mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-19 22:02:06 +00:00
Prepare for patch release. (#3124)
This commit is contained in:
parent
11f2eec10e
commit
83fe45c15e
@ -84,7 +84,7 @@ model=HuggingFaceH4/zephyr-7b-beta
|
|||||||
volume=$PWD/data
|
volume=$PWD/data
|
||||||
|
|
||||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model
|
ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model
|
||||||
```
|
```
|
||||||
|
|
||||||
And then you can make requests like
|
And then you can make requests like
|
||||||
@ -121,7 +121,7 @@ curl localhost:8080/v1/chat/completions \
|
|||||||
|
|
||||||
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
|
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
|
||||||
|
|
||||||
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0-rocm --model-id $model` instead of the command above.
|
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1-rocm --model-id $model` instead of the command above.
|
||||||
|
|
||||||
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
|
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
|
||||||
```
|
```
|
||||||
@ -152,7 +152,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||||||
token=<your cli READ token>
|
token=<your cli READ token>
|
||||||
|
|
||||||
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
|
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model
|
ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model
|
||||||
```
|
```
|
||||||
|
|
||||||
### A note on Shared Memory (shm)
|
### A note on Shared Memory (shm)
|
||||||
|
@ -20,7 +20,7 @@ hf_token=YOUR_HF_ACCESS_TOKEN
|
|||||||
|
|
||||||
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
|
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
|
||||||
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
|
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
|
||||||
--model-id $model
|
--model-id $model
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -74,7 +74,7 @@ hf_token=YOUR_ACCESS_TOKEN
|
|||||||
|
|
||||||
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
|
docker run --runtime=habana --cap-add=sys_nice --ipc=host \
|
||||||
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
|
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
|
||||||
--model-id $model
|
--model-id $model
|
||||||
<text-generation-inference-launcher-arguments>
|
<text-generation-inference-launcher-arguments>
|
||||||
```
|
```
|
||||||
@ -137,7 +137,7 @@ docker run -p 8080:80 \
|
|||||||
-e BATCH_BUCKET_SIZE=256 \
|
-e BATCH_BUCKET_SIZE=256 \
|
||||||
-e PREFILL_BATCH_BUCKET_SIZE=4 \
|
-e PREFILL_BATCH_BUCKET_SIZE=4 \
|
||||||
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
|
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
|
||||||
--model-id $model \
|
--model-id $model \
|
||||||
--sharded true --num-shard 8 \
|
--sharded true --num-shard 8 \
|
||||||
--max-input-tokens 1024 --max-total-tokens 2048 \
|
--max-input-tokens 1024 --max-total-tokens 2048 \
|
||||||
@ -163,7 +163,7 @@ docker run -p 8080:80 \
|
|||||||
-v $volume:/data \
|
-v $volume:/data \
|
||||||
-e PREFILL_BATCH_BUCKET_SIZE=1 \
|
-e PREFILL_BATCH_BUCKET_SIZE=1 \
|
||||||
-e BATCH_BUCKET_SIZE=1 \
|
-e BATCH_BUCKET_SIZE=1 \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
|
||||||
--model-id $model \
|
--model-id $model \
|
||||||
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
|
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
|
||||||
--max-total-tokens 8192 --max-batch-size 4
|
--max-total-tokens 8192 --max-batch-size 4
|
||||||
@ -230,7 +230,7 @@ docker run --runtime=habana --ipc=host --cap-add=sys_nice \
|
|||||||
-e PROF_PATH=/tmp/hpu_profile \
|
-e PROF_PATH=/tmp/hpu_profile \
|
||||||
-e PROF_RANKS=0 \
|
-e PROF_RANKS=0 \
|
||||||
-e PROF_RECORD_SHAPES=True \
|
-e PROF_RECORD_SHAPES=True \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
|
||||||
--model-id $model
|
--model-id $model
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -31,7 +31,7 @@ deployment instructions in the model card:
|
|||||||
The service is launched simply by running the text-generation-inference container with two sets of parameters:
|
The service is launched simply by running the text-generation-inference container with two sets of parameters:
|
||||||
|
|
||||||
```
|
```
|
||||||
docker run <system_parameters> ghcr.io/huggingface/text-generation-inference:3.2.0-neuron <service_parameters>
|
docker run <system_parameters> ghcr.io/huggingface/text-generation-inference:3.2.1-neuron <service_parameters>
|
||||||
```
|
```
|
||||||
|
|
||||||
- system parameters are used to map ports, volumes and devices between the host and the service,
|
- system parameters are used to map ports, volumes and devices between the host and the service,
|
||||||
|
@ -19,6 +19,6 @@ docker run --gpus all \
|
|||||||
--shm-size 1g \
|
--shm-size 1g \
|
||||||
-e HF_TOKEN=$token \
|
-e HF_TOKEN=$token \
|
||||||
-p 8080:80 \
|
-p 8080:80 \
|
||||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 \
|
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 \
|
||||||
--model-id $model
|
--model-id $model
|
||||||
```
|
```
|
||||||
|
@ -19,7 +19,7 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
|
|||||||
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
|
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model --quantize bitsandbytes
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model --quantize bitsandbytes
|
||||||
```
|
```
|
||||||
|
|
||||||
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
|
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
|
||||||
@ -27,7 +27,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
|
|||||||
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
|
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model --quantize bitsandbytes-nf4
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model --quantize bitsandbytes-nf4
|
||||||
```
|
```
|
||||||
|
|
||||||
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
||||||
@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
|
|||||||
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
|
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model --quantize gptq
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model --quantize gptq
|
||||||
```
|
```
|
||||||
|
|
||||||
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
|
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
|
||||||
|
@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||||||
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
|
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
|
||||||
--device=/dev/kfd --device=/dev/dri --group-add video \
|
--device=/dev/kfd --device=/dev/dri --group-add video \
|
||||||
--ipc=host --shm-size 256g --net host -v $volume:/data \
|
--ipc=host --shm-size 256g --net host -v $volume:/data \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.2.0-rocm \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-rocm \
|
||||||
--model-id $model
|
--model-id $model
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||||||
docker run --rm --privileged --cap-add=sys_nice \
|
docker run --rm --privileged --cap-add=sys_nice \
|
||||||
--device=/dev/dri \
|
--device=/dev/dri \
|
||||||
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.2.0-intel-xpu \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-intel-xpu \
|
||||||
--model-id $model --cuda-graphs 0
|
--model-id $model --cuda-graphs 0
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||||||
docker run --rm --privileged --cap-add=sys_nice \
|
docker run --rm --privileged --cap-add=sys_nice \
|
||||||
--device=/dev/dri \
|
--device=/dev/dri \
|
||||||
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.2.0-intel-cpu \
|
ghcr.io/huggingface/text-generation-inference:3.2.1-intel-cpu \
|
||||||
--model-id $model --cuda-graphs 0
|
--model-id $model --cuda-graphs 0
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
|
|||||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||||
|
|
||||||
docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
|
docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.2.0 \
|
ghcr.io/huggingface/text-generation-inference:3.2.1 \
|
||||||
--model-id $model
|
--model-id $model
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
|
|||||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||||
|
|
||||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
||||||
ghcr.io/huggingface/text-generation-inference:3.2.0 \
|
ghcr.io/huggingface/text-generation-inference:3.2.1 \
|
||||||
--model-id $model
|
--model-id $model
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -96,7 +96,7 @@ curl 127.0.0.1:8080/generate \
|
|||||||
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
|
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
docker run ghcr.io/huggingface/text-generation-inference:3.2.0 --help
|
docker run ghcr.io/huggingface/text-generation-inference:3.2.1 --help
|
||||||
```
|
```
|
||||||
|
|
||||||
</Tip>
|
</Tip>
|
||||||
|
@ -163,7 +163,7 @@ hub = {
|
|||||||
|
|
||||||
# create Hugging Face Model Class
|
# create Hugging Face Model Class
|
||||||
huggingface_model = HuggingFaceModel(
|
huggingface_model = HuggingFaceModel(
|
||||||
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.2.0"),
|
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.2.1"),
|
||||||
env=hub,
|
env=hub,
|
||||||
role=role,
|
role=role,
|
||||||
)
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user