This commit is contained in:
Joel Lamy-Poirier 2023-05-05 18:48:57 -04:00
parent 0e648a71f9
commit 87b5f03958
No known key found for this signature in database
GPG Key ID: 82EE2141E842DFCF
3 changed files with 315 additions and 169 deletions

View File

@ -114,7 +114,9 @@ def get_model(
santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
return santacoder_cls(model_id, revision, quantize=quantize)
config = AutoConfig.from_pretrained(model_id, revision=revision, trust_remote_code=True)
config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=True
)
model_type = config.model_type
if model_type == "bloom":

View File

@ -18,7 +18,9 @@ from text_generation_server.models.types import (
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import StoppingCriteria
from text_generation_server.utils.tokens_heterogeneous import HeterogeneousNextTokenChooser
from text_generation_server.utils.tokens_heterogeneous import (
HeterogeneousNextTokenChooser,
)
tracer = trace.get_tracer(__name__)
@ -32,7 +34,9 @@ class VectorizedCausalLMBatch(Batch):
# Decoder values
attention_mask: torch.Tensor
position_ids: torch.Tensor
past_key_values: Optional[List[Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]]]]
past_key_values: Optional[
List[Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]]]
]
# All tokens
input_ids: torch.Tensor
@ -52,11 +56,11 @@ class VectorizedCausalLMBatch(Batch):
# Maximum number of tokens this batch will grow to
max_tokens: int
kv_cache_seq_dim:int=2
kv_cache_seq_dim: int = 2
# TODO: Get from requests (should these be lists?)
details:bool=os.environ.get("RETURN_DETAILS") is not None
generate_stream:bool=os.environ.get("GENERATE_STREAM") is not None
details: bool = os.environ.get("RETURN_DETAILS") is not None
generate_stream: bool = os.environ.get("GENERATE_STREAM") is not None
def to_pb(self) -> generate_pb2.Batch:
return generate_pb2.Batch(
@ -74,15 +78,22 @@ class VectorizedCausalLMBatch(Batch):
device: torch.device,
) -> "VectorizedCausalLMBatch":
inputs = [r.inputs for r in pb.requests]
offsets = [None]*len(inputs)
token_offsets = [None]*len(inputs)
requests_idx_mapping = {r.id:i for i, r in enumerate(pb.requests)}
offsets = [None] * len(inputs)
token_offsets = [None] * len(inputs)
requests_idx_mapping = {r.id: i for i, r in enumerate(pb.requests)}
# Parse batch
stopping_criterias = [StoppingCriteria.from_pb(r.stopping_parameters, tokenizer) for r in pb.requests]
max_new_tokens=(stopping_criteria.max_new_tokens for stopping_criteria in stopping_criterias)
stopping_criterias = [
StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
for r in pb.requests
]
max_new_tokens = (
stopping_criteria.max_new_tokens for stopping_criteria in stopping_criterias
)
next_token_chooser= HeterogeneousNextTokenChooser.from_pb([r.parameters for r in pb.requests], device)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
[r.parameters for r in pb.requests], device
)
tokenized_inputs = tokenizer(
inputs,
@ -96,7 +107,7 @@ class VectorizedCausalLMBatch(Batch):
input_lengths = tokenized_inputs["attention_mask"].sum(1)
max_input_length = input_lengths.max().item()
input_shape=(pb.size, max_input_length + max(max_new_tokens))
input_shape = (pb.size, max_input_length + max(max_new_tokens))
# Allocate maximum attention_mask
attention_mask = torch.empty(input_shape, dtype=torch.bool, device=device)
@ -112,7 +123,10 @@ class VectorizedCausalLMBatch(Batch):
max_tokens = len(inputs) * max_input_length + sum(max_new_tokens)
generate_stream=cls.generate_stream or any(stopping_criteria.stop_sequence_criterias for stopping_criteria in stopping_criterias)
generate_stream = cls.generate_stream or any(
stopping_criteria.stop_sequence_criterias
for stopping_criteria in stopping_criterias
)
return cls(
batch_id=pb.id,
@ -133,7 +147,9 @@ class VectorizedCausalLMBatch(Batch):
)
@tracer.start_as_current_span("filter")
def filter(self, requests: List[generate_pb2.Request]) -> Optional["VectorizedCausalLMBatch"]:
def filter(
self, requests: List[generate_pb2.Request]
) -> Optional["VectorizedCausalLMBatch"]:
if len(requests) == 0:
raise ValueError("Batch must have at least one request")
if len(requests) == len(self):
@ -143,70 +159,108 @@ class VectorizedCausalLMBatch(Batch):
keep_indices = [self.requests_idx_mapping[r.id] for r in self.requests]
# New values after filtering
self.requests_idx_mapping={r.id:i for i, r in enumerate(self.requests)}
self.input_lengths=[self.input_lengths[i] for i in keep_indices]
self.requests_idx_mapping = {r.id: i for i, r in enumerate(self.requests)}
self.input_lengths = [self.input_lengths[i] for i in keep_indices]
self.offsets = [self.offsets[i] for i in keep_indices]
self.token_offsets = [self.token_offsets[i] for i in keep_indices]
self.next_token_chooser=HeterogeneousNextTokenChooser.from_pb([r.parameters for r in self.requests], self.input_ids.device)
self.next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
[r.parameters for r in self.requests], self.input_ids.device
)
self.stopping_criterias = [self.stopping_criterias[i] for i in keep_indices]
remaining_decode_tokens=[stopping_criteria.max_new_tokens - stopping_criteria.current_tokens for stopping_criteria in self.stopping_criterias]
remaining_decode_tokens = [
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
for stopping_criteria in self.stopping_criterias
]
# Select the remaining indices and remove unnecessary padding
max_input_length=max(self.input_lengths)
sequence_slice=slice(self.max_input_length-max_input_length, self.max_input_length+max(remaining_decode_tokens))
self.max_input_length=max_input_length
self.max_tokens = len(self.requests) * self.max_input_length + sum(remaining_decode_tokens)
max_input_length = max(self.input_lengths)
sequence_slice = slice(
self.max_input_length - max_input_length,
self.max_input_length + max(remaining_decode_tokens),
)
self.max_input_length = max_input_length
self.max_tokens = len(self.requests) * self.max_input_length + sum(
remaining_decode_tokens
)
self.input_ids = self.input_ids[keep_indices,sequence_slice]
self.position_ids = self.position_ids[keep_indices,sequence_slice]
self.attention_mask = self.attention_mask[keep_indices,sequence_slice]
self.input_ids = self.input_ids[keep_indices, sequence_slice]
self.position_ids = self.position_ids[keep_indices, sequence_slice]
self.attention_mask = self.attention_mask[keep_indices, sequence_slice]
tensors_to_update = []
if self.past_key_values is not None:
if not isinstance(self.past_key_values,(list, tuple)):
raise NotImplementedError(f"Unsupported kv cache type: {type(self.past_key_values)}")
if not isinstance(self.past_key_values, (list, tuple)):
raise NotImplementedError(
f"Unsupported kv cache type: {type(self.past_key_values)}"
)
for layer_kv in self.past_key_values:
if isinstance(layer_kv, torch.Tensor):
tensors_to_update.append(layer_kv)
elif isinstance(layer_kv,(list, tuple)):
elif isinstance(layer_kv, (list, tuple)):
tensors_to_update.extend(layer_kv)
else:
raise NotImplementedError(f"Unsupported layer kv cache type: {type(layer_kv)}")
raise NotImplementedError(
f"Unsupported layer kv cache type: {type(layer_kv)}"
)
kv_cache_slice=[keep_indices, *(slice(None) for _ in range(1, self.kv_cache_seq_dim)), sequence_slice]
kv_cache_slice = [
keep_indices,
*(slice(None) for _ in range(1, self.kv_cache_seq_dim)),
sequence_slice,
]
for tensor in tensors_to_update:
# Update tensors in-place to allow incremental garbage collection
tensors_to_update.data=tensor[kv_cache_slice]
tensors_to_update.data = tensor[kv_cache_slice]
return self
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["VectorizedCausalLMBatch"]) -> "VectorizedCausalLMBatch":
if len(batches)==0:
def concatenate(
cls, batches: List["VectorizedCausalLMBatch"]
) -> "VectorizedCausalLMBatch":
if len(batches) == 0:
raise ValueError("Cannot concatenate empty list.")
requests=[request for batch in batches for request in batch.requests]
batch_sizes=[len(batch.requests) for batch in batches]
batch_size=sum(batch_sizes)
requests = [request for batch in batches for request in batch.requests]
batch_sizes = [len(batch.requests) for batch in batches]
batch_size = sum(batch_sizes)
end_indices=torch.tensor(batch_sizes).cumsum(0).tolist()
start_indices=[0]+end_indices[:-1]
end_indices = torch.tensor(batch_sizes).cumsum(0).tolist()
start_indices = [0] + end_indices[:-1]
input_lengths = [length for batch in batches for length in batch.input_lengths]
offsets = [offset for batch in batches for offset in batch.offsets]
token_offsets = [token_offset for batch in batches for token_offset in batch.token_offsets]
next_token_chooser=HeterogeneousNextTokenChooser.from_pb([r.parameters for r in requests], batches[0].input_ids.device)
stopping_criterias = [stopping_criteria for batch in batches for stopping_criteria in batch.stopping_criterias]
token_offsets = [
token_offset for batch in batches for token_offset in batch.token_offsets
]
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
[r.parameters for r in requests], batches[0].input_ids.device
)
stopping_criterias = [
stopping_criteria
for batch in batches
for stopping_criteria in batch.stopping_criterias
]
requests_idx_mapping = {k: v + start_index for batch, start_index in zip(batches, start_indices) for k, v in batch.requests_idx_mapping.items()}
requests_idx_mapping = {
k: v + start_index
for batch, start_index in zip(batches, start_indices)
for k, v in batch.requests_idx_mapping.items()
}
max_input_length=max(input_lengths)
left_indices=[max_input_length-batch.max_input_length for batch in batches]
max_input_length = max(input_lengths)
left_indices = [max_input_length - batch.max_input_length for batch in batches]
input_shape=(batch_size, max_input_length + max(batch.input_ids.size(1)-batch.max_input_length for batch in batches))
device=batches[0].input_ids.device
input_shape = (
batch_size,
max_input_length
+ max(
batch.input_ids.size(1) - batch.max_input_length for batch in batches
),
)
device = batches[0].input_ids.device
# Allocate maximum attention_mask
attention_mask = torch.empty(input_shape, dtype=torch.bool, device=device)
@ -217,56 +271,84 @@ class VectorizedCausalLMBatch(Batch):
# TODO : only needed for prefill
input_ids[:, :max_input_length].fill_(0)
for batch,start_index, end_index, left_index in zip(batches, start_indices, end_indices, left_indices):
attention_mask[start_index:end_index, left_index:max_input_length].copy_(batch.attention_mask[:, :batch.max_input_length])
input_ids[start_index:end_index, left_index:max_input_length].copy_(batch.input_ids[:, :batch.max_input_length])
for batch, start_index, end_index, left_index in zip(
batches, start_indices, end_indices, left_indices
):
attention_mask[start_index:end_index, left_index:max_input_length].copy_(
batch.attention_mask[:, : batch.max_input_length]
)
input_ids[start_index:end_index, left_index:max_input_length].copy_(
batch.input_ids[:, : batch.max_input_length]
)
position_ids = attention_mask.cumsum(-1).sub_(1)
position_ids[:, :max_input_length].relu_()
max_tokens = sum(batch.max_tokens + (max_input_length - batch.max_input_length) * len(batch) for batch in batches)
max_tokens = sum(
batch.max_tokens + (max_input_length - batch.max_input_length) * len(batch)
for batch in batches
)
kv_formats=None
kv_formats = None
for batch in batches:
if batch.past_key_values is None:
raise ValueError("Only concatenate prefilled batches")
if not isinstance(batch.past_key_values, (list, tuple)):
raise NotImplementedError(f"Unsupported kv cache type: {type(batch.past_key_values)}")
raise NotImplementedError(
f"Unsupported kv cache type: {type(batch.past_key_values)}"
)
if kv_formats is None:
num_layers=len(batch.past_key_values)
if num_layers==0:
num_layers = len(batch.past_key_values)
if num_layers == 0:
raise ValueError("Empty KV cache")
kv_formats = [0]*num_layers
elif len(batch.past_key_values)!=len(kv_formats):
kv_formats = [0] * num_layers
elif len(batch.past_key_values) != len(kv_formats):
raise ValueError("Num layers is not constant")
for i, layer_kv in enumerate(batch.past_key_values):
if isinstance(layer_kv, (list, tuple)):
kv_format = len(layer_kv)
else:
kv_format=None
if kv_formats[i]==0:
if kv_format==0:
kv_format = None
if kv_formats[i] == 0:
if kv_format == 0:
raise ValueError("Empty KV cache")
kv_formats[i]=kv_format
elif kv_formats[i]!=kv_format:
kv_formats[i] = kv_format
elif kv_formats[i] != kv_format:
raise ValueError("Incompatible KV cache format.")
kv_cache_seq_dim=batches[0].kv_cache_seq_dim
past_key_values=[]
kv_cache_seq_dim = batches[0].kv_cache_seq_dim
past_key_values = []
for i, kv_format in enumerate(kv_formats):
for j in range(1 if kv_format is None else kv_format):
tensors_to_merge=[batch.past_key_values[i] for batch in batches]
tensors_to_merge = [batch.past_key_values[i] for batch in batches]
# Generally `max_input_length`, unless the model allocates more than needed.
right_indices=[left_index+tensor.size(kv_cache_seq_dim) for tensor, left_index in zip(tensors_to_merge, left_indices)]
combined_shape=[batch_size]+list(tensors_to_merge[0].shape[1:])
combined_shape[kv_cache_seq_dim]=max(right_indices)
right_indices = [
left_index + tensor.size(kv_cache_seq_dim)
for tensor, left_index in zip(tensors_to_merge, left_indices)
]
combined_shape = [batch_size] + list(tensors_to_merge[0].shape[1:])
combined_shape[kv_cache_seq_dim] = max(right_indices)
# Set to zero to avoid propagating nans in padded values.
kv_cache = torch.zeros(combined_shape, dtype=tensors_to_merge[0].dtype, device=device)
for tensor, start_index, end_index, left_index, right_index in zip(tensors_to_merge, start_indices, end_indices, left_indices, right_indices):
kv_cache[[slice(start_index, end_index), *(slice(None) for _ in range(1, kv_cache_seq_dim)), slice(left_index,right_index)]].copy_(tensor)
kv_cache = torch.zeros(
combined_shape, dtype=tensors_to_merge[0].dtype, device=device
)
for tensor, start_index, end_index, left_index, right_index in zip(
tensors_to_merge,
start_indices,
end_indices,
left_indices,
right_indices,
):
kv_cache[
[
slice(start_index, end_index),
*(slice(None) for _ in range(1, kv_cache_seq_dim)),
slice(left_index, right_index),
]
].copy_(tensor)
if kv_format is None:
past_key_values.append(kv_cache)
elif j==0:
elif j == 0:
past_key_values.append([kv_cache])
else:
past_key_values[-1].append(kv_cache)
@ -350,58 +432,75 @@ class VectorizedCausalLM(Model):
def generate_token(
self, batch: VectorizedCausalLMBatch
) -> Tuple[List[Generation], Optional[VectorizedCausalLMBatch]]:
key_length=batch.max_input_length
if key_length>batch.input_ids.size(1):
key_length = batch.max_input_length
if key_length > batch.input_ids.size(1):
raise RuntimeError("Cannot generate more than `max_tokens`.")
query_length=key_length if batch.past_key_values is None else 1
input_ids=batch.input_ids[:, key_length-query_length: key_length]
query_length = key_length if batch.past_key_values is None else 1
input_ids = batch.input_ids[:, key_length - query_length : key_length]
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=batch.attention_mask[:, : key_length],
position_ids=batch.position_ids[:, key_length-query_length: key_length],
attention_mask=batch.attention_mask[:, :key_length],
position_ids=batch.position_ids[:, key_length - query_length : key_length],
past_key_values=batch.past_key_values,
)
# TODO: Post-processing
next_token_ids, logprobs = batch.next_token_chooser(input_ids, outputs.logits, batch.details)
next_token_ids, logprobs = batch.next_token_chooser(
input_ids, outputs.logits, batch.details
)
if batch.generate_stream:
# TODO: self.decode_token, offsets?
next_token_texts=self.tokenizer.batch_decode(next_token_ids.tolist())
next_token_texts = self.tokenizer.batch_decode(next_token_ids.tolist())
if batch.details:
token_logprobs=logprobs[:, -1, :].gather(1, next_token_ids.unsqueeze(1)).squeeze(1).tolist()
if query_length>1:
prefill_token_ids=batch.input_ids[:, :key_length].tolist()
prefill_logprobs=logprobs.gather(2, batch.input_ids[:, 1:key_length, None]).squeeze(2).tolist()
prefill_tokens=[]
for prefill_token_ids_, prefill_logprobs_, input_length in zip(prefill_token_ids, prefill_logprobs, batch.input_lengths):
prefill_token_ids_=prefill_token_ids_[-input_length:]
token_logprobs = (
logprobs[:, -1, :]
.gather(1, next_token_ids.unsqueeze(1))
.squeeze(1)
.tolist()
)
if query_length > 1:
prefill_token_ids = batch.input_ids[:, :key_length].tolist()
prefill_logprobs = (
logprobs.gather(2, batch.input_ids[:, 1:key_length, None])
.squeeze(2)
.tolist()
)
prefill_tokens = []
for prefill_token_ids_, prefill_logprobs_, input_length in zip(
prefill_token_ids, prefill_logprobs, batch.input_lengths
):
prefill_token_ids_ = prefill_token_ids_[-input_length:]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids_,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens.append(PrefillTokens(
prefill_token_ids_, [math.nan, *prefill_logprobs_], prefill_texts
))
prefill_tokens.append(
PrefillTokens(
prefill_token_ids_,
[math.nan, *prefill_logprobs_],
prefill_texts,
)
)
# Update batch
# TODO: Why do we need all input ids?
batch.input_ids[:, key_length].copy_(next_token_ids)
batch.past_key_values=outputs.past_key_values
batch.input_lengths=[length+1 for length in batch.input_lengths]
batch.max_input_length+=1
batch.past_key_values = outputs.past_key_values
batch.input_lengths = [length + 1 for length in batch.input_lengths]
batch.max_input_length += 1
# TODO: Vectorize some of this?
generations: List[Generation] = []
next_batch=None
next_batch = None
for i, next_token_id in enumerate(next_token_ids):
next_token_text=next_token_texts[i] if batch.generate_stream else ""
stopping_criterias=batch.stopping_criterias[i]
next_token_text = next_token_texts[i] if batch.generate_stream else ""
stopping_criterias = batch.stopping_criterias[i]
stop, reason = stopping_criterias(
next_token_id,
next_token_text,
@ -421,10 +520,9 @@ class VectorizedCausalLM(Model):
generated_text = None
next_batch = batch
generation = Generation(
batch.requests[i].id,
prefill_tokens[i] if batch.details and query_length>1 else None,
prefill_tokens[i] if batch.details and query_length > 1 else None,
next_token_id,
token_logprobs[i] if batch.details else 0.0,
next_token_text,
@ -435,4 +533,3 @@ class VectorizedCausalLM(Model):
generations.append(generation)
return generations, next_batch

View File

@ -24,8 +24,10 @@ class HeterogeneousRepetitionPenaltyLogitsProcessor(LogitsProcessor):
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
"""
def __init__(self, penalty: List[float], device:torch.device):
self.penalty = torch.tensor(penalty, dtype=torch.float32, device=device).unsqueeze(1)
def __init__(self, penalty: List[float], device: torch.device):
self.penalty = torch.tensor(
penalty, dtype=torch.float32, device=device
).unsqueeze(1)
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor:
score = torch.gather(scores, 1, input_ids)
@ -36,6 +38,7 @@ class HeterogeneousRepetitionPenaltyLogitsProcessor(LogitsProcessor):
scores.scatter_(1, input_ids, score)
return scores
class HeterogeneousTemperatureLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] for temperature (exponential scaling output probability distribution).
@ -47,13 +50,16 @@ class HeterogeneousTemperatureLogitsWarper(LogitsWarper):
The value used to module the logits distribution.
"""
def __init__(self, temperature: List[float], device:torch.device):
self.temperature = torch.tensor(temperature, dtype=torch.float32, device=device).unsqueeze(1)
def __init__(self, temperature: List[float], device: torch.device):
self.temperature = torch.tensor(
temperature, dtype=torch.float32, device=device
).unsqueeze(1)
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor:
scores.div_(self.temperature)
return scores
class HeterogeneousTopPLogitsWarper(LogitsWarper):
"""
[`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.
@ -70,8 +76,16 @@ class HeterogeneousTopPLogitsWarper(LogitsWarper):
Minimum number of tokens that cannot be filtered.
"""
def __init__(self, top_p: List[float], device:torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1):
self.top_p = torch.tensor(top_p, dtype=torch.float32, device=device).unsqueeze(1)
def __init__(
self,
top_p: List[float],
device: torch.device,
filter_value: float = -math.inf,
min_tokens_to_keep: int = 1,
):
self.top_p = torch.tensor(top_p, dtype=torch.float32, device=device).unsqueeze(
1
)
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@ -86,10 +100,13 @@ class HeterogeneousTopPLogitsWarper(LogitsWarper):
sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
scores.masked_fill_(indices_to_remove, self.filter_value)
return scores
class HeterogeneousTopKLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements.
@ -105,10 +122,20 @@ class HeterogeneousTopKLogitsWarper(LogitsWarper):
Minimum number of tokens that cannot be filtered.
"""
def __init__(self, top_k: List[int], device:torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1):
def __init__(
self,
top_k: List[int],
device: torch.device,
filter_value: float = -math.inf,
min_tokens_to_keep: int = 1,
):
self.max_top_k = max(top_k)
self.top_k = torch.tensor([max(x - 1, min_tokens_to_keep-1) for x in top_k], dtype=torch.int64,device=device).unsqueeze(1)
zeros=[x == 0 for x in top_k]
self.top_k = torch.tensor(
[max(x - 1, min_tokens_to_keep - 1) for x in top_k],
dtype=torch.int64,
device=device,
).unsqueeze(1)
zeros = [x == 0 for x in top_k]
if any(zeros):
self.top_k_mask = torch.tensor(zeros, dtype=torch.bool, device=device)
else:
@ -116,13 +143,13 @@ class HeterogeneousTopKLogitsWarper(LogitsWarper):
self.filter_value = filter_value
def __call__(self, input_ids: torch.Tensor, scores: torch.Tensor) -> torch.Tensor:
if scores.size(-1)>self.max_top_k: # Safety check
max_top_k=scores.size(-1)
top_k=torch.clamp_max(self.top_k,max_top_k) # Run only if needed.
if scores.size(-1) > self.max_top_k: # Safety check
max_top_k = scores.size(-1)
top_k = torch.clamp_max(self.top_k, max_top_k) # Run only if needed.
else:
max_top_k=self.max_top_k
top_k=self.top_k
kth_scores=torch.gather(torch.topk(scores, max_top_k)[0], 1, top_k)
max_top_k = self.max_top_k
top_k = self.top_k
kth_scores = torch.gather(torch.topk(scores, max_top_k)[0], 1, top_k)
if self.top_k_mask is not None:
kth_scores.masked_fill_(self.top_k_mask, self.filter_value)
# Remove all tokens with a probability less than the last token of the top-k
@ -147,7 +174,13 @@ class HeterogeneousTypicalLogitsWarper(LogitsWarper):
Minimum number of tokens that cannot be filtered.
"""
def __init__(self, mass: List[float], device:torch.device, filter_value: float = -math.inf, min_tokens_to_keep: int = 1):
def __init__(
self,
mass: List[float],
device: torch.device,
filter_value: float = -math.inf,
min_tokens_to_keep: int = 1,
):
self.filter_value = filter_value
self.mass = torch.tensor(mass, dtype=torch.float32, device=device).unsqueeze(1)
self.min_tokens_to_keep = min_tokens_to_keep
@ -167,11 +200,15 @@ class HeterogeneousTypicalLogitsWarper(LogitsWarper):
# Remove tokens with cumulative mass above the threshold
last_ind = (cumulative_probs < self.mass).sum(dim=1)
last_ind[last_ind < 0] = 0
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1))
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(
1, last_ind.view(-1, 1)
)
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
scores = scores.masked_fill_(indices_to_remove, self.filter_value)
return scores
@ -181,103 +218,113 @@ class HeterogeneousSampling:
r"""
Mixed greedy and probabilistic sampling. Compute both and pick the right one for each sample.
"""
def __init__(self, do_sample:List[bool], seeds: List[int], device: torch.device):
def __init__(self, do_sample: List[bool], seeds: List[int], device: torch.device):
self.seeds = seeds
self.greedy=Greedy()
self.greedy = Greedy()
# TODO: Most seeds are ignored
self.sampling=Sampling(seeds[0], device)
self.do_sample=torch.tensor(do_sample, dtype=torch.bool, device=device)
self.sampling = Sampling(seeds[0], device)
self.do_sample = torch.tensor(do_sample, dtype=torch.bool, device=device)
def __call__(self, logits):
return torch.where(self.do_sample, self.sampling(logits), self.greedy(logits))
class HeterogeneousNextTokenChooser:
def __init__(
self,
*,
batch_size:int,
device:torch.device,
watermark:Optional[Union[bool,List[Optional[bool]]]]=None,
temperature:Optional[Union[float,List[Optional[float]]]]=None,
repetition_penalty:Optional[Union[float,List[Optional[float]]]]=None,
top_k:Optional[Union[int,List[Optional[int]]]]=None,
top_p:Optional[Union[float,List[Optional[float]]]]=None,
typical_p:Optional[Union[float,List[Optional[float]]]]=None,
do_sample:Optional[Union[bool,List[Optional[bool]]]]=None,
seeds:Optional[Union[int,List[Optional[int]]]]=None,
batch_size: int,
device: torch.device,
watermark: Optional[Union[bool, List[Optional[bool]]]] = None,
temperature: Optional[Union[float, List[Optional[float]]]] = None,
repetition_penalty: Optional[Union[float, List[Optional[float]]]] = None,
top_k: Optional[Union[int, List[Optional[int]]]] = None,
top_p: Optional[Union[float, List[Optional[float]]]] = None,
typical_p: Optional[Union[float, List[Optional[float]]]] = None,
do_sample: Optional[Union[bool, List[Optional[bool]]]] = None,
seeds: Optional[Union[int, List[Optional[int]]]] = None,
):
# TODO: Most seeds are ignored
seeds=self._standardize(seeds, batch_size, 0)
do_sample=self._standardize(do_sample, batch_size, False)
seeds = self._standardize(seeds, batch_size, 0)
do_sample = self._standardize(do_sample, batch_size, False)
warpers = LogitsProcessorList()
watermark=self._standardize(watermark, batch_size, False)
watermark = self._standardize(watermark, batch_size, False)
if any(watermark):
raise NotImplementedError("Watermarking not implemented")
repetition_penalty=self._standardize(repetition_penalty, batch_size, 1.0)
if any([x!=1.0 for x in repetition_penalty]):
warpers.append(HeterogeneousRepetitionPenaltyLogitsProcessor(repetition_penalty, device))
repetition_penalty = self._standardize(repetition_penalty, batch_size, 1.0)
if any([x != 1.0 for x in repetition_penalty]):
warpers.append(
HeterogeneousRepetitionPenaltyLogitsProcessor(
repetition_penalty, device
)
)
temperature=self._standardize(temperature, batch_size, 1.0)
if any([x!=1.0 for x in temperature]):
do_sample=[sample or x!=1.0 for x, sample in zip(temperature, do_sample)]
temperature = self._standardize(temperature, batch_size, 1.0)
if any([x != 1.0 for x in temperature]):
do_sample = [
sample or x != 1.0 for x, sample in zip(temperature, do_sample)
]
warpers.append(HeterogeneousTemperatureLogitsWarper(temperature, device))
top_k=self._standardize(top_k, batch_size, 0)
n_top_k=sum([x!=0 for x in top_k])
if n_top_k>0:
do_sample=[sample or x!=0 for x, sample in zip(top_k, do_sample)]
top_k = self._standardize(top_k, batch_size, 0)
n_top_k = sum([x != 0 for x in top_k])
if n_top_k > 0:
do_sample = [sample or x != 0 for x, sample in zip(top_k, do_sample)]
warpers.append(HeterogeneousTopKLogitsWarper(top_k, device))
top_p=self._standardize(top_p, batch_size, 1.0)
if any([x<1.0 for x in top_p]):
do_sample=[sample or x<1.0 for x, sample in zip(top_p, do_sample)]
top_p = self._standardize(top_p, batch_size, 1.0)
if any([x < 1.0 for x in top_p]):
do_sample = [sample or x < 1.0 for x, sample in zip(top_p, do_sample)]
warpers.append(HeterogeneousTopPLogitsWarper(top_p, device))
typical_p=self._standardize(typical_p, batch_size, 1.0)
if any([x<1.0 for x in typical_p]):
do_sample=[sample or x<1.0 for x, sample in zip(typical_p, do_sample)]
typical_p = self._standardize(typical_p, batch_size, 1.0)
if any([x < 1.0 for x in typical_p]):
do_sample = [sample or x < 1.0 for x, sample in zip(typical_p, do_sample)]
warpers.append(HeterogeneousTypicalLogitsWarper(typical_p, device))
self.warpers=warpers
self.warpers = warpers
num_do_sample=sum(do_sample)
if num_do_sample==0:
self.choice=Greedy()
elif num_do_sample<batch_size:
self.choice=HeterogeneousSampling(do_sample, seeds, device)
num_do_sample = sum(do_sample)
if num_do_sample == 0:
self.choice = Greedy()
elif num_do_sample < batch_size:
self.choice = HeterogeneousSampling(do_sample, seeds, device)
else:
# TODO: Most seeds are ignored
self.choice=Sampling(seeds[0], device)
self.choice = Sampling(seeds[0], device)
@staticmethod
def _standardize(values, batch_size, default):
if isinstance(values, list):
values=values.copy()
values = values.copy()
else:
values=[values]*batch_size
assert len(values)==batch_size
values = [values] * batch_size
assert len(values) == batch_size
for i, v in enumerate(values):
if v is None:
values[i]=default
values[i] = default
return values
def __call__(self, input_ids:torch.Tensor, scores:torch.Tensor, return_logprobs:bool):
last_token_scores=self.warpers(input_ids, scores[:, -1, :])
next_token_ids=self.choice(last_token_scores)
def __call__(
self, input_ids: torch.Tensor, scores: torch.Tensor, return_logprobs: bool
):
last_token_scores = self.warpers(input_ids, scores[:, -1, :])
next_token_ids = self.choice(last_token_scores)
if return_logprobs:
# Compute logprobs
if scores.size(1)==1:
scores=last_token_scores.unsqueeze(1)
if scores.size(1) == 1:
scores = last_token_scores.unsqueeze(1)
else:
# TODO: Post-process all the tokens?
scores[:, -1, :]=last_token_scores
scores[:, -1, :] = last_token_scores
logprobs = torch.log_softmax(scores, dim=-1)
else:
logprobs=None
logprobs = None
return next_token_ids, logprobs