From 907906466a871182e98f30954039e577e633312e Mon Sep 17 00:00:00 2001 From: Nicolas Patry Date: Wed, 18 Sep 2024 17:01:36 +0200 Subject: [PATCH] Working loading state. --- .../text_generation_server/models/__init__.py | 18 + .../models/custom_modeling/mllama.py | 1233 +++++++++++++++++ .../text_generation_server/models/idefics.py | 24 +- 3 files changed, 1266 insertions(+), 9 deletions(-) create mode 100644 server/text_generation_server/models/custom_modeling/mllama.py diff --git a/server/text_generation_server/models/__init__.py b/server/text_generation_server/models/__init__.py index e5e5aabb..4c64d89e 100644 --- a/server/text_generation_server/models/__init__.py +++ b/server/text_generation_server/models/__init__.py @@ -308,6 +308,12 @@ class ModelType(enum.Enum): "url": "https://huggingface.co/HuggingFaceM4/idefics-9b", "multimodal": True, } + MLLAMA = { + "type": "mllama", + "name": "Mllama", + "url": "https://huggingface.co/xxx/xx", + "multimodal": True, + } __GLOBALS = locals() @@ -1095,6 +1101,18 @@ def get_model( ) else: raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) + if model_type == MLLAMA: + if FLASH_ATTENTION: + return IDEFICSSharded( + model_id, + revision, + quantize=quantize, + speculator=speculator, + dtype=dtype, + trust_remote_code=trust_remote_code, + ) + else: + raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama")) if model_type == IDEFICS2: if FLASH_ATTENTION: return VlmCausalLM( diff --git a/server/text_generation_server/models/custom_modeling/mllama.py b/server/text_generation_server/models/custom_modeling/mllama.py new file mode 100644 index 00000000..66feb902 --- /dev/null +++ b/server/text_generation_server/models/custom_modeling/mllama.py @@ -0,0 +1,1233 @@ +# coding=utf-8 +# Copyright 2024 the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Mllama model.""" + +from typing import List, Optional, Tuple + +import torch +import torch.utils.checkpoint +from torch import nn +import math + +from transformers.activations import ACT2FN +import torch.nn.functional as F +from text_generation_server.models.custom_modeling.vlm import ( + load_text_model, +) +from text_generation_server.layers.attention import Seqlen +from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask + +from text_generation_server.layers.layernorm import ( + FastRMSNorm, +) +from text_generation_server.layers.rotary import PositionRotaryEmbedding +from text_generation_server.layers import ( + TensorParallelColumnLinear, + TensorParallelEmbedding, + TensorParallelRowLinear, + SpeculativeHead, + FastLinear, +) +from text_generation_server.utils.weights import DefaultWeightsLoader, UnquantizedWeight + + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision +class MllamaVisionMLP(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = TensorParallelColumnLinear.load( + prefix=f"{prefix}.fc1", weights=weights, config=config, bias=True + ) + self.fc2 = TensorParallelRowLinear.load( + prefix=f"{prefix}.fc2", weights=weights, config=config, bias=True + ) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +class MllamaVisionSdpaAttention(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + + self.embed_dim = config.hidden_size + self.num_heads = config.attention_heads + self.head_dim = config.hidden_size // config.attention_heads + + self.qkv_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], + dim=0, + weights=weights, + bias=False, + ) + self.o_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.o_proj", + weights=weights, + bias=False, + ) + + def forward( + self, + hidden_state: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + qkv = self.qkv_proj(hidden_state) + query, key, value = qkv.split( + [ + self.head_size * self.num_heads, + self.head_size * self.num_heads, + self.head_size * self.num_heads, + ], + dim=1, + ) + + batch_size, q_seq_len, _ = query.shape + _, kv_seq_len, _ = key.shape + + query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim) + key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) + value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim) + + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + attn_output = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(batch_size, q_seq_len, -1) + + output = self.o_proj(attn_output) + return output + + +class MllamaVisionEncoderLayer(nn.Module): + def __init__(self, *, prefix, config, weights, is_gated: bool): + super().__init__() + + self.hidden_size = config.hidden_size + self.num_attention_heads = config.attention_heads + self.is_gated = is_gated + self.intermediate_size = config.intermediate_size + + self.self_attn = MllamaVisionSdpaAttention( + prefix=f"{prefix}.self_attn", config=config, weights=weights + ) + self.mlp = MllamaVisionMLP( + prefix=f"{prefix}.mlp", config=config, weights=weights + ) + + self.input_layernorm = nn.LayerNorm.load( + prefix=f"{prefix}.input_layernorm", weights=weights, eps=1e-05 + ) + self.post_attention_layernorm = nn.LayerNorm.load( + prefix=f"{prefix}.post_attention_layernorm", weights=weights, eps=1e-05 + ) + + # there used to be an if else here, no code path + if is_gated: + self.gate_attn = nn.Parameter( + weights.get_tensor(f"{prefix}.gate_attn"), requires_grad=False + ) + self.gate_ffn = nn.Parameter( + weights.get_tensor(f"{prefix}.gate_attn"), requires_grad=False + ) + + def forward( + self, + hidden_state: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + # Self Attention + residual = hidden_state + hidden_state = self.input_layernorm(hidden_state) + hidden_state, attn_weights = self.self_attn( + hidden_state, attention_mask=attention_mask + ) + gate_attn = 1 if not self.is_gated else self.gate_attn.tanh() + hidden_state = residual + gate_attn * hidden_state + + # Feed forward + residual = hidden_state + hidden_state = self.post_attention_layernorm(hidden_state) + hidden_state = self.mlp(hidden_state) + gate_ffn = 1 if not self.is_gated else self.gate_ffn.tanh() + hidden_state = residual + gate_ffn * hidden_state + return hidden_state + + +class MllamaVisionEncoder(nn.Module): + def __init__(self, *, prefix, config, weights, is_gated: bool, num_layers: int): + super().__init__() + self.config = config + self.layers = [ + MllamaVisionEncoderLayer( + prefix=f"{prefix}.layers.{i}", + config=config, + weights=weights, + is_gated=is_gated, + ) + for i in range(num_layers) + ] + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + ): + for encoder_layer in self.layers: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + ) + + hidden_states = layer_outputs[0] + + return hidden_states + + +class MllamaPrecomputedAspectRatioEmbedding(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.max_num_tiles = config.max_num_tiles + self.hidden_size = config.hidden_size + self.max_aspect_ratio_id = config.max_aspect_ratio_id + + self.embedding = TensorParallelEmbedding( + prefix=f"{prefix}.embedding", weights=weights + ) + self.gate = nn.Parameter( + weights.get_tensor(f"{prefix}.gate"), requires_grad=False + ) + + def forward( + self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor + ) -> torch.Tensor: + embeddings = self.embedding(aspect_ratio_ids) + embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size) + + # Always gated. + embeddings = embeddings * self.gate.tanh() + + hidden_state = hidden_state + embeddings + return hidden_state + + +class MllamaPrecomputedPositionEmbedding(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.max_num_tiles = config.max_num_tiles + self.max_aspect_ratio_id = config.max_aspect_ratio_id + self.num_patches = (config.image_size // config.patch_size) ** 2 + 1 + self.hidden_size = config.hidden_size + self.scale = config.hidden_size**-0.5 + + self.gate = nn.Parameter(torch.zeros(1)) + + # position embedding + self.embedding = nn.Parameter( + weights.get_tensor(f"{prefix}.embedding"), requires_grad=False + ) + self.tile_embedding = TensorParallelEmbedding( + prefix=f"{prefix}.tile_embedding", weights=weights + ) + + def forward( + self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor + ) -> torch.Tensor: + # position embeddings + gated_position_embedding = (1 - self.gate.tanh()) * self.embedding + hidden_state = hidden_state + gated_position_embedding.view( + 1, 1, self.num_patches, self.hidden_size + ) + + # precomputed tile position embeddings + tile_position_embedding = self.tile_embedding(aspect_ratio_ids) + batch_size = hidden_state.shape[0] + tile_position_embedding = tile_position_embedding.reshape( + batch_size, self.max_num_tiles, self.num_patches, self.hidden_size + ) + gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding + hidden_state = hidden_state + gated_tile_position_embedding + + return hidden_state + + +class MllamaVisionModel(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.image_size = config.image_size + self.patch_size = config.patch_size + self.max_num_tiles = config.max_num_tiles + self.hidden_size = config.hidden_size + self.in_channels = config.in_channels + self.intermediate_layers_indices = config.intermediate_layers_indices + + self.num_patches = (self.image_size // self.patch_size) ** 2 + 1 + self.scale = config.hidden_size**-0.5 + + self.patch_embedding = nn.Conv2d( + in_channels=config.in_channels, + out_channels=self.hidden_size, + kernel_size=self.patch_size, + stride=self.patch_size, + padding="valid", + bias=False, + ) + self.patch_embedding.weight = nn.Parameter( + weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False + ) + + self.class_embedding = nn.Parameter( + weights.get_tensor(f"{prefix}.class_embedding"), requires_grad=False + ) + + self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding( + prefix=f"{prefix}.gated_positional_embedding", + config=config, + weights=weights, + ) + + self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding( + prefix=f"{prefix}.pre_tile_positional_embedding", + config=config, + weights=weights, + ) + self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding( + prefix=f"{prefix}.post_tile_positional_embedding", + config=config, + weights=weights, + ) + + ## layer norms + self.layernorm_pre = nn.LayerNorm.load( + prefix=f"{prefix}.layernorm_pre", + weights=weights, + # torch default + eps=1e-05, + ) + self.layernorm_post = nn.LayerNorm.load( + prefix=f"{prefix}.layernorm_post", + weights=weights, + # torch default + eps=1e-05, + ) + + ## encoders + self.transformer = MllamaVisionEncoder( + prefix=f"{prefix}.transformer", + config=config, + weights=weights, + is_gated=False, + num_layers=config.num_hidden_layers, + ) + self.global_transformer = MllamaVisionEncoder( + prefix=f"{prefix}.global_transformer", + config=config, + weights=weights, + is_gated=True, + num_layers=config.num_global_layers, + ) + + def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor: + batch_size, _, hidden_size = hidden_state.shape + class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size) + hidden_state = torch.cat([class_embedding, hidden_state], dim=1) + return hidden_state + + def forward( + self, + pixel_values: torch.Tensor, + aspect_ratio_ids: torch.Tensor, + attention_mask: torch.Tensor, + ) -> torch.Tensor: + batch_size, num_concurrent_media, num_tiles, num_channels, height, width = ( + pixel_values.shape + ) + + pixel_values = pixel_values.reshape( + batch_size * num_concurrent_media * num_tiles, num_channels, height, width + ) + aspect_ratio_ids = aspect_ratio_ids.reshape( + batch_size * num_concurrent_media, -1 + ) + + # patch embedding + patch_embeds = self.patch_embedding(pixel_values.to(self.dtype).to(self.device)) + hidden_state = patch_embeds.flatten(2).transpose(1, 2) + + # tile embeddings + _, num_patches, dim = hidden_state.shape + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, num_tiles, -1, dim + ) + hidden_state = self.pre_tile_positional_embedding( + hidden_state, aspect_ratio_ids + ) + + # apply cls token + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media * num_tiles, num_patches, dim + ) + hidden_state = self.apply_class_embedding(hidden_state) + num_patches += 1 + + # apply position embeddings + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, num_tiles, num_patches, dim + ) + hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids) + + # apply encoder + hidden_state = self.layernorm_pre(hidden_state) + + # Compute the number of tokens to pad + num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8 + # Compute padding tuple for pad function + padding = ( + 0, + 0, + 0, + num_padding_patches, + ) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2) + # Pad the tensor + hidden_state = F.pad(hidden_state, padding, mode="constant", value=0) + slice_index = -num_padding_patches if num_padding_patches > 0 else None + + if attention_mask is not None: + attention_mask = attention_mask.reshape( + batch_size * num_concurrent_media, -1 + ) + attention_mask = _prepare_aspect_ratio_attention_mask( + aspect_ratio_mask=attention_mask, + num_patches=self.num_patches, + target_length=hidden_state.shape[2], + dtype=self.dtype, + ) + + hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim) + output = self.transformer( + hidden_state, + attention_mask=attention_mask, + output_hidden_states=True, + ) + hidden_state, all_intermediate_hidden_states = output[0], output[1] + intermediate_hidden_states = [ + hidden_state + for idx, hidden_state in enumerate(all_intermediate_hidden_states) + if idx in self.intermediate_layers_indices + ] + intermediate_hidden_states = torch.stack(intermediate_hidden_states, dim=-1) + + # apply global encoder + hidden_state = self.layernorm_post(hidden_state) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + dim, + ) + hidden_state = self.post_tile_positional_embedding( + hidden_state, aspect_ratio_ids + ) + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles * (num_patches + num_padding_patches), + dim, + ) + hidden_state = self.global_transformer( + hidden_state, attention_mask=attention_mask + )[0] + hidden_state = hidden_state.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + dim, + ) + hidden_state = hidden_state[:, :, :slice_index] + + # adding intermediate layer outputs + hidden_state = hidden_state.reshape( + batch_size, num_concurrent_media, num_tiles, num_patches, dim + ) + intermediate_hidden_states = intermediate_hidden_states.reshape( + batch_size * num_concurrent_media, + num_tiles, + num_patches + num_padding_patches, + -1, + ) + intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index] + intermediate_hidden_states = intermediate_hidden_states.reshape( + batch_size, num_concurrent_media, num_tiles, num_patches, -1 + ) + hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1) + return hidden_state + + +class MllamaTextCrossAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.num_heads = self.config.num_attention_heads + self.num_key_value_heads = self.config.num_key_value_heads + self.dropout = config.dropout + self.hidden_size = config.hidden_size + self.head_dim = config.hidden_size // self.num_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + + self.qkv_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], + dim=0, + weights=weights, + bias=False, + ) + self.o_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.o_proj", + weights=weights, + bias=False, + ) + + self.q_norm = FastRMSNorm.load( + prefix=f"{prefix}.q_norm", weights=weights, eps=config.rms_norm_eps + ) + self.k_norm = FastRMSNorm.load( + prefix=f"{prefix}.k_norm", weights=weights, eps=config.rms_norm_eps + ) + + def forward( + self, + hidden_states: torch.Tensor, + cross_attention_states: Optional[torch.Tensor] = None, + past_key_value=None, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + use_cache: bool = None, + cache_position: Optional[torch.LongTensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + bsz, q_len, _ = hidden_states.size() + query_states = self.q_proj(hidden_states) + query_states = query_states.view( + bsz, q_len, self.num_heads, self.head_dim + ).transpose(1, 2) + query_states = self.q_norm(query_states) + + if cross_attention_states is not None: + key_states = self.k_proj(cross_attention_states) + value_states = self.v_proj(cross_attention_states) + key_states = key_states.view( + bsz, -1, self.num_key_value_heads, self.head_dim + ).transpose(1, 2) + value_states = value_states.view( + bsz, -1, self.num_key_value_heads, self.head_dim + ).transpose(1, 2) + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + key_states = self.k_norm(key_states) + if past_key_value is not None: + # if we have a new image + new tokens, we only computed key_states on that new image + # we still update the cross key states, past_image, new_image. And use it! + key_states, value_states = past_key_value.update( + key_states, + value_states, + self.layer_idx, + {"cache_position": cache_position}, + ) + elif cache_position[0] != 0: + key_states, value_states = ( + past_key_value.key_cache[self.layer_idx], + past_key_value.value_cache[self.layer_idx], + ) + else: + raise ValueError( + "Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!" + ) + + attn_weights = torch.matmul( + query_states, key_states.transpose(2, 3) + ) / math.sqrt(self.head_dim) + + if attention_mask is not None: # no matter the length, we just slice it + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + attn_weights = nn.functional.softmax( + attn_weights, dim=-1, dtype=torch.float32 + ).to(query_states.dtype) + attn_weights = nn.functional.dropout( + attn_weights, p=self.dropout, training=self.training + ) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, -1) + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText +class MllamaTextMLP(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_up_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"], + weights=weights, + dim=0, + bias=False, + ) + self.down_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.down_proj", + weights=weights, + bias=False, + ) + self.act_fn = ACT2FN[config.hidden_activation] + + def forward(self, x): + gate_up_states = self.gate_up_proj(x) + gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size) + return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]) + + +class MllamaCrossAttentionDecoderLayer(torch.nn.Module): + """Cross-attention transformer block with tanh-gated attention and feedforward.""" + + def __init__(self, *, prefix, config, weights) -> None: + super().__init__() + self.cross_attn = MllamaTextCrossAttention( + prefix=f"{prefix}.cross_attn", config=config, weights=weights + ) + + self.input_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps + ) + self.cross_attn_attn_gate = torch.nn.Parameter( + weights.get_tensor(f"{prefix}.cross_attn_attn_gate"), requires_grad=False + ) + + self.mlp = MllamaTextMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) + self.post_attention_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + self.cross_attn_mlp_gate = torch.nn.Parameter( + weights.get_tensor(f"{prefix}.cross_attn_mlp_gate"), requires_grad=False + ) + + def forward( + self, + hidden_states: torch.Tensor, + cross_attention_states: torch.Tensor, + cross_attention_mask: torch.Tensor, + attention_mask: torch.Tensor, + full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor], + past_key_value=None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, + ) -> torch.Tensor: + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + + hidden_states, attn_weights, past_key_value = self.cross_attn( + hidden_states=hidden_states, + attention_mask=cross_attention_mask, + cross_attention_states=cross_attention_states, + past_key_value=past_key_value, + output_attentions=output_attentions, + cache_position=cache_position, + ) + hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states + + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + if full_text_row_masked_out_mask is not None: + hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states # type: ignore + hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + if use_cache: + outputs += (past_key_value,) + + return outputs + + +class MllamaTextSelfAttention(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.config = config + self.num_heads = config.num_attention_heads + self.dropout = config.dropout + self.hidden_size = config.hidden_size + self.num_key_value_heads = config.num_key_value_heads + self.head_dim = config.hidden_size // self.num_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + + self.qkv_proj = TensorParallelColumnLinear.load_multi( + config, + prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"], + dim=0, + weights=weights, + bias=False, + ) + self.o_proj = TensorParallelRowLinear.load( + config, + prefix=f"{prefix}.o_proj", + weights=weights, + bias=False, + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + position_embeddings: torch.Tensor, + output_attentions: bool = False, + use_cache: bool = False, + past_key_value=None, + cache_position=None, + **kwargs, + ): + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view( + bsz, q_len, self.num_heads, self.head_dim + ).transpose(1, 2) + key_states = key_states.view( + bsz, q_len, self.num_key_value_heads, self.head_dim + ).transpose(1, 2) + value_states = value_states.view( + bsz, q_len, self.num_key_value_heads, self.head_dim + ).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb( + query_states, key_states, cos, sin + ) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + causal_mask = attention_mask + if attention_mask is not None: + causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and causal_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment + # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. + is_causal = True if causal_mask is None and q_len > 1 else False + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=causal_mask, + dropout_p=self.dropout if self.training else 0.0, + is_causal=is_causal, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, -1) + + attn_output = self.o_proj(attn_output) + return attn_output, None, past_key_value + + +# Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with LlamaDecoder->MllamaSelfAttentionDecoder, Llama->MllamaText, LLAMA->MLLAMA_TEXT +class MllamaSelfAttentionDecoderLayer(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = MllamaTextSelfAttention( + prefix=f"{prefix}.self_attn", config=config, weights=weights + ) + + self.mlp = MllamaTextMLP(prefix=f"{prefix}.mlp", config=config, weights=weights) + self.input_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps + ) + self.post_attention_layernorm = FastRMSNorm.load( + prefix=f"{prefix}.post_attention_layernorm", + weights=weights, + eps=config.rms_norm_eps, + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value=None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[ + Tuple[torch.Tensor, torch.Tensor] + ] = None, # will become mandatory in v4.45 + **kwargs, + ) -> Tuple[ + torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] + ]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): + Indices depicting the position of the input sequence tokens in the sequence + position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): + Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, + with `head_dim` being the embedding dimension of each attention head. + kwargs (`dict`, *optional*): + Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code + into the model + """ + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class MllamaTextModel(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + self.embed_tokens = TensorParallelEmbedding( + prefix=f"{prefix}.embed_tokens", weights=weights + ) + self.cross_attention_layers = config.cross_attention_layers + + self.layers = [] + for layer_idx in range(config.num_hidden_layers): + if layer_idx in self.cross_attention_layers: + self.layers.append( + MllamaCrossAttentionDecoderLayer( + prefix=f"{prefix}.layers.{layer_idx}", + config=config, + weights=weights, + ) + ) + else: + self.layers.append( + MllamaSelfAttentionDecoderLayer( + prefix=f"{prefix}.layers.{layer_idx}", + config=config, + weights=weights, + ) + ) + + # TODO Should we use this slow norm ? + # self.norm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.norm = FastRMSNorm.load( + prefix=f"{prefix}.norm", + weights=weights, + eps=config.rms_norm_eps, + ) + # TODO Anything specific ? + head_size = config.hidden_size // config.num_attention_heads + self.rotary_emb = PositionRotaryEmbedding.static( + config=config, + dim=head_size, + base=config.rope_theta, + device=weights.device, + ) + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + cross_attention_states: Optional[torch.FloatTensor] = None, + cross_attention_mask: Optional[torch.Tensor] = None, + full_text_row_masked_out_mask: Optional[ + Tuple[torch.Tensor, torch.Tensor] + ] = None, + past_key_values=None, + inputs_embeds: Optional[torch.FloatTensor] = None, + cache_position: Optional[torch.LongTensor] = None, + ): + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" + ) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + hidden_states = inputs_embeds + + if cache_position is None: + past_seen_tokens = ( + past_key_values.get_seq_length() if past_key_values is not None else 0 + ) + cache_position = torch.arange( + past_seen_tokens, + past_seen_tokens + inputs_embeds.shape[1], + device=inputs_embeds.device, + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + # causal_mask = self._update_causal_mask( + # attention_mask, + # inputs_embeds, + # cache_position, + # past_key_values, + # ) + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + # decoder layers + + for idx, decoder_layer in enumerate(self.layers): + if ( + idx in self.cross_attention_layers + and cross_attention_states is None + and ( + past_key_values is None + or ( + past_key_values is not None + and past_key_values.get_seq_length(idx) == 0 + ) + ) + ): + continue + + layer_outputs = decoder_layer( + hidden_states, + cross_attention_states=cross_attention_states, + cross_attention_mask=cross_attention_mask, + attention_mask=causal_mask, + full_text_row_masked_out_mask=full_text_row_masked_out_mask, + position_ids=position_ids, + past_key_value=past_key_values, + cache_position=cache_position, + position_embeddings=position_embeddings, + ) + + hidden_states = layer_outputs + + hidden_states = self.norm(hidden_states) + + return hidden_states + + # def _update_causal_mask( + # self, + # attention_mask: torch.Tensor, + # input_tensor: torch.Tensor, + # cache_position: torch.Tensor, + # past_key_values, + # ): + # if self.config._attn_implementation == "flash_attention_2": + # if attention_mask is not None and 0.0 in attention_mask: + # return attention_mask + # return None + + # # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in + # # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail + # # to infer the attention mask. + # past_seen_tokens = ( + # past_key_values.get_seq_length() if past_key_values is not None else 0 + # ) + # using_static_cache = isinstance(past_key_values, StaticCache) + + # # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward + # # TODO: we have only SDPA currently and there's a bug when attn-bias is passed. Need to add eager attn and return the line + # # self.config._attn_implementation == "sdpa" and + # if ( + # self.config._attn_implementation == "sdpa" + # and not using_static_cache + # and not output_attentions + # ): + # if AttentionMaskConverter._ignore_causal_mask_sdpa( + # attention_mask, + # inputs_embeds=input_tensor, + # past_key_values_length=past_seen_tokens, + # is_training=self.training, + # ): + # return None + + # dtype, device = input_tensor.dtype, input_tensor.device + # min_dtype = torch.finfo(dtype).min + # sequence_length = input_tensor.shape[1] + # if using_static_cache: + # target_length = past_key_values.get_max_length() + # else: + # target_length = ( + # attention_mask.shape[-1] + # if isinstance(attention_mask, torch.Tensor) + # else past_seen_tokens + sequence_length + 1 + # ) + + # # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). + # causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( + # attention_mask, + # sequence_length=sequence_length, + # target_length=target_length, + # dtype=dtype, + # device=device, + # min_dtype=min_dtype, + # cache_position=cache_position, + # batch_size=input_tensor.shape[0], + # ) + + # if ( + # self.config._attn_implementation == "sdpa" + # and attention_mask is not None + # and attention_mask.device.type == "cuda" + # and not output_attentions + # ): + # # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when + # # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. + # # Details: https://github.com/pytorch/pytorch/issues/110213 + # causal_mask = AttentionMaskConverter._unmask_unattended( + # causal_mask, min_dtype + # ) + + # return causal_mask + + +class MllamaForCausalLM(nn.Module): + def __init__(self, *, prefix, config, weights): + super().__init__() + self.vocab_size = config.vocab_size + self.model = MllamaTextModel( + prefix=f"{prefix}.model", config=config, weights=weights + ) + self.lm_head = SpeculativeHead.load( + prefix=f"{prefix}.lm_head", + config=config, + weights=weights, + ) + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + cross_attention_states: Optional[torch.LongTensor] = None, + cross_attention_mask: Optional[torch.LongTensor] = None, + full_text_row_masked_out_mask: Optional[ + Tuple[torch.Tensor, torch.Tensor] + ] = None, + past_key_values=None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + num_logits_to_keep: int = 0, + ): + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + cross_attention_states=cross_attention_states, + attention_mask=attention_mask, + position_ids=position_ids, + cross_attention_mask=cross_attention_mask, + full_text_row_masked_out_mask=full_text_row_masked_out_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + cache_position=cache_position, + ) + + hidden_states = outputs + # if lm_head_indices is not None: + # hidden_states = hidden_states[lm_head_indices] + logits, speculative_logits = self.lm_head(hidden_states) + return logits + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + cache_position=None, + position_ids=None, + use_cache=True, + num_logits_to_keep=None, + **kwargs, + ): + # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens + # Exception 1: when passing input_embeds, input_ids may be missing entries + # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here + if past_key_values is not None: + if inputs_embeds is not None: # Exception 1 + input_ids = input_ids[:, -cache_position.shape[0] :] + elif ( + input_ids.shape[1] != cache_position.shape[0] + ): # Default case (the "else", a no op, is Exception 2) + input_ids = input_ids[:, cache_position] + + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. + position_ids = position_ids.clone(memory_format=torch.contiguous_format) + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and cache_position[0] == 0: + model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} + else: + # The clone here is for the same reason as for `position_ids`. + model_inputs = { + "input_ids": input_ids.clone(memory_format=torch.contiguous_format), + "inputs_embeds": None, + } + + if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: + if model_inputs["inputs_embeds"] is not None: + batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape + device = model_inputs["inputs_embeds"].device + else: + batch_size, sequence_length = model_inputs["input_ids"].shape + device = model_inputs["input_ids"].device + + dtype = self.lm_head.weight.dtype + min_dtype = torch.finfo(dtype).min + + attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( + attention_mask, + sequence_length=sequence_length, + target_length=past_key_values.get_max_length(), + dtype=dtype, + device=device, + min_dtype=min_dtype, + cache_position=cache_position, + batch_size=batch_size, + ) + + if num_logits_to_keep is not None: + model_inputs["num_logits_to_keep"] = num_logits_to_keep + + model_inputs.update( + { + "position_ids": position_ids, + "cache_position": cache_position, + "past_key_values": past_key_values, + "use_cache": use_cache, + "attention_mask": attention_mask, + } + ) + return model_inputs + + +class MllamaForConditionalGeneration(nn.Module): + def __init__(self, prefix, config, weights): + super().__init__() + config.vision_config.quantize = None + config.vision_config.speculator = config.speculator + config.text_config.quantize = config.quantize + config.text_config.speculator = config.speculator + self.vision_model = MllamaVisionModel( + prefix="vision_model", config=config.vision_config, weights=weights + ) + self.language_model = MllamaForCausalLM( + prefix="language_model", config=config.text_config, weights=weights + ) + self.multi_modal_projector = FastLinear.load( + prefix="multi_modal_projector", config=config, weights=weights, bias=True + ) + self.config = config diff --git a/server/text_generation_server/models/idefics.py b/server/text_generation_server/models/idefics.py index 9058cb96..06cd501e 100644 --- a/server/text_generation_server/models/idefics.py +++ b/server/text_generation_server/models/idefics.py @@ -4,14 +4,13 @@ import torch.distributed from typing import Optional -from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig -from text_generation_server.models.custom_modeling.idefics_processing import ( - IdeficsProcessor, -) -from transformers import LlamaTokenizerFast +from transformers import AutoConfig, AutoProcessor, AutoTokenizer from text_generation_server.models.custom_modeling.idefics_modeling import ( IdeficsForVisionText2Text, ) +from text_generation_server.models.custom_modeling.mllama import ( + MllamaForConditionalGeneration, +) from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM from text_generation_server.utils import ( initialize_torch_distributed, @@ -53,7 +52,7 @@ class IDEFICSSharded(IdeficsCausalLM): dtype = torch.float32 if dtype is None else dtype self.device, self.dtype = device, dtype - config = IdeficsConfig.from_pretrained( + config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, @@ -62,14 +61,14 @@ class IDEFICSSharded(IdeficsCausalLM): config.speculator = speculator config.vision_config.quantize = quantize - tokenizer = LlamaTokenizerFast.from_pretrained( + tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) - self.processor = IdeficsProcessor.from_pretrained( + self.processor = AutoProcessor.from_pretrained( model_id, revision=revision, padding_side="left", @@ -90,7 +89,14 @@ class IDEFICSSharded(IdeficsCausalLM): weights_loader=weights_loader, ) - model = IdeficsForVisionText2Text(config, weights) + if config.model_type == "idefics": + model = IdeficsForVisionText2Text(config, weights) + elif config.model_type == "mllama": + model = MllamaForConditionalGeneration( + prefix="", config=config, weights=weights + ) + else: + raise RuntimeError(f"Unsupported model type {config.model_type}") torch.distributed.barrier(group=self.process_group) super(IdeficsCausalLM, self).__init__(