feat: support other models and add fsm caching

This commit is contained in:
drbh 2024-02-08 19:56:16 +00:00
parent 56e919e459
commit 8fd2664a3c
4 changed files with 29 additions and 16 deletions

View File

@ -237,7 +237,7 @@ class FlashCausalLMBatch(Batch):
)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
next_token_chooser_parameters, dtype, device, tokenizer
)
start_slots = torch.tensor(start_slots, dtype=torch.int64)
@ -593,6 +593,8 @@ class FlashCausalLMBatch(Batch):
next_token_chooser_parameters,
dtype=batches[0].next_token_chooser.dtype,
device=batches[0].next_token_chooser.device,
tokenizer=batches[0].next_token_chooser.tokenizer,
grammar=batches[0].requests.parameters.grammar,
)
speculative_ids = (

View File

@ -192,7 +192,7 @@ class FlashMistralBatch(FlashCausalLMBatch):
)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
next_token_chooser_parameters, dtype, device, tokenizer
)
start_slots = torch.tensor(start_slots, dtype=torch.int64)

View File

@ -124,7 +124,7 @@ class MambaBatch(Batch):
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device, tokenizer))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)

View File

@ -22,6 +22,7 @@ from transformers import PreTrainedTokenizerBase, RepetitionPenaltyLogitsProcess
from outlines.fsm.fsm import RegexFSM
from outlines.fsm.json_schema import build_regex_from_object
from functools import lru_cache
# TODO: remove when done debugging
import time
@ -219,6 +220,8 @@ class HeterogeneousNextTokenChooser:
typical_p: List[float],
do_sample: List[bool],
seeds: List[int],
tokenizer=None,
grammar=None,
):
warpers = []
@ -272,11 +275,15 @@ class HeterogeneousNextTokenChooser:
self.warpers = warpers
if any(do_sample):
first_grammar = grammar[0] if grammar else None
if first_grammar:
self.choice = Grammar(tokenizer, device, first_grammar)
elif any(do_sample):
self.choice = HeterogeneousSampling(do_sample, seeds, device)
else:
self.choice = Greedy()
self.use_grammar = grammar is not None
self.seeds = seeds
self.do_sample = do_sample
self.dtype = dtype
@ -390,7 +397,7 @@ class HeterogeneousNextTokenChooser:
self.seeds = [self.seeds[i] for i in indices]
self.do_sample = [self.do_sample[i] for i in indices]
if any(self.do_sample):
if self.use_grammar or any(self.do_sample):
self.choice.filter(indices)
else:
self.choice = Greedy()
@ -403,6 +410,7 @@ class HeterogeneousNextTokenChooser:
pb: List[generate_pb2.NextTokenChooserParameters],
dtype: torch.dtype,
device: torch.device,
tokenizer: PreTrainedTokenizerBase,
) -> "HeterogeneousNextTokenChooser":
return HeterogeneousNextTokenChooser(
watermark=[pb_.watermark for pb_ in pb],
@ -416,6 +424,8 @@ class HeterogeneousNextTokenChooser:
seeds=[pb_.seed for pb_ in pb],
device=device,
dtype=dtype,
tokenizer=tokenizer,
grammar=[pb_.grammar for pb_ in pb],
)
@ -443,22 +453,12 @@ class Grammar:
fsm: RegexFSM
def __init__(self, tokenizer, device, grammar):
# TODO: remove debug logs
start_time = time.time()
tokenizer = self.adapt_tokenizer(tokenizer)
print(f"Adapt tokenizer: {time.time() - start_time}")
start_time = time.time()
regex_string = build_regex_from_object(grammar)
print(f"Build regex: {time.time() - start_time}")
fsm = RegexFSM(regex_string, tokenizer)
print(f"Compile FSM: {time.time() - start_time}")
fsm = self.compile_fsm(grammar, tokenizer)
self.fsm = fsm
self.fsm_state = defaultdict(int)
self.device = device
def __call__(self, logits):
# TODO: handle seq_id properly
seq_id = 0
if self.fsm_state[seq_id] == -1:
@ -478,6 +478,17 @@ class Grammar:
)
return greedy
@lru_cache(maxsize=32, typed=True)
def compile_fsm(self, schema, tokenizer):
start_time = time.time()
tokenizer = self.adapt_tokenizer(tokenizer)
is_json_string = schema.startswith("{") and schema.endswith("}")
regex_string = build_regex_from_object(schema) if is_json_string else schema
fsm = RegexFSM(regex_string, tokenizer)
print(f"Compile FSM: {time.time() - start_time}")
return fsm
def adapt_tokenizer(self, tokenizer):
"""Adapt tokenizer to work with the FSM.