mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 20:34:54 +00:00
Removing flash decoding part so it gets merged.
This commit is contained in:
parent
be87c840b8
commit
91f55ea2b5
@ -70,17 +70,7 @@ impl Infer {
|
||||
tokenizer_config: HubTokenizerConfig,
|
||||
processor_config: HubProcessorConfig,
|
||||
) -> Self {
|
||||
// Infer shared state
|
||||
let flashdecoding = if let Ok(flashdecoding) = std::env::var("FLASH_DECODING") {
|
||||
matches!(flashdecoding.to_lowercase().as_str(), "1" | "true")
|
||||
} else {
|
||||
false
|
||||
};
|
||||
let block_size = if flashdecoding { 256 } else { 16 };
|
||||
let block_size = std::env::var("BLOCK_SIZE")
|
||||
.map(|b| b.parse().unwrap_or(block_size))
|
||||
.unwrap_or(block_size);
|
||||
let queue = Queue::new(requires_padding, block_size, window_size, speculate);
|
||||
let queue = Queue::new(requires_padding, 16, window_size, speculate);
|
||||
let shared = Arc::new(Shared {
|
||||
batching_task: Notify::new(),
|
||||
});
|
||||
|
@ -1,6 +1,5 @@
|
||||
import torch
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.models.globals import FLASH_DECODING
|
||||
|
||||
major, minor = torch.cuda.get_device_capability()
|
||||
is_sm75 = major == 7 and minor == 5
|
||||
@ -22,14 +21,7 @@ def reshape_and_cache(
|
||||
value_cache: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
):
|
||||
if FLASH_DECODING:
|
||||
shape = key_cache.shape
|
||||
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
|
||||
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
|
||||
else:
|
||||
cache_ops.reshape_and_cache(
|
||||
key, value, key_cache, value_cache, slots, "auto", 1.0
|
||||
)
|
||||
cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0)
|
||||
|
||||
|
||||
def paged_attention(
|
||||
@ -40,8 +32,7 @@ def paged_attention(
|
||||
kv_head_mapping: torch.Tensor,
|
||||
softmax_scale: float,
|
||||
block_tables: torch.Tensor,
|
||||
cu_seqlen_q: torch.Tensor,
|
||||
cu_seqlen_k: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
):
|
||||
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
|
||||
@ -65,94 +56,64 @@ def paged_attention(
|
||||
block_size = value_cache.shape[3]
|
||||
num_seqs, num_heads, head_size = query.shape
|
||||
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
|
||||
input_lengths = cu_seqlen_k
|
||||
|
||||
# NOTE(woosuk): We use a simple heuristic to decide whether to use
|
||||
# PagedAttention V1 or V2. If the number of partitions is 1, we use
|
||||
# V1 to avoid the overhead of reduction. Also, if the number of
|
||||
# sequences or heads is large, we use V1 since there is enough work
|
||||
# to parallelize.
|
||||
if FLASH_DECODING:
|
||||
max_q = 1
|
||||
max_k = max_s
|
||||
import flash_attn_2_cuda
|
||||
from vllm._C import ops
|
||||
|
||||
flash_attn_2_cuda.varlen_fwd(
|
||||
use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)
|
||||
if use_v1:
|
||||
ops.paged_attention_v1(
|
||||
out,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
out,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
None,
|
||||
block_tables,
|
||||
None,
|
||||
max_q,
|
||||
max_k,
|
||||
0.0,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
False,
|
||||
True,
|
||||
-1,
|
||||
0,
|
||||
False,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
else:
|
||||
from vllm._C import ops
|
||||
|
||||
use_v1 = max_s <= 8192 and (
|
||||
max_num_partitions == 1 or num_seqs * num_heads > 512
|
||||
# Run PagedAttention V2.
|
||||
assert _PARTITION_SIZE % block_size == 0
|
||||
tmp_output = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
||||
dtype=out.dtype,
|
||||
device=out.device,
|
||||
)
|
||||
if use_v1:
|
||||
ops.paged_attention_v1(
|
||||
out,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
else:
|
||||
# Run PagedAttention V2.
|
||||
assert _PARTITION_SIZE % block_size == 0
|
||||
tmp_output = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
||||
dtype=out.dtype,
|
||||
device=out.device,
|
||||
)
|
||||
exp_sums = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions),
|
||||
dtype=torch.float32,
|
||||
device=out.device,
|
||||
)
|
||||
max_logits = torch.empty_like(exp_sums)
|
||||
exp_sums = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions),
|
||||
dtype=torch.float32,
|
||||
device=out.device,
|
||||
)
|
||||
max_logits = torch.empty_like(exp_sums)
|
||||
|
||||
ops.paged_attention_v2(
|
||||
out,
|
||||
exp_sums,
|
||||
max_logits,
|
||||
tmp_output,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
ops.paged_attention_v2(
|
||||
out,
|
||||
exp_sums,
|
||||
max_logits,
|
||||
tmp_output,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
|
@ -1,7 +1,6 @@
|
||||
import os
|
||||
import torch
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.models.globals import FLASH_DECODING
|
||||
from loguru import logger
|
||||
|
||||
major, minor = torch.cuda.get_device_capability()
|
||||
@ -28,14 +27,7 @@ def reshape_and_cache(
|
||||
value_cache: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
):
|
||||
if FLASH_DECODING:
|
||||
shape = key_cache.shape
|
||||
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
|
||||
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
|
||||
else:
|
||||
cache_ops.reshape_and_cache(
|
||||
key, value, key_cache, value_cache, slots, "auto", 1.0
|
||||
)
|
||||
cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0)
|
||||
|
||||
|
||||
def paged_attention(
|
||||
@ -46,8 +38,7 @@ def paged_attention(
|
||||
kv_head_mapping: torch.Tensor,
|
||||
softmax_scale: float,
|
||||
block_tables: torch.Tensor,
|
||||
cu_seqlen_q: torch.Tensor,
|
||||
cu_seqlen_k: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
):
|
||||
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
|
||||
@ -71,94 +62,64 @@ def paged_attention(
|
||||
block_size = value_cache.shape[3]
|
||||
num_seqs, num_heads, head_size = query.shape
|
||||
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
|
||||
input_lengths = cu_seqlen_k
|
||||
|
||||
# NOTE(woosuk): We use a simple heuristic to decide whether to use
|
||||
# PagedAttention V1 or V2. If the number of partitions is 1, we use
|
||||
# V1 to avoid the overhead of reduction. Also, if the number of
|
||||
# sequences or heads is large, we use V1 since there is enough work
|
||||
# to parallelize.
|
||||
if FLASH_DECODING:
|
||||
max_q = 1
|
||||
max_k = max_s
|
||||
import flash_attn_2_cuda
|
||||
from vllm._C import ops
|
||||
|
||||
flash_attn_2_cuda.varlen_fwd(
|
||||
use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)
|
||||
if use_v1:
|
||||
ops.paged_attention_v1(
|
||||
out,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
out,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
None,
|
||||
block_tables,
|
||||
None,
|
||||
max_q,
|
||||
max_k,
|
||||
0.0,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
False,
|
||||
True,
|
||||
-1,
|
||||
0,
|
||||
False,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
else:
|
||||
from vllm._C import ops
|
||||
|
||||
use_v1 = max_s <= 8192 and (
|
||||
max_num_partitions == 1 or num_seqs * num_heads > 512
|
||||
# Run PagedAttention V2.
|
||||
assert _PARTITION_SIZE % block_size == 0
|
||||
tmp_output = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
||||
dtype=out.dtype,
|
||||
device=out.device,
|
||||
)
|
||||
if use_v1:
|
||||
ops.paged_attention_v1(
|
||||
out,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
else:
|
||||
# Run PagedAttention V2.
|
||||
assert _PARTITION_SIZE % block_size == 0
|
||||
tmp_output = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
||||
dtype=out.dtype,
|
||||
device=out.device,
|
||||
)
|
||||
exp_sums = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions),
|
||||
dtype=torch.float32,
|
||||
device=out.device,
|
||||
)
|
||||
max_logits = torch.empty_like(exp_sums)
|
||||
exp_sums = torch.empty(
|
||||
size=(num_seqs, num_heads, max_num_partitions),
|
||||
dtype=torch.float32,
|
||||
device=out.device,
|
||||
)
|
||||
max_logits = torch.empty_like(exp_sums)
|
||||
|
||||
ops.paged_attention_v2(
|
||||
out,
|
||||
exp_sums,
|
||||
max_logits,
|
||||
tmp_output,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
ops.paged_attention_v2(
|
||||
out,
|
||||
exp_sums,
|
||||
max_logits,
|
||||
tmp_output,
|
||||
query,
|
||||
key_cache,
|
||||
value_cache,
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
"auto",
|
||||
1.0,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
|
@ -59,8 +59,7 @@ def paged_attention(
|
||||
kv_head_mapping: torch.Tensor,
|
||||
softmax_scale: float,
|
||||
block_tables: torch.Tensor,
|
||||
cu_seqlen_q: torch.Tensor,
|
||||
cu_seqlen_k: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
):
|
||||
query = query.contiguous()
|
||||
@ -73,7 +72,7 @@ def paged_attention(
|
||||
kv_head_mapping,
|
||||
softmax_scale,
|
||||
block_tables,
|
||||
cu_seqlen_q,
|
||||
input_lengths,
|
||||
block_size,
|
||||
max_s,
|
||||
None,
|
||||
|
@ -3,9 +3,8 @@ import torch
|
||||
|
||||
from typing import Optional, List, Tuple
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.models.globals import FLASH_DECODING
|
||||
|
||||
BLOCK_SIZE: int = 256 if FLASH_DECODING else 16
|
||||
BLOCK_SIZE: int = 16
|
||||
# Will be set in warmup
|
||||
CACHE_MANAGER: Optional["CacheManager"] = None
|
||||
|
||||
@ -31,38 +30,21 @@ class CacheManager:
|
||||
else:
|
||||
x = self.block_size // element_size
|
||||
|
||||
if FLASH_DECODING:
|
||||
self.kv_cache = [
|
||||
(
|
||||
torch.empty(
|
||||
(num_blocks, self.block_size, num_heads, head_size),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
torch.empty(
|
||||
(num_blocks, self.block_size, num_heads, head_size),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
else:
|
||||
self.kv_cache = [
|
||||
(
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size // x, self.block_size, x),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size, self.block_size),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
self.kv_cache = [
|
||||
(
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size // x, self.block_size, x),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size, self.block_size),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
self.free_block_mask = torch.ones(num_blocks, dtype=torch.int32, device="cpu")
|
||||
self.slots = torch.arange(
|
||||
0, num_blocks * self.block_size, dtype=torch.int64
|
||||
|
@ -30,7 +30,6 @@ from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
reshape_and_cache,
|
||||
)
|
||||
from text_generation_server.models.globals import FLASH_DECODING
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
@ -260,9 +259,8 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
@ -314,8 +312,7 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
@ -389,9 +386,8 @@ class FlashCohereLayer(nn.Module):
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
|
||||
@ -404,9 +400,8 @@ class FlashCohereLayer(nn.Module):
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
@ -469,24 +464,6 @@ class FlashCohereModel(torch.nn.Module):
|
||||
)
|
||||
|
||||
residual = None
|
||||
if cu_seqlen_prefill is None and FLASH_DECODING:
|
||||
cu_seqlen_q = torch.arange(
|
||||
input_lengths.shape[0] + 1,
|
||||
device=input_ids.device,
|
||||
dtype=torch.int32,
|
||||
)
|
||||
cu_seqlen_k = torch.cat(
|
||||
[
|
||||
torch.zeros(
|
||||
(1,), device=input_lengths.device, dtype=input_lengths.dtype
|
||||
),
|
||||
input_lengths.cumsum(dim=-1),
|
||||
]
|
||||
).to(dtype=torch.int32)
|
||||
else:
|
||||
cu_seqlen_q = None
|
||||
cu_seqlen_k = input_lengths
|
||||
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
@ -496,9 +473,8 @@ class FlashCohereModel(torch.nn.Module):
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
|
@ -455,7 +455,6 @@ class DbrxAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -253,7 +253,6 @@ class FlashGemmaAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -244,7 +244,6 @@ class FlashGPT2Attention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -33,7 +33,6 @@ from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
reshape_and_cache,
|
||||
)
|
||||
from text_generation_server.models.globals import FLASH_DECODING
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
@ -134,8 +133,7 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
@ -178,8 +176,7 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
@ -280,8 +277,7 @@ class FlashLlamaLayer(nn.Module):
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
|
||||
@ -295,8 +291,7 @@ class FlashLlamaLayer(nn.Module):
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
@ -363,23 +358,6 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
if cu_seqlen_prefill is None and FLASH_DECODING:
|
||||
cu_seqlen_q = torch.arange(
|
||||
input_lengths.shape[0] + 1,
|
||||
device=inputs_embeds.device,
|
||||
dtype=torch.int32,
|
||||
)
|
||||
cu_seqlen_k = torch.cat(
|
||||
[
|
||||
torch.zeros(
|
||||
(1,), device=input_lengths.device, dtype=input_lengths.dtype
|
||||
),
|
||||
input_lengths.cumsum(dim=-1),
|
||||
]
|
||||
).to(dtype=torch.int32)
|
||||
else:
|
||||
cu_seqlen_q = None
|
||||
cu_seqlen_k = input_lengths
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
@ -392,8 +370,7 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
cu_seqlen_q,
|
||||
cu_seqlen_k,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
|
@ -28,8 +28,8 @@ from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
paged_attention,
|
||||
attention,
|
||||
reshape_and_cache,
|
||||
)
|
||||
from text_generation_server.layers import (
|
||||
@ -220,7 +220,6 @@ class MistralAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -299,7 +299,6 @@ class MixtralAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -176,7 +176,6 @@ class FlashNeoxAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -215,7 +215,6 @@ class FlashPhiAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -176,7 +176,6 @@ class Qwen2Attention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -198,7 +198,9 @@ class FlashRWAttention(torch.nn.Module):
|
||||
# Inplace rotary
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
|
||||
paged_attention.reshape_and_cache(
|
||||
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
|
||||
)
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
@ -206,7 +208,7 @@ class FlashRWAttention(torch.nn.Module):
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
attention(
|
||||
flash_attn.attention(
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
@ -217,7 +219,7 @@ class FlashRWAttention(torch.nn.Module):
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
paged_attention(
|
||||
paged_attention.attention(
|
||||
attn_output,
|
||||
query,
|
||||
kv_cache[0],
|
||||
@ -225,7 +227,6 @@ class FlashRWAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
@ -349,7 +350,6 @@ class FlashRWLargeAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -309,7 +309,6 @@ class FlashMQAttention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -263,7 +263,6 @@ class Starcoder2Attention(torch.nn.Module):
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
None,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
@ -5,9 +5,6 @@ from loguru import logger
|
||||
MEM_POOL = torch.cuda.graph_pool_handle() if torch.cuda.is_available() else None
|
||||
# This is overridden by the cli
|
||||
cuda_graphs = os.getenv("CUDA_GRAPHS")
|
||||
FLASH_DECODING = os.getenv("FLASH_DECODING") in {"1", "true", "True"}
|
||||
if FLASH_DECODING:
|
||||
logger.info("Using FLASH_DECODING")
|
||||
if cuda_graphs is not None:
|
||||
try:
|
||||
cuda_graphs = [int(item) for item in cuda_graphs.split(",")]
|
||||
|
Loading…
Reference in New Issue
Block a user