Prepare for patch release. (#3124)

This commit is contained in:
Nicolas Patry 2025-03-18 15:11:55 +01:00 committed by GitHub
parent 11f2eec10e
commit 83fe45c15e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 20 additions and 20 deletions

View File

@ -84,7 +84,7 @@ model=HuggingFaceH4/zephyr-7b-beta
volume=$PWD/data volume=$PWD/data
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model
``` ```
And then you can make requests like And then you can make requests like
@ -121,7 +121,7 @@ curl localhost:8080/v1/chat/completions \
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar. **Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0-rocm --model-id $model` instead of the command above. **Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/installation_amd#using-tgi-with-amd-gpus). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1-rocm --model-id $model` instead of the command above.
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli): To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
``` ```
@ -152,7 +152,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
token=<your cli READ token> token=<your cli READ token>
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \ docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model
``` ```
### A note on Shared Memory (shm) ### A note on Shared Memory (shm)

View File

@ -20,7 +20,7 @@ hf_token=YOUR_HF_ACCESS_TOKEN
docker run --runtime=habana --cap-add=sys_nice --ipc=host \ docker run --runtime=habana --cap-add=sys_nice --ipc=host \
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \ -p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
--model-id $model --model-id $model
``` ```
@ -74,7 +74,7 @@ hf_token=YOUR_ACCESS_TOKEN
docker run --runtime=habana --cap-add=sys_nice --ipc=host \ docker run --runtime=habana --cap-add=sys_nice --ipc=host \
-p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \ -p 8080:80 -v $volume:/data -e HF_TOKEN=$hf_token \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
--model-id $model --model-id $model
<text-generation-inference-launcher-arguments> <text-generation-inference-launcher-arguments>
``` ```
@ -137,7 +137,7 @@ docker run -p 8080:80 \
-e BATCH_BUCKET_SIZE=256 \ -e BATCH_BUCKET_SIZE=256 \
-e PREFILL_BATCH_BUCKET_SIZE=4 \ -e PREFILL_BATCH_BUCKET_SIZE=4 \
-e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \ -e PAD_SEQUENCE_TO_MULTIPLE_OF=64 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
--model-id $model \ --model-id $model \
--sharded true --num-shard 8 \ --sharded true --num-shard 8 \
--max-input-tokens 1024 --max-total-tokens 2048 \ --max-input-tokens 1024 --max-total-tokens 2048 \
@ -163,7 +163,7 @@ docker run -p 8080:80 \
-v $volume:/data \ -v $volume:/data \
-e PREFILL_BATCH_BUCKET_SIZE=1 \ -e PREFILL_BATCH_BUCKET_SIZE=1 \
-e BATCH_BUCKET_SIZE=1 \ -e BATCH_BUCKET_SIZE=1 \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
--model-id $model \ --model-id $model \
--max-input-tokens 4096 --max-batch-prefill-tokens 16384 \ --max-input-tokens 4096 --max-batch-prefill-tokens 16384 \
--max-total-tokens 8192 --max-batch-size 4 --max-total-tokens 8192 --max-batch-size 4
@ -230,7 +230,7 @@ docker run --runtime=habana --ipc=host --cap-add=sys_nice \
-e PROF_PATH=/tmp/hpu_profile \ -e PROF_PATH=/tmp/hpu_profile \
-e PROF_RANKS=0 \ -e PROF_RANKS=0 \
-e PROF_RECORD_SHAPES=True \ -e PROF_RECORD_SHAPES=True \
ghcr.io/huggingface/text-generation-inference:3.1.1-gaudi \ ghcr.io/huggingface/text-generation-inference:3.2.1-gaudi \
--model-id $model --model-id $model
``` ```

View File

@ -31,7 +31,7 @@ deployment instructions in the model card:
The service is launched simply by running the text-generation-inference container with two sets of parameters: The service is launched simply by running the text-generation-inference container with two sets of parameters:
``` ```
docker run <system_parameters> ghcr.io/huggingface/text-generation-inference:3.2.0-neuron <service_parameters> docker run <system_parameters> ghcr.io/huggingface/text-generation-inference:3.2.1-neuron <service_parameters>
``` ```
- system parameters are used to map ports, volumes and devices between the host and the service, - system parameters are used to map ports, volumes and devices between the host and the service,

View File

@ -19,6 +19,6 @@ docker run --gpus all \
--shm-size 1g \ --shm-size 1g \
-e HF_TOKEN=$token \ -e HF_TOKEN=$token \
-p 8080:80 \ -p 8080:80 \
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 \ -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 \
--model-id $model --model-id $model
``` ```

View File

@ -19,7 +19,7 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇 In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
```bash ```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model --quantize bitsandbytes docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model --quantize bitsandbytes
``` ```
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load. 4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
@ -27,7 +27,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇 In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
```bash ```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model --quantize bitsandbytes-nf4 docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model --quantize bitsandbytes-nf4
``` ```
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes). You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇 TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
```bash ```bash
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.0 --model-id $model --quantize gptq docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.2.1 --model-id $model --quantize gptq
``` ```
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI. Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.

View File

@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \ docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
--device=/dev/kfd --device=/dev/dri --group-add video \ --device=/dev/kfd --device=/dev/dri --group-add video \
--ipc=host --shm-size 256g --net host -v $volume:/data \ --ipc=host --shm-size 256g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.0-rocm \ ghcr.io/huggingface/text-generation-inference:3.2.1-rocm \
--model-id $model --model-id $model
``` ```

View File

@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm --privileged --cap-add=sys_nice \ docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \ --device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \ --ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.0-intel-xpu \ ghcr.io/huggingface/text-generation-inference:3.2.1-intel-xpu \
--model-id $model --cuda-graphs 0 --model-id $model --cuda-graphs 0
``` ```
@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
docker run --rm --privileged --cap-add=sys_nice \ docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \ --device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \ --ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.0-intel-cpu \ ghcr.io/huggingface/text-generation-inference:3.2.1-intel-cpu \
--model-id $model --cuda-graphs 0 --model-id $model --cuda-graphs 0
``` ```

View File

@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \ docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.0 \ ghcr.io/huggingface/text-generation-inference:3.2.1 \
--model-id $model --model-id $model
``` ```

View File

@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:3.2.0 \ ghcr.io/huggingface/text-generation-inference:3.2.1 \
--model-id $model --model-id $model
``` ```
@ -96,7 +96,7 @@ curl 127.0.0.1:8080/generate \
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more. To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
```bash ```bash
docker run ghcr.io/huggingface/text-generation-inference:3.2.0 --help docker run ghcr.io/huggingface/text-generation-inference:3.2.1 --help
``` ```
</Tip> </Tip>

View File

@ -163,7 +163,7 @@ hub = {
# create Hugging Face Model Class # create Hugging Face Model Class
huggingface_model = HuggingFaceModel( huggingface_model = HuggingFaceModel(
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.2.0"), image_uri=get_huggingface_llm_image_uri("huggingface",version="3.2.1"),
env=hub, env=hub,
role=role, role=role,
) )