indices = config.intermediate_layers_indices + + self.num_patches = (self.image_size // self.patch_size) ** 2 + 1 + self.scale = config.hidden_size**-0.5 + self.dtype = weights.dtype + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=self.hidden_size, + kernel_size=self.patch_size, + stride=self.patch_size, + padding="valid", + bias=False, + ) + self.patch_embedding.weight = nn.Parameter( + weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False + ) + + self.class_embedding = nn.Parameter( + weights.get_tensor(f"{prefix}.class_embedding"), requires_grad=False + ) + + self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding( + prefix=f"{prefix}.gated_positional_embedding", + config=config, + weights=weights, + ) + + self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding( + prefix=f"{prefix}.pre_tile_positional_embedding", + config=config, + weights=weights, + ) + self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding( + prefix=f"{prefix}.post_tile_positional_embedding", + config=config, + weights=weights, + ) + + ## layer norms + self.layernorm_pre = nn.LayerNorm.load( + prefix=f"{prefix}.layernorm_pre", + weights=weights, + # torch default + eps=1e-05, + ) + self.layernorm_post = nn.LayerNorm.load( + prefix=f"{prefix}.layernorm_post", + weights=weights, + # torch default + eps=1e-05, + ) + + ## encoders + self.transformer = MllamaVisionEncoder( + prefix=f"{prefix}.transformer", + config=config, + weights=weights, + is_gated=False, + num_layers=config.num_hidden_layers, + ) + self.global_transformer = MllamaVisionEncoder( + prefix=f"{prefix}.global_transformer", + config=config, + weights=weights, + is_gated=True, + num_layers=config.num_global_layers, + ) + + def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor: + batch_size, _, hidden_size = hidden_state.shape + class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size) + hidden_state = torch.cat([class_embedding, hidden_state], dim=1) + return hidden_state + + def forward( + self, + pixel_values: torch.Tensor, + aspect_ratio_ids: torch.Tensor, + attention_mask: torch.Tensor, + ) -> torch.Tensor: + batch_size, num_concurrent_media, num_tiles, num_channels, height, width = ( + pixel_values.shape + ) + + pixel_values = pixel_values.reshape( + batch_size * num_concurrent_media * num_tiles, num_channels, height, width + ) + aspect_ratio_ids = aspect_ratio_ids.reshape( + batch_size * num_concurrent_media, -1 + ) + + # patch embedding + patch_embeds = self.patch_embedding(pixel_values) + hidden_state = patch_embeds.flatten(2).transpose(1, 2) + + # tile embeddings + _, num_patches, dim = hidden_state.shape + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, num_tiles, -1, dim + ) + hidden_state = self.pre_tile_positional_embedding( + hidden_state, aspect_ratio_ids + ) + + # apply cls token + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media * num_tiles, num_patches, dim + ) + hidden_state = self.apply_class_embedding(hidden_state) + num_patches += 1 + + # apply position embeddings + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, num_tiles, num_patches, dim + ) + hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids) + + # apply encoder + hidden_state = self.layernorm_pre(hidden_state) + + # Compute the number of tokens to pad + num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8 + # Compute padding tuple for pad function + padding = ( + 0, + 0, + 0, + num_padding_patches, + ) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2) + # Pad the tensor + hidden_state = F.pad(hidden_state, padding, mode="constant", value=0) + slice_index = -num_padding_patches if num_padding_patches > 0 else None + + if attention_mask is not None: + attention_mask = attention_mask.reshape( + batch_size * num_concurrent_media, -1 + ) + attention_mask = _prepare_aspect_ratio_attention_mask( + aspect_ratio_mask=attention_mask, + num_patches=self.num_patches, + target_length=hidden_state.shape[2], + dtype=self.dtype, + ) + + hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim) + hidden_state, all_intermediate_hidden_states = self.transformer( + hidden_state, + attention_mask=attention_mask, + ) + intermediate_hidden_states = [ + hidden_state + for idx, hidden_state in enumerate(all_intermediate_hidden_states) + if idx in self.intermediate_layers_indices + ] + intermediate_hidden_states = torch.stack(intermediate_hidden_states, dim=-1) + + # apply global encoder + hidden_state = self.layernorm_post(hidden_state) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + dim, + ) + hidden_state = self.post_tile_positional_embedding( + hidden_state, aspect_ratio_ids + ) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles * (num_patches + num_padding_patches), + dim, + ) + hidden_state, _ = self.global_transformer( + hidden_state, attention_mask=attention_mask + ) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + dim, + ) + hidden_state = hidden_state[:, :, :slice_index] + + # adding intermediate layer outputs + hidden_state = hidden_state.reshape( + batch_size, num_concurrent_media, num_tiles, num_patches, dim + ) + intermediate_hidden_states = intermediate_hidden_states.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + -1, + ) + intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index] + intermediate_hidden_states = intermediate_hidden_states.reshape( + batch_size, num_concurrent_media, num_tiles, num_patches, -1 + ) + hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1) + return hidden_state + + +class MllamaTextCrossAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, *, prefix, config, weights, layer_idx): + super().__init__() + self.config = config + self.num_heads = self.config.num_attention_heads + self.num_key_value_heads = self.config.num_key_value_heads + self.dropout = config.dropout + self.hidden_size = config.hidden_size + self.head_size = config.hidden_size // self.num_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.layer_idx = layer_idx + + self.num_heads = self.num_heads // weights.process_group.size() + self.num_key_value_heads = ( + self.num_key_value_heads // weights.process_group.size() + ) + + self.q_proj = TensorParallelColumnLinear.load( + config, + prefix=f"{prefix}.q_proj", + weights=weights, + bias=False, + ) + self.k_proj = TensorParallelColumnLinear.load( + config, + prefix=f"{prefix}.k_proj", + weights=weights, + bias=False, + ) + self.v_proj = TensorParallelColumnLinear.load( + config, + prefix=f"{prefix}.v_proj", + weights=weights, + bias=False, + ) + self.o_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.o_proj", + weights=weights, + bias=False, + ) + + self.q_norm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.q_norm", weights=weights, eps=config.rms_norm_eps + ) + self.k_norm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.k_norm", weights=weights, eps=config.rms_norm_eps + ) + self.softmax_scale = self.head_size**-0.5 + + def forward( + self, + hidden_states: torch.Tensor, + cross_attention_states: Optional[torch.Tensor] = None, + # past_key_value=None, + # attention_mask: Optional[torch.Tensor] = None, + # cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + # hidden_states = hidden_states.unsqueeze(0) + # bsz, q_len, _ = hidden_states.size() + query_states = self.q_proj(hidden_states) + query_states = query_states.view(-1, self.num_heads, self.head_size) + query_states = self.q_norm(query_states) + + ( + cross_attention_states, + cu_seqlen_q, + cu_seqlen_k, + max_q, + max_k, + indices, + ) = cross_attention_states + + key_states = self.k_proj(cross_attention_states) + value_states = self.v_proj(cross_attention_states) + key_states = key_states.view(-1, self.num_key_value_heads, self.head_size) + value_states = value_states.view(-1, self.num_key_value_heads, self.head_size) + key_states = self.k_norm(key_states) + + # key_states = key_states.repeat(1, self.num_key_value_groups, 1) + # value_states = value_states.repeat(1, self.num_key_value_groups, 1) + + causal = False + # logger.info( + # f"Q: {query_states.shape} -K {key_states.shape} - V{value_states.shape}" + # ) + if SYSTEM == "ipex": + attn_output = torch.empty_like(query_states) + ipex.llm.functional.varlen_attention( + ( + query_states.contiguous() + if query_states.device.type == "xpu" + else query_states + ), + ( + key_states.contiguous() + if key_states.device.type == "xpu" + else key_states + ), + ( + value_states.contiguous() + if value_states.device.type == "xpu" + else value_states + ), + attn_output, + cu_seqlen_q, + cu_seqlen_k, + max_q, + max_k, + 0.0, + self.softmax_scale, + False, + causal, + False, + None, + ) + else: + attn_output = flash_attn_2_cuda.varlen_fwd( + query_states, + key_states, + value_states, + None, + cu_seqlen_q, + cu_seqlen_k, + None, + None, + None, # block_tables + None, + max_q, + max_k, + 0.0, + self.softmax_scale, + False, + causal, # Causal + -1, # window_size_left, + -1, + 0.0, # softcap + False, + None, + )[0] + attn_output = self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) + + return attn_output + + +# Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText +class MllamaTextMLP(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = ( + config.intermediate_size // weights.process_group.size() + ) + self.gate_up_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], + weights=weights, + dim=0, + bias=False, + ) + self.down_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.down_proj", + weights=weights, + bias=False, + ) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + shape = x.shape + gate_up_states = self.gate_up_proj(x) + gate_up_states = gate_up_states.view(*shape[:-1], 2, self.intermediate_size) + result = self.down_proj( + self.act_fn(gate_up_states[:, 0]) * gate_up_states[:, 1] + ) + return result + + +class FlashLlamaCrossLayer(torch.nn.Module): + """Cross-attention transformer block with tanh-gated attention and feedforward.""" + + def __init__(self, *, prefix, config, weights, index) -> None: + layer_idx = index + super().__init__() + self.cross_attn = MllamaTextCrossAttention( + prefix=f"{prefix}.cross_attn", + config=config, + weights=weights, + layer_idx=layer_idx, + ) + + self.input_layernorm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps + ) + self.cross_attn_attn_gate = torch.nn.Parameter( + weights.get_tensor(f"{prefix}.cross_attn_attn_gate"), requires_grad=False + ) + + self.mlp = MllamaTextMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) + self.post_attention_layernorm = MllamaTextRMSNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + self.cross_attn_mlp_gate = torch.nn.Parameter( + weights.get_tensor(f"{prefix}.cross_attn_mlp_gate"), requires_grad=False + ) + self.layer_idx = layer_idx + + def forward( + self, + hidden_states, + residual, + cos, + sin, + cu_seqlen_prefill, + kv_cache, + block_tables, + slots, + seqlen, + max_s, + adapter_data, + cross_attention_states, # [ IB, ...] + ) -> Tuple[torch.Tensor, torch.Tensor]: + if cross_attention_states is None: + return hidden_states, residual + if residual is not None: + hidden_states += residual + + indices = cross_attention_states[-1] + out_hidden_states = hidden_states[:] + if len(indices) > 0: + assert max(indices) < hidden_states.shape[0] + hidden_states = hidden_states[indices] + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + + hidden_states = self.cross_attn( + hidden_states=hidden_states, + # attention_mask=cross_attention_mask, + cross_attention_states=cross_attention_states, + ) + hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states + + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states + + out_hidden_states[indices] = hidden_states + hidden_states = out_hidden_states + + return hidden_states, None + + +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MllamaText +class MllamaTextRMSNorm(nn.Module): + def __init__(self, weight, eps): + super().__init__() + self.weight = weight + self.variance_epsilon = eps + + @classmethod + def load(cls, *, prefix, weights, eps): + weight = nn.Parameter( + weights.get_tensor(f"{prefix}.weight"), requires_grad=False + ) + return cls(weight=weight, eps=eps) + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +class MllamaForConditionalGeneration(nn.Module): + def __init__(self, prefix, config, weights): + super().__init__() + config.vision_config.quantize = None + config.vision_config.speculator = config.speculator + config.text_config.quantize = config.quantize + config.text_config.speculator = config.speculator + config.text_config._attn_implementation = "sdpa" + self.hidden_size = config.text_config.hidden_size + self.vision_model = MllamaVisionModel( + prefix="vision_model", config=config.vision_config, weights=weights + ) + self.multi_modal_projector = FastLinear.load( + prefix="multi_modal_projector", config=config, weights=weights, bias=True + ) + self.text_model = FlashLlamaForCausalLM( + prefix="language_model", config=config.text_config, weights=weights + ) + self.config = config + self.dtype = weights.dtype + self.device = weights.device + + def vision_forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask): + if aspect_ratio_ids is None: + raise ValueError( + "`aspect_ratio_ids` must be provided if `pixel_values` is provided" + ) + # logger.info(f"PIxel values {pixel_values.shape}") + batch_size = pixel_values.shape[0] + vision_states = self.vision_model( + pixel_values, aspect_ratio_ids, aspect_ratio_mask + ) + cross_attention_states = self.multi_modal_projector(vision_states).reshape( + -1, vision_states.shape[-2], self.hidden_size + ) + _, _, h = cross_attention_states.shape + cross_attention_states = cross_attention_states.view(batch_size, -1, h) + # logger.info(f"cross {cross_attention_states.shape}") + return cross_attention_states + + def forward( + self, + input_ids: torch.Tensor, + position_ids: torch.Tensor, + cu_seqlen_prefill: Optional[torch.Tensor], + kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], + block_tables: torch.Tensor, + slots: torch.Tensor, + seqlen: Seqlen, + max_s: int, + prefill_cache_indices: Optional[torch.Tensor], + lm_head_indices: Optional[torch.Tensor], + adapter_data: Optional[torch.Tensor] = None, + # XXX: Putting these as optional so that the cuda warmup calls can go through. + cross_attention_states: Optional[torch.Tensor] = None, + image_indices=None, + ): + if cross_attention_states is not None: + seqlen_q = len(image_indices) + n_images = cross_attention_states.shape[0] + seqlen_k = cross_attention_states.shape[1] + device = cross_attention_states.device + if cu_seqlen_prefill is not None: + offset = 0 + cu_q = [] + indices = [] + for index in image_indices: + cu_q.append(offset) + length = seqlen.input_lengths[index].item() + assert index < seqlen.cu_seqlen_q.shape[0] + input_ids_offset = seqlen.cu_seqlen_q[index] + indices.extend(range(input_ids_offset, input_ids_offset + length)) + offset += length + cu_q.append(offset) + cu_seqlen_q = torch.Tensor(cu_q).to(device=device, dtype=torch.int32) + + assert max(indices) < input_ids.shape[0] + + cu_seqlen_k = ( + torch.arange( + n_images + 1, + device=device, + dtype=torch.int32, + ) + * seqlen_k + ) + max_q = cu_seqlen_q[-1].item() + max_k = seqlen_k + else: + cu_seqlen_q = torch.arange( + seqlen_q + 1, device=device, dtype=torch.int32 + ) + seqlen_k = cross_attention_states.shape[1] + n_images = cross_attention_states.shape[0] + cu_seqlen_k = ( + torch.arange( + n_images + 1, + device=device, + dtype=torch.int32, + ) + * seqlen_k + ) + max_q = seqlen_q + max_k = seqlen_k + indices = image_indices[:] + + cross_attention_states = ( + cross_attention_states, + cu_seqlen_q, + cu_seqlen_k, + max_q, + max_k, + indices, + ) + + outputs = self.text_model( + input_ids=input_ids, + position_ids=position_ids, + cu_seqlen_prefill=cu_seqlen_prefill, + kv_cache=kv_cache, + block_tables=block_tables, + slots=slots, + seqlen=seqlen, + max_s=max_s, + prefill_cache_indices=prefill_cache_indices, + lm_head_indices=lm_head_indices, + adapter_data=adapter_data, + cross_attention_states=cross_attention_states, + ) + + return outputs diff --git a/server/text_generation_server/models/flash_causal_lm.py b/server/text_generation_server/models/flash_causal_lm.py index ac0b4ad7..66db77c7 100644 --- a/server/text_generation_server/models/flash_causal_lm.py +++ b/server/text_generation_server/models/flash_causal_lm.py @@ -46,7 +46,7 @@ from text_generation_server.models.globals import ( TGI_WIGGLE_ROOM, get_adapter_to_index, ) -from text_generation_server.layers.attention import Seqlen +from text_generation_server.layers.attention import KVCache, Seqlen from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser from text_generation_server.utils.dist import MEMORY_FRACTION from text_generation_server.utils.quantization import get_loader @@ -937,6 +937,7 @@ class FlashCausalLM(Model): # Deepseek V2 uses different QK and V dims. head_size: Optional[int] = None, skip_special_tokens: bool = True, + kv_cache_dtype: Optional[torch.dtype] = None, ): self.quantize = quantize self.process_group, rank, world_size = initialize_torch_distributed() @@ -1036,6 +1037,7 @@ class FlashCausalLM(Model): self.cuda_graphs = {} self.kv_cache = [] + self.kv_cache_dtype = dtype if kv_cache_dtype is None else kv_cache_dtype if ATTENTION == "flashinfer": from text_generation_server.layers.attention.flashinfer import ( @@ -1085,61 +1087,16 @@ class FlashCausalLM(Model): ): self.kv_cache = [] empty_cache() - - element_size = torch.tensor([], dtype=dtype).element_size() - if SYSTEM == "ipex" and device.type == "xpu": - x = 1 - else: - x = BLOCK_SIZE // element_size - - if ATTENTION in {"flashdecoding", "flashinfer"}: - self.kv_cache = [ - ( - torch.empty( - (num_blocks, BLOCK_SIZE, num_heads, head_size), - dtype=dtype, - device=device, - ), - torch.empty( - (num_blocks, BLOCK_SIZE, num_heads, head_size), - dtype=dtype, - device=device, - ), - ) - for _ in range(num_layers) - ] - elif SYSTEM == "ipex" and device == torch.device("cpu"): - self.kv_cache = [ - ( - torch.empty( - (num_blocks, num_heads, BLOCK_SIZE, head_size), - dtype=dtype, - device=device, - ), - torch.empty( - (num_blocks, num_heads, BLOCK_SIZE, head_size), - dtype=dtype, - device=device, - ), - ) - for _ in range(num_layers) - ] - else: - self.kv_cache = [ - ( - torch.empty( - (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x), - dtype=dtype, - device=device, - ), - torch.empty( - (num_blocks, num_heads, head_size, BLOCK_SIZE), - dtype=dtype, - device=device, - ), - ) - for _ in range(num_layers) - ] + self.kv_cache = [ + KVCache( + num_blocks=num_blocks, + num_heads=num_heads, + head_size=head_size, + dtype=dtype, + device=device, + ) + for _ in range(num_layers) + ] def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int): input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device) @@ -1260,7 +1217,7 @@ class FlashCausalLM(Model): self.num_layers, self.num_kv_heads, self.head_size, - self.dtype, + self.kv_cache_dtype, self.device, ) max_bt = batch.max_blocks @@ -1279,7 +1236,7 @@ class FlashCausalLM(Model): # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm) # Calculate the number of blocks that can be allocated with the free memory - dtype_size = torch.tensor([], dtype=self.dtype).element_size() + dtype_size = torch.tensor([], dtype=self.kv_cache_dtype).element_size() cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size @@ -1293,6 +1250,8 @@ class FlashCausalLM(Model): + batch_num_blocks ) + log_master(logger.info, f"KV-cache blocks: {num_blocks}, size: {BLOCK_SIZE}") + del batch self.init_kv_cache( @@ -1300,7 +1259,7 @@ class FlashCausalLM(Model): self.num_layers, self.num_kv_heads, self.head_size, - self.dtype, + self.kv_cache_dtype, self.device, ) @@ -1322,8 +1281,7 @@ class FlashCausalLM(Model): elif CUDA_GRAPHS is not None: tuning_sequences = CUDA_GRAPHS else: - # For seqlen = 1, we dispatch to LLMM1 kernel. - tuning_sequences = [2, 3, 4, 5, 6, 7] + tuning_sequences = [1, 2, 3, 4, 5, 6, 7] tunableop_filepath = os.path.join( HUGGINGFACE_HUB_CACHE, @@ -1332,7 +1290,11 @@ class FlashCausalLM(Model): log_master( logger.info, - f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.", + f"PyTorch TunableOp is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.", + ) + + torch.cuda.tunable.set_filename( + tunableop_filepath, insert_device_ordinal=False ) if os.path.isfile(tunableop_filepath): @@ -1348,7 +1310,8 @@ class FlashCausalLM(Model): log_master(logger.info, f"Warming up TunableOp for seqlen={seqlen}") self.tunableop_warmup(seqlen) torch.cuda.tunable.write_file(tunableop_filepath) - torch.cuda.tunable.tuning_enable(False) + if os.environ.get("PYTORCH_TUNABLEOP_TUNING_AFTER_WARMUP") != "1": + torch.cuda.tunable.tuning_enable(False) else: log_master( logger.info, @@ -1384,6 +1347,7 @@ class FlashCausalLM(Model): cu_seqlen_prefill = torch.tensor( [0, seqlen], device=self.device, dtype=torch.int32 ) + max_s = seqlen seqlen = Seqlen( input_lengths=input_lengths, prefix_lengths=prefix_lens_tensor, @@ -1401,7 +1365,7 @@ class FlashCausalLM(Model): block_tables=None, seqlen=seqlen, slots=slots, - max_s=seqlen, + max_s=max_s, lm_head_indices=None, prefill_cache_indices=None, ) @@ -1962,6 +1926,8 @@ class FlashCausalLM(Model): num_kv_heads=self.num_kv_heads, head_size=self.head_size, page_size=BLOCK_SIZE, + dtype=self.dtype, + window_left=self.sliding_window, ) else: assert input_lengths_tensor is not None @@ -1973,6 +1939,8 @@ class FlashCausalLM(Model): num_kv_heads=self.num_kv_heads, head_size=self.head_size, page_size=BLOCK_SIZE, + dtype=self.dtype, + window_left=self.sliding_window, ) diff --git a/server/text_generation_server/models/idefics.py b/server/text_generation_server/models/idefics.py deleted file mode 100644 index 9058cb96..00000000 --- a/server/text_generation_server/models/idefics.py +++ /dev/null @@ -1,105 +0,0 @@ -import torch -import torch.distributed - -from typing import Optional - - -from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig -from text_generation_server.models.custom_modeling.idefics_processing import ( - IdeficsProcessor, -) -from transformers import LlamaTokenizerFast -from text_generation_server.models.custom_modeling.idefics_modeling import ( - IdeficsForVisionText2Text, -) -from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM -from text_generation_server.utils import ( - initialize_torch_distributed, - weight_files, - Weights, -) -from text_generation_server.utils.quantization import get_loader - -from text_generation_server.utils.import_utils import SYSTEM - - -class IDEFICSSharded(IdeficsCausalLM): - def __init__( - self, - model_id: str, - revision: Optional[str] = None, - quantize: Optional[str] = None, - speculator: Optional[str] = None, - dtype: Optional[torch.dtype] = None, - trust_remote_code: bool = False, - ): - self.quantize = quantize - self.process_group, rank, world_size = initialize_torch_distributed() - if torch.cuda.is_available(): - device = torch.device(f"cuda:{rank}") - # 9b seems to work correctly enough in float16, but 80b seems - # to be really saturating for f16. - dtype = torch.float16 if dtype is None else dtype - elif SYSTEM == "ipex": - if hasattr(torch, "xpu") and torch.xpu.is_available(): - device = torch.device(f"xpu:{rank}") - dtype = torch.float16 if dtype is None else dtype - else: - device = torch.device("cpu") - # Float16 doesn't exist on target. - dtype = torch.bfloat16 if dtype is None else dtype - else: - device = torch.device("cpu") - dtype = torch.float32 if dtype is None else dtype - self.device, self.dtype = device, dtype - - config = IdeficsConfig.from_pretrained( - model_id, - revision=revision, - trust_remote_code=trust_remote_code, - ) - config.quantize = quantize - config.speculator = speculator - config.vision_config.quantize = quantize - - tokenizer = LlamaTokenizerFast.from_pretrained( - model_id, - revision=revision, - padding_side="left", - truncation_side="left", - trust_remote_code=trust_remote_code, - ) - self.processor = IdeficsProcessor.from_pretrained( - model_id, - revision=revision, - padding_side="left", - truncation_side="left", - trust_remote_code=trust_remote_code, - ) - - weights_loader = get_loader( - quantize=quantize, model_id=model_id, revision=revision - ) - torch.distributed.barrier(group=self.process_group) - filenames = weight_files(model_id, revision=revision, extension=".safetensors") - weights = Weights( - filenames, - device=device, - dtype=dtype, - process_group=self.process_group, - weights_loader=weights_loader, - ) - - model = IdeficsForVisionText2Text(config, weights) - - torch.distributed.barrier(group=self.process_group) - super(IdeficsCausalLM, self).__init__( - model_id=model_id, - model=model, - tokenizer=tokenizer, - requires_padding=True, - dtype=dtype, - device=device, - rank=rank, - world_size=world_size, - ) diff --git a/server/text_generation_server/models/idefics_causal_lm.py b/server/text_generation_server/models/idefics_causal_lm.py index c5480952..9a7a6fe1 100644 --- a/server/text_generation_server/models/idefics_causal_lm.py +++ b/server/text_generation_server/models/idefics_causal_lm.py @@ -6,6 +6,7 @@ import time from dataclasses import dataclass from opentelemetry import trace from transformers import ( + AutoConfig, AutoProcessor, AutoTokenizer, PreTrainedTokenizerBase, @@ -22,6 +23,18 @@ from text_generation_server.models.types import ( ) from text_generation_server.pb import generate_pb2 from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling +import torch.distributed +from text_generation_server.models.custom_modeling.idefics_modeling import ( + IdeficsForVisionText2Text, +) +from text_generation_server.utils import ( + initialize_torch_distributed, + weight_files, + Weights, +) +from text_generation_server.utils.quantization import get_loader + +from text_generation_server.utils.import_utils import SYSTEM tracer = trace.get_tracer(__name__) @@ -577,23 +590,38 @@ class IdeficsCausalLM(Model): model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, + speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.quantize = quantize - from text_generation_server.models.custom_modeling.idefics_modeling import ( - IdeficsForVisionText2Text, - ) - + self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): - device = torch.device("cuda") - dtype = torch.bfloat16 if dtype is None else dtype + device = torch.device(f"cuda:{rank}") + # 9b seems to work correctly enough in float16, but 80b seems + # to be really saturating for f16. + dtype = torch.float16 if dtype is None else dtype + elif SYSTEM == "ipex": + if hasattr(torch, "xpu") and torch.xpu.is_available(): + device = torch.device(f"xpu:{rank}") + dtype = torch.float16 if dtype is None else dtype + else: + device = torch.device("cpu") + # Float16 doesn't exist on target. + dtype = torch.bfloat16 if dtype is None else dtype else: - if quantize: - raise ValueError("quantization is not available on CPU") - device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype + self.device, self.dtype = device, dtype + + config = AutoConfig.from_pretrained( + model_id, + revision=revision, + trust_remote_code=trust_remote_code, + ) + config.quantize = quantize + config.speculator = speculator + config.vision_config.quantize = quantize tokenizer = AutoTokenizer.from_pretrained( model_id, @@ -609,38 +637,34 @@ class IdeficsCausalLM(Model): truncation_side="left", trust_remote_code=trust_remote_code, ) - model = IdeficsForVisionText2Text.from_pretrained( - model_id, - revision=revision, - torch_dtype=dtype, - device_map=( - "auto" - if torch.cuda.is_available() and torch.cuda.device_count() > 1 - else None - ), - load_in_8bit=quantize == "bitsandbytes", - trust_remote_code=trust_remote_code, + + weights_loader = get_loader( + quantize=quantize, model_id=model_id, revision=revision + ) + torch.distributed.barrier(group=self.process_group) + filenames = weight_files(model_id, revision=revision, extension=".safetensors") + weights = Weights( + filenames, + device=device, + dtype=dtype, + process_group=self.process_group, + weights_loader=weights_loader, ) - if torch.cuda.is_available() and torch.cuda.device_count() == 1: - model = model.cuda() - if tokenizer.pad_token_id is None: - if model.config.pad_token_id is not None: - tokenizer.pad_token_id = model.config.pad_token_id - elif model.config.eos_token_id is not None: - tokenizer.pad_token_id = model.config.eos_token_id - elif tokenizer.eos_token_id is not None: - tokenizer.pad_token_id = tokenizer.eos_token_id - else: - tokenizer.add_special_tokens({"pad_token": ""}) + model = IdeficsForVisionText2Text(config, weights) - super(IdeficsCausalLM, self).__init__( + self.config = config + + torch.distributed.barrier(group=self.process_group) + super().__init__( model_id=model_id, model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, + rank=rank, + world_size=world_size, ) @property diff --git a/server/text_generation_server/models/mllama_causal_lm.py b/server/text_generation_server/models/mllama_causal_lm.py new file mode 100644 index 00000000..9e19e171 --- /dev/null +++ b/server/text_generation_server/models/mllama_causal_lm.py @@ -0,0 +1,357 @@ +from io import BytesIO +from PIL import Image +import torch +from typing import Iterable, Optional, Tuple, List, Dict +from text_generation_server.pb.generate_pb2 import Request + +from dataclasses import dataclass +from opentelemetry import trace +from transformers import ( + PreTrainedTokenizerBase, +) +from text_generation_server.models.vlm_causal_lm import VlmCausalLMBatch, VlmCausalLM +from text_generation_server.pb import generate_pb2 +from text_generation_server.models.flash_causal_lm import ( + block_tables_to_ragged, +) +from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION +from text_generation_server.layers.attention import Seqlen + + +tracer = trace.get_tracer(__name__) + + +@dataclass +class MllamaCausalLMBatch(VlmCausalLMBatch): + image_indices: List[int] = 42 + aspect_ratio_ids: Optional[torch.Tensor] = None + aspect_ratio_mask: Optional[torch.Tensor] = None + cross_attention_states: Optional[torch.Tensor] = None + + @classmethod + @tracer.start_as_current_span("concatenate") + def concatenate(cls, batches): + batch = super().concatenate(batches) + batch.pixel_values = None + batch.pixel_attention_mask = None + + offset = 0 + image_indices = [] + attention_states = [] + for b in batches: + if b.cross_attention_states is not None: + attention_states.append(b.cross_attention_states) + image_indices.extend([i + offset for i in b.image_indices]) + offset += len(b.image_indices) + if len(attention_states) > 0: + assert len(image_indices) > 0 + batch.cross_attention_states = torch.cat(attention_states, dim=0) + batch.image_indices = image_indices + else: + batch.cross_attention_states = None + batch.image_indices = [] + return batch + + @tracer.start_as_current_span("filter") + def filter(self, request_ids: List[int]): + assert self.image_indices is not None + batch = super().filter(request_ids) + assert self.image_indices is not None + indices = [] + for i, request_id in enumerate(request_ids): + idx = self.requests_idx_mapping[request_id] + indices.append(idx) + + offset = 0 + new_image_indices = [] + prev_i = None + for i in self.image_indices: + if i in indices: + new_image_indices.append(offset) + if i != prev_i: + offset += 1 + prev_i = i + + batch.image_indices = new_image_indices + if len(new_image_indices) > 0: + assert max(new_image_indices) < self.cross_attention_states.shape[0] + assert offset <= self.cross_attention_states.shape[0] + batch.cross_attention_states = self.cross_attention_states[ + new_image_indices + ] + else: + batch.cross_attention_states = None + return batch + + @classmethod + def batch_tokenized_inputs( + cls, requests: Iterable[Request], tokenizer, processor, config + ): + image_inputs = [] + texts = [] + image_indices = [] + batch_tokenized_inputs = [] + + for i, r in enumerate(requests): + # Each input is encoded into a list, where each element of this input list is either a string or a URL + curr_text = "" + curr_image = None + curr_i = None + for chunk in r.input_chunks.chunks: + chunk_type = chunk.WhichOneof("chunk") + if chunk_type == "text": + curr_text += chunk.text + elif chunk_type == "image": + image = Image.open(BytesIO(chunk.image.data)) + # TODO unsure about BOS + curr_text += "<|image|>" + image_input = processor.image_processor(image, return_tensors="pt") + curr_image = image_input + curr_i = i + # image_inputs.append(image_input) + # image_indices.append(i) + else: + raise RuntimeError(f"Invalid chunk type {chunk_type}") + texts.append(curr_text) + if curr_image is not None: + image_inputs.append(curr_image) + image_indices.append(curr_i) + + input_ids = tokenizer( + curr_text, + truncation=True, + max_length=r.truncate, + add_special_tokens=r.add_special_tokens, + )["input_ids"] + batch_tokenized_inputs.append(input_ids) + if image_inputs: + image_input = image_inputs[0] + new_image_inputs = { + "pixel_values": torch.cat( + [img["pixel_values"] for img in image_inputs], dim=0 + ), + } + if "aspect_ratio_ids" in image_input: + new_image_inputs["aspect_ratio_ids"] = torch.cat( + [img["aspect_ratio_ids"] for img in image_inputs], dim=0 + ) + if "aspect_ratio_mask" in image_input: + new_image_inputs["aspect_ratio_mask"] = torch.cat( + [img["aspect_ratio_mask"] for img in image_inputs], dim=0 + ) + image_inputs = new_image_inputs + image_inputs["image_indices"] = image_indices + else: + image_inputs = None + + if image_inputs is not None: + assert len(image_indices) == image_inputs["pixel_values"].shape[0] + + return batch_tokenized_inputs, image_inputs + + @classmethod + def from_pb_processor( + cls, + pb: generate_pb2.Batch, + tokenizer: PreTrainedTokenizerBase, + processor, + config, + dtype: torch.dtype, + device: torch.device, + ) -> "VlmCausalLMBatch": + batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs( + pb.requests, tokenizer, processor, config + ) + batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device) + # XXX: <|image|> token is actually out of bounds and bugs out the logit processors. + batch.all_input_ids_tensor = batch.all_input_ids_tensor.clamp( + max=config.text_config.vocab_size - 1 + ) + batch.input_ids = batch.input_ids.clamp(max=config.text_config.vocab_size - 1) + + if image_inputs is not None: + batch.pixel_values = image_inputs["pixel_values"].to( + device=device, dtype=dtype + ) + batch.aspect_ratio_ids = image_inputs["aspect_ratio_ids"].to(device=device) + batch.aspect_ratio_mask = image_inputs["aspect_ratio_mask"].to( + device=device + ) + batch.image_indices = image_inputs["image_indices"] + else: + batch.pixel_values = None + batch.aspect_ratio_ids = None + batch.aspect_ratio_mask = None + batch.image_indices = [] + assert batch.image_indices is not None + return batch + + +class MllamaCausalLM(VlmCausalLM): + def forward( + self, + batch: VlmCausalLMBatch, + adapter_data: Optional[Dict[str, torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + # Model Forward + if batch.speculative_ids is not None: + input_ids = batch.input_ids + position_ids = batch.position_ids + cu_seqlen_prefill = batch.cu_seqlen_prefill + kv_cache = self.kv_cache + block_tables = batch.block_tables_tensor + slots = batch.slots[batch.slot_indices] + input_lengths = batch.input_lengths_tensor + max_s = batch.max_seqlen + lm_head_indices = batch.prefill_head_indices + + speculative_ids = batch.speculative_ids + + B, speculative_length = speculative_ids.shape + new_length = speculative_length + 1 + new_input_ids = torch.cat( + [input_ids.unsqueeze(-1), speculative_ids], dim=1 + ).reshape(-1) + arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0) + arange_int = arange.to(dtype=torch.int32) + new_position_ids = ( + position_ids.unsqueeze(-1).expand(B, new_length) + arange + ).view(-1) + slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1) + input_lengths = ( + input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int + ).view(-1) + prefix_lens_tensor = ( + batch.prefix_lens_tensor.unsqueeze(-1).expand(B, new_length) + ).reshape(-1) + + # Add Copy the block tables for all members + block_tables = ( + block_tables.unsqueeze(1) + .expand(B, new_length, -1) + .reshape(B * new_length, -1) + .contiguous() + ) + max_s = max_s + speculative_length + + input_ids = new_input_ids + position_ids = new_position_ids + else: + input_ids = batch.input_ids + position_ids = batch.position_ids + cu_seqlen_prefill = batch.cu_seqlen_prefill + kv_cache = self.kv_cache + block_tables = batch.block_tables_tensor + slots = batch.slots[batch.slot_indices] + input_lengths = batch.input_lengths_tensor + prefix_lens_tensor = batch.prefix_lens_tensor + max_s = batch.max_seqlen + lm_head_indices = batch.prefill_head_indices + + if cu_seqlen_prefill is None and self.max_past() is not None: + # In decode, not prefill, we're actually overwriting the KV-cache + # in a circular buffer mode. + # This makes sure the max_s for the decode pass is correct. + max_s = min(self.max_past(), max_s) + + bs = input_ids.shape[0] + # Try to find an associated cuda graph + bs = input_ids.shape[0] + sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs]) + if sorted_padded_bs: + # Get associated cuda graph + cuda_graph = self.cuda_graphs[sorted_padded_bs[0]] + else: + cuda_graph = None + if ( + cu_seqlen_prefill is not None + or cuda_graph is None + # Only run cuda graphs when there's no images. + or batch.cross_attention_states is not None + ): + input_lengths = input_lengths + prefix_lens_tensor + if PREFIX_CACHING: + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=batch.input_lengths, + prefix_lens=batch.prefix_lens, + ) + with self._forward_context( + block_tables=block_tables, + cu_seqlen_prefill=cu_seqlen_prefill, + input_lengths_tensor=input_lengths, + prefix_lens_tensor=prefix_lens_tensor, + ): + max_k = (input_lengths + prefix_lens_tensor).max().item() + seqlen = Seqlen( + input_lengths=input_lengths, + prefix_lengths=prefix_lens_tensor, + cu_seqlen_q=cu_seqlen_prefill, + max_q=max_s, + max_k=max_k, + ) + + if batch.pixel_values is not None: + cross_attention_states = self.model.vision_forward( + pixel_values=batch.pixel_values, + aspect_ratio_ids=batch.aspect_ratio_ids, + aspect_ratio_mask=batch.aspect_ratio_mask, + ) + batch.cross_attention_states = cross_attention_states + + cross_attention_states = batch.cross_attention_states + + logits, speculative_logits = self.model.forward( + input_ids=input_ids, + position_ids=position_ids, + cu_seqlen_prefill=cu_seqlen_prefill, + kv_cache=kv_cache, + block_tables=block_tables, + slots=slots, + seqlen=seqlen, + max_s=max_s, + prefill_cache_indices=batch.prefill_cache_indices, + lm_head_indices=lm_head_indices, + cross_attention_states=cross_attention_states, + adapter_data=adapter_data, + image_indices=batch.image_indices[:], + ) + if batch.prefill_cache_indices is not None: + batch.prefill_cache_indices = None + if batch.pixel_values is not None: + batch.pixel_values = None + return logits, speculative_logits + + # Copy inputs to the static inputs of the cuda graph + # Static inputs are potentially padded + cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids + cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids + if ATTENTION == "flashinfer": + block_tables = block_tables_to_ragged( + block_tables=block_tables, + input_lengths=batch.input_lengths, + prefix_lens=batch.prefix_lens, + ) + cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables + else: + cuda_graph["block_tables"][ + : block_tables.shape[0], : block_tables.shape[1] + ] = block_tables + cuda_graph["slots"].fill_(0) + cuda_graph["slots"][: slots.shape[0]] = slots + cuda_graph["input_lengths"].zero_() + cuda_graph["input_lengths"][: input_lengths.shape[0]] = ( + input_lengths + prefix_lens_tensor + ) + + # Replay the graph + cuda_graph["graph"].replay() + + # Slice output to the correct shape + speculative_logits = ( + cuda_graph["speculative_logits"][:bs] + if cuda_graph["speculative_logits"] is not None + else None + ) + logits = cuda_graph["logits"][:bs] + return logits, speculative_logits diff --git a/server/text_generation_server/server.py b/server/text_generation_server/server.py index 22871ec5..46e342a4 100644 --- a/server/text_generation_server/server.py +++ b/server/text_generation_server/server.py @@ -22,8 +22,14 @@ try: VlmCausalLMBatch, ) from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch + from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch - VLM_BATCH_TYPES = {PaliGemmaBatch, VlmCausalLMBatch, IdeficsCausalLMBatch} + VLM_BATCH_TYPES = { + PaliGemmaBatch, + VlmCausalLMBatch, + IdeficsCausalLMBatch, + MllamaCausalLMBatch, + } except (ImportError, NotImplementedError): # These imports can fail on CPU/Non flash. VLM_BATCH_TYPES = set() @@ -199,6 +205,7 @@ def serve( quantize: Optional[str], speculate: Optional[int], dtype: Optional[str], + kv_cache_dtype: Optional[str], trust_remote_code: bool, uds_path: Path, max_input_tokens: int, @@ -211,6 +218,7 @@ def serve( quantize: Optional[str] = None, speculate: Optional[int] = None, dtype: Optional[str] = None, + kv_cache_dtype: Optional[str] = None, trust_remote_code: bool = False, ): unix_socket_template = "unix://{}-{}" @@ -234,6 +242,7 @@ def serve( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, max_input_tokens, adapter_to_index, @@ -280,6 +289,7 @@ def serve( quantize, speculate, dtype, + kv_cache_dtype, trust_remote_code, ) ) diff --git a/server/text_generation_server/utils/adapter.py b/server/text_generation_server/utils/adapter.py index 31927b91..2b61f9bb 100644 --- a/server/text_generation_server/utils/adapter.py +++ b/server/text_generation_server/utils/adapter.py @@ -75,7 +75,6 @@ def load_and_merge_adapters( weight_names: Tuple[str], trust_remote_code: bool = False, ) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]: - if len(adapter_parameters.adapter_info) == 1: adapter = next(iter(adapter_parameters.adapter_info)) return load_module_map( @@ -191,16 +190,15 @@ def load_module_map( weight_names: Tuple[str], trust_remote_code: bool = False, ) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]: - adapter_config = LoraConfig.load(adapter_path or adapter_id, None) if not adapter_path and adapter_config.base_model_name_or_path != model_id: check_architectures(model_id, adapter_id, adapter_config, trust_remote_code) adapter_filenames = ( - hub._adapter_weight_files_from_dir(adapter_path, extension=".safetensors") + hub._weight_files_from_dir(adapter_path, extension=".safetensors") if adapter_path - else hub._cached_adapter_weight_files( + else hub._cached_weight_files( adapter_id, revision=revision, extension=".safetensors" ) ) diff --git a/server/text_generation_server/utils/hub.py b/server/text_generation_server/utils/hub.py index db412aeb..f9c476ac 100644 --- a/server/text_generation_server/utils/hub.py +++ b/server/text_generation_server/utils/hub.py @@ -18,17 +18,6 @@ WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None) HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"] -def _cached_adapter_weight_files( - adapter_id: str, revision: Optional[str], extension: str -) -> List[str]: - """Guess weight files from the cached revision snapshot directory""" - d = _get_cached_revision_directory(adapter_id, revision) - if not d: - return [] - filenames = _adapter_weight_files_from_dir(d, extension) - return filenames - - def _cached_weight_files( model_id: str, revision: Optional[str], extension: str ) -> List[str]: @@ -65,39 +54,11 @@ def _weight_files_from_dir(d: Path, extension: str) -> List[str]: if f.endswith(extension) and "arguments" not in f and "args" not in f - and "adapter" not in f and "training" not in f ] return filenames -def _adapter_weight_files_from_dir(d: Path, extension: str) -> List[str]: - # os.walk: do not iterate, just scan for depth 1, not recursively - # see _weight_files_from_dir, that's also what is done there - root, _, files = next(os.walk(str(d))) - filenames = [ - os.path.join(root, f) - for f in files - if f.endswith(extension) - and "arguments" not in f - and "args" not in f - and "training" not in f - ] - return filenames - - -def _adapter_config_files_from_dir(d: Path) -> List[str]: - # os.walk: do not iterate, just scan for depth 1, not recursively - # see _weight_files_from_dir, that's also what is done there - root, _, files = next(os.walk(str(d))) - filenames = [ - os.path.join(root, f) - for f in files - if f.endswith(".json") and "arguments" not in f and "args" not in f - ] - return filenames - - def _get_cached_revision_directory( model_id: str, revision: Optional[str] ) -> Optional[Path]: diff --git a/server/text_generation_server/utils/weights.py b/server/text_generation_server/utils/weights.py index 108ced48..75e01f7c 100644 --- a/server/text_generation_server/utils/weights.py +++ b/server/text_generation_server/utils/weights.py @@ -120,7 +120,6 @@ class DefaultWeightsLoader(WeightsLoader): prefix: str, block_sizes: Union[int, List[int]], ): - return self.weight_class( weights.get_packed_sharded( f"{prefix}.weight", dim=0, block_sizes=block_sizes @@ -405,6 +404,10 @@ class Weights: finally: self.weights_loader = old_loader + @property + def loader(self): + return self.weights_loader + def _blocks_to_block_sizes(total_size: int, blocks: Union[int, List[int]]) -> List[int]: """