Merge pull request #1 from rsnm2/dev-router

Dev router
This commit is contained in:
Robert Shaw 2023-08-23 13:56:01 -06:00 committed by GitHub
commit 83f6461bb9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 525 additions and 130 deletions

View File

@ -13,30 +13,36 @@
},
{
"cell_type": "markdown",
"id": "7d43c041-2c79-4276-9104-2f224b2f8af6",
"id": "a19786b8-e72c-43c1-964f-45d92fd171e9",
"metadata": {},
"source": [
"## Example Interacting With The Service"
"## Example Interacting With The Router"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "631e94eb-cca0-438e-8936-6e8a87166d63",
"execution_count": 2,
"id": "0b2c83cd-92ea-40d7-bc7e-f737b87d9b8d",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-08-23 19:52:18 deepsparse.transformers WARNING The neuralmagic fork of transformers may not be installed. It can be installed via `pip install nm_transformers`\n"
]
}
],
"source": [
"from server.deepsparse.deepsparse_causal_lm import DeepSparseCausalLMBatch, DeepSparseCausalLM\n",
"from server.deepsparse.deepsparse_router import DeepSparseRouter, batching_task\n",
"from server.deepsparse.deepsparse_service import DeepSparseService\n",
"from server.deepsparse.deepsparse_requests import (\n",
" PrefillRequest, DecodeRequest, FilterBatchRequest, Request\n",
")"
"from server.deepsparse.deepsparse_causal_lm import DeepSparseCausalLM"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c9c39557-2898-443f-aae8-443ef1171123",
"id": "78acf813-3688-483d-9148-5c0df5d6b8e3",
"metadata": {},
"outputs": [
{
@ -44,7 +50,7 @@
"output_type": "stream",
"text": [
"Using pad_token, but it is not set yet.\n",
"2023-08-22 03:09:19 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
"2023-08-23 19:52:20 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
"DeepSparse, Copyright 2021-present / Neuralmagic, Inc. version: 1.6.0.20230815 COMMUNITY | (134dba40) (release) (optimized) (system=avx2, binary=avx2)\n"
]
},
@ -67,7 +73,241 @@
"name": "stderr",
"output_type": "stream",
"text": [
"2023-08-22 03:09:45 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n"
"2023-08-23 19:52:44 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"deepsparse.engine.Engine:\n",
"\tonnx_file_path: /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
"\tbatch_size: 1\n",
"\tnum_cores: 8\n",
"\tnum_streams: 1\n",
"\tscheduler: Scheduler.default\n",
"\tfraction_of_supported_ops: 1.0\n",
"\tcpu_avx_type: avx2\n",
"\tcpu_vnni: False\n"
]
}
],
"source": [
"tokenizer_path = \"/home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/deployment\"\n",
"onnx_path = \"/home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\"\n",
"\n",
"model = DeepSparseCausalLM(\n",
" tokenizer_path=tokenizer_path,\n",
" model_path=onnx_path\n",
")\n",
"\n",
"service = DeepSparseService(model=model)\n",
"router = DeepSparseRouter(service=service)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e93bac63-8924-4cf4-8683-81ce9333a2f1",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Finish the following function for computing a fibonacci sequence: \n",
"\n",
"def fib(n):\n",
" if n == 0:\n",
" return 0\n",
" elif n == 1:\n",
" return 1\n",
" else:\n",
" return fib(n-1) + fib(n-2)\n",
"\n",
"# Driver function to test above function\n",
"n = int(input(\"Enter the number: \"))\n",
"print(fib(n))\n",
"\n",
"# This code is contributed by Nikhil Kumar Singh(nickzuck_007)\n",
"\n",
"\n",
"\n",
"Write a function for filtering a list of integers to include only positive numbers:\n",
"\n",
"def filter(lst):\n",
" return [x for x in lst if x > 0]\n",
"\n",
"# Test\n",
"print(filter([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))\n",
"print(filter([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))\n",
"print(filter([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))\n",
"print(filter([1,\n",
"\n",
"\n",
"Write a function for checking if a word if a palindrome:\n",
"\n",
"def is_palindrome(word):\n",
" return word == word[::-1]\n",
"\n",
"# Test\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(\n",
"\n",
"\n",
"Write a function for reversing a string:\n",
"\n",
"def reverse_string(s):\n",
" return s[::-1]\n",
"\n",
"# Test\n",
"print(reverse_string(\"hello\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"a\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\n",
"\n",
"\n",
"Write a function for sorting an array of integers:\n",
"\n",
"def merge_sort(arr):\n",
" if len(arr) <= 1:\n",
" return arr\n",
" mid = len(arr) // 2\n",
" left = arr[:mid]\n",
" right = arr[mid:]\n",
" left = merge_sort(left)\n",
" right = merge_sort(right)\n",
" return merge(left, right)\n",
"\n",
"def merge(left, right):\n",
" result = []\n",
" while len(left) > 0 and len(right) > 0:\n",
" if left[0]\n",
"\n",
"\n",
"stop\n",
"\n",
"\n"
]
}
],
"source": [
"from threading import Thread\n",
"import time\n",
"\n",
"batching_thread = Thread(target=batching_task, args=[router])\n",
"batching_thread.start()\n",
"\n",
"prompts = [\n",
" \"Finish the following function for computing a fibonacci sequence: \\n\\ndef fib(n):\",\n",
" \"Write a function for filtering a list of integers to include only positive numbers:\\n\\ndef filter(lst):\",\n",
" \"Write a function for reversing a string:\\n\\ndef reverse_string(s):\",\n",
" \"Write a function for checking if a word if a palindrome:\\n\\ndef is_palindrome(word):\",\n",
" \"Write a function for sorting an array of integers:\\n\\ndef merge_sort(arr):\",\n",
"]\n",
"\n",
"def generate_task(prompt):\n",
" result = router.generate(prompt=prompt)\n",
" print(result)\n",
" print(\"\\n\")\n",
"\n",
"generate_threads = [\n",
" Thread(target=generate_task, args=[prompt]) for prompt in prompts\n",
"]\n",
"\n",
"# print(len(generate_threads))\n",
"\n",
"for gt in generate_threads:\n",
" gt.start()\n",
" time.sleep(0.5)\n",
"\n",
"for gt in generate_threads:\n",
" gt.join()\n",
"\n",
"\n",
"generate_task(\"stop\")\n",
"batching_thread.join()"
]
},
{
"cell_type": "markdown",
"id": "7d43c041-2c79-4276-9104-2f224b2f8af6",
"metadata": {},
"source": [
"## Example Interacting With The Service"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "631e94eb-cca0-438e-8936-6e8a87166d63",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-08-22 14:26:39 deepsparse.transformers WARNING The neuralmagic fork of transformers may not be installed. It can be installed via `pip install nm_transformers`\n"
]
}
],
"source": [
"from server.deepsparse.deepsparse_causal_lm import DeepSparseCausalLMBatch, DeepSparseCausalLM\n",
"from server.deepsparse.deepsparse_service import DeepSparseService\n",
"from server.deepsparse.deepsparse_requests import (\n",
" PrefillRequest, DecodeRequest, FilterBatchRequest, Request\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c9c39557-2898-443f-aae8-443ef1171123",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using pad_token, but it is not set yet.\n",
"2023-08-22 14:26:56 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
"DeepSparse, Copyright 2021-present / Neuralmagic, Inc. version: 1.6.0.20230815 COMMUNITY | (134dba40) (release) (optimized) (system=avx2, binary=avx2)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"deepsparse.engine.Engine:\n",
"\tonnx_file_path: /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n",
"\tbatch_size: 1\n",
"\tnum_cores: 8\n",
"\tnum_streams: 1\n",
"\tscheduler: Scheduler.default\n",
"\tfraction_of_supported_ops: 1.0\n",
"\tcpu_avx_type: avx2\n",
"\tcpu_vnni: False\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-08-22 14:27:21 deepsparse.transformers.utils.helpers INFO Overwriting in-place the input shapes of the transformer model at /home/robertgshaw/.cache/sparsezoo/neuralmagic/codegen_mono-350m-bigpython_bigquery_thepile-base/model.onnx/model.onnx\n"
]
},
{
@ -100,7 +340,7 @@
},
{
"cell_type": "code",
"execution_count": 31,
"execution_count": 4,
"id": "85ce9aab-1a56-4b6f-a82b-4e91d52290b7",
"metadata": {},
"outputs": [],
@ -136,10 +376,25 @@
},
{
"cell_type": "code",
"execution_count": 63,
"execution_count": 5,
"id": "d2441753-fe2a-45c0-ad80-135b6207947d",
"metadata": {},
"outputs": [],
"outputs": [
{
"ename": "NameError",
"evalue": "name 'Batch' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[5], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m service\u001b[38;5;241m.\u001b[39mClearCache()\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# prefill queue\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m prefill_queue \u001b[38;5;241m=\u001b[39m \u001b[43mPrefillQueue\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprompts\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# cached batches\u001b[39;00m\n\u001b[1;32m 7\u001b[0m cached_batches \u001b[38;5;241m=\u001b[39m []\n",
"Cell \u001b[0;32mIn[4], line 17\u001b[0m, in \u001b[0;36mPrefillQueue.__init__\u001b[0;34m(self, prompts)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, prompts):\n\u001b[0;32m---> 17\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mqueue \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 18\u001b[0m idx: PrefillRequest(batch\u001b[38;5;241m=\u001b[39mmake_batch(\u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39midx, prompt\u001b[38;5;241m=\u001b[39mprompt))\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx, prompt \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(prompts)\n\u001b[1;32m 20\u001b[0m }\n",
"Cell \u001b[0;32mIn[4], line 18\u001b[0m, in \u001b[0;36m<dictcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, prompts):\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mqueue \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m---> 18\u001b[0m idx: PrefillRequest(batch\u001b[38;5;241m=\u001b[39m\u001b[43mmake_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mid\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43midx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprompt\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mprompt\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx, prompt \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(prompts)\n\u001b[1;32m 20\u001b[0m }\n",
"Cell \u001b[0;32mIn[4], line 10\u001b[0m, in \u001b[0;36mmake_batch\u001b[0;34m(id, prompt)\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmake_batch\u001b[39m(\u001b[38;5;28mid\u001b[39m, prompt):\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mBatch\u001b[49m(\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mid\u001b[39m,\n\u001b[1;32m 12\u001b[0m requests\u001b[38;5;241m=\u001b[39m[Request(\u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mid\u001b[39m, prompt\u001b[38;5;241m=\u001b[39mprompt)]\n\u001b[1;32m 13\u001b[0m )\n",
"\u001b[0;31mNameError\u001b[0m: name 'Batch' is not defined"
]
}
],
"source": [
"service.ClearCache()\n",
"\n",
@ -213,118 +468,10 @@
},
{
"cell_type": "code",
"execution_count": 64,
"execution_count": null,
"id": "dd6bcc43-63ef-4f92-a960-74e33b86dc97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Request 0 is done!\n",
"Request 1 is done!\n",
"Request 3 is done!\n",
"Request 2 is done!\n",
"All Requests Done!\n",
"\n",
"\n",
"INDEX = 0:\n",
"Finish the following function for computing a fibonacci sequence: \n",
"\n",
" fib(n):\n",
"\n",
" if n == 0:\n",
" return 0\n",
" elif n == 1:\n",
" return 1\n",
" else:\n",
" return fib(n-1) + fib(n-2)\n",
"\n",
"# Call the function.\n",
"print(fib(5))\n",
"\n",
"# This code is contributed by Nikhil Kumar Singh(nickzuck_007)\n",
"\n",
"\n",
"\n",
"INDEX = 1:\n",
"Write a function for filtering a list of integers to include only positive numbers:\n",
"\n",
"filter(lst):\n",
"\n",
"lst = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n",
"\n",
"def filter_positive(lst):\n",
" return [num for num in lst if num > 0]\n",
"\n",
"print(filter_positive(lst))\n",
"\n",
"# filter_positive([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\n",
"\n",
"# filter_positive([1, 2, 3, 4, 5\n",
"\n",
"\n",
"INDEX = 2:\n",
"Write a function for reversing a string:\n",
"\n",
"def reverse_string(s):\n",
" return s[::-1]\n",
"\n",
"# Test\n",
"print(reverse_string(\"hello\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"a\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\"))\n",
"print(reverse_string(\"\n",
"\n",
"\n",
"INDEX = 3:\n",
"Write a function for checking if a word if a palindrome:\n",
"\n",
"def is_palindrome(word):\n",
" return word == word[::-1]\n",
"\n",
"# Test\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(is_palindrome(\"racecar\"))\n",
"print(\n",
"\n",
"\n",
"INDEX = 4:\n",
"Write a function for sorting an array of integers:\n",
"\n",
"def merge_sort(arr):\n",
" if len(arr) <= 1:\n",
" return arr\n",
" mid = len(arr) // 2\n",
" left = arr[:mid]\n",
" right = arr[mid:]\n",
" left = merge_sort(left)\n",
" right = merge_sort(right)\n",
" return merge(left, right)\n",
"\n",
"def merge(left, right):\n",
" result = []\n",
" while len(left) > 0 and len(right) > 0:\n",
" if left[0]\n",
"\n",
"\n",
"[CachedBatch(batch_id=0, request_ids=[4])]\n"
]
}
],
"outputs": [],
"source": [
"# run a few decodes\n",
"for _ in range(100):\n",

View File

@ -205,11 +205,11 @@ class DeepSparseCausalLM:
logits, past_key_values = self.model(input_ids, past_key_values)
# sample token
# simple for now --- should use NextTokenChooser
# todo: simple for now --- should use NextTokenChooser
generated_token_id = self.sample_token(logits)
# check stopping criteria
# simple for now --- should use StoppingCriteria
# todo: simple for now --- should use StoppingCriteria
assert len(input_ids.shape) == 2
assert input_ids.shape[0] == 1

View File

@ -0,0 +1,58 @@
from typing import Deque, Optional, Tuple, Dict
from collections import deque
from threading import Condition
from server.deepsparse.deepsparse_requests import Batch, Request
class GenerateRequest:
def __init__(
self,
prompt: str,
max_generated_tokens: int
):
self.prompt = prompt
self.generation = prompt
self.max_generated_tokens = max_generated_tokens
self.cv = Condition()
self.is_stopped = False
# todo: implement logic for maximum memory usage
class DeepSparseQueue:
def __init__(self):
self.next_request_id: int = 0
self.next_batch_id: int = 0
self.queue: Deque[GenerateRequest] = deque()
def append(self, generate_request: GenerateRequest):
self.queue.append(generate_request)
def is_empty(self):
return len(self.queue) == 0
# (todo): enable multiple prefill requests in a batch
def next_batch(self) -> Optional[Tuple[Batch, Dict[int, GenerateRequest]]]:
if self.is_empty():
return None
# pop first generate_request in the queue
generate_request = self.queue.popleft()
generate_requests = {
self.next_request_id: generate_request
}
# format into request
request = Request(
id=self.next_request_id,
prompt=generate_request.prompt,
max_generated_tokens=generate_request.max_generated_tokens
)
self.next_request_id += 1
# format into batch
batch = Batch(
id = self.next_batch_id,
requests=[request]
)
self.next_batch_id += 1
# return batch, generate_requests
return (batch, generate_requests)

View File

@ -5,6 +5,7 @@ from typing import List, Optional
class Request:
id: int
prompt: str
max_generated_tokens: int
@dataclass
class Batch:
@ -16,6 +17,9 @@ class CachedBatch:
batch_id: int
request_ids: List[int]
def __len__(self):
return len(self.request_ids)
@dataclass
class Generation:
request_id: int

View File

@ -0,0 +1,184 @@
from threading import Condition
from typing import List, Dict, Optional
from server.deepsparse.deepsparse_service import DeepSparseService
from server.deepsparse.deepsparse_requests import (
CachedBatch, Batch, Generation,
PrefillRequest, DecodeRequest, FilterBatchRequest,
)
from server.deepsparse.deepsparse_queue import (
DeepSparseQueue, GenerateRequest
)
class DeepSparseRouter:
def __init__(self, service: DeepSparseService):
self.service: DeepSparseService = service
self.queue: DeepSparseQueue = DeepSparseQueue()
self.cv: Condition = Condition()
def generate(self, prompt:str) -> str:
generate_request = GenerateRequest(
prompt=prompt,
max_generated_tokens=100
)
with self.cv:
# print("router: acquired cv")
self.queue.append(generate_request)
self.cv.notify()
if prompt == "stop":
return "stop"
with generate_request.cv:
# print("generate_request: acquired cv")
if not generate_request.is_stopped:
# print("generate_request: waiting")
generate_request.cv.wait()
# print("generate_request: done waiting")
return generate_request.generation
def prefill(
self,
batch: Batch,
generate_requests: Dict[int,GenerateRequest]
) -> Optional[CachedBatch]:
# print("prefill")
generation, next_batch = self.service.Prefill(
PrefillRequest(batch=batch)
)
self.filter_notify_update([generation], generate_requests)
return self.filter_batch(
batch=next_batch,
generate_requests=generate_requests
)
def decode(
self,
batches: List[CachedBatch],
generate_requests: Dict[int,GenerateRequest]
) -> Optional[CachedBatch]:
# print("decode")
generations, next_batch = self.service.Decode(
DecodeRequest(batches=batches)
)
self.filter_notify_update(generations, generate_requests)
return self.filter_batch(
batch=next_batch,
generate_requests=generate_requests
)
def filter_notify_update(
self,
generations: List[Generation],
generate_requests: Dict[int, GenerateRequest]
):
# print("filter_notify_update")
for generation in generations:
request_id = generation.request_id
# if we hit a stopping criteria
if generation.generated_text is None:
# remove from active requests and notify
stopped_generate_request = generate_requests.pop(request_id)
with stopped_generate_request.cv:
stopped_generate_request.is_stopped = True
stopped_generate_request.cv.notify()
# otherwise, update generation
else:
generate_requests[request_id].generation += generation.generated_text
def filter_batch(
self,
batch: Optional[CachedBatch],
generate_requests: Dict[int, GenerateRequest]
) -> Optional[CachedBatch]:
# print("filter_batch")
# batch is already done
if batch is None:
return batch
# no need to filter
if len(batch) == len(generate_requests):
return batch
# retain only requests that are still in active generation requests
batch.request_ids = [id for id in batch.request_ids if id in generate_requests]
# if all requests complete, clear cache and return None
if len(batch) == 0:
self.service.ClearCache()
return None
# otherwise call the filter batch service
return self.service.FilterBatch(
FilterBatchRequest(
batch_id=batch.batch_id,
request_ids=batch.request_ids,
)
)
def batching_task(
router: DeepSparseRouter
) -> bool:
# infinite_loop
while True:
# block while the queue is empty
# print("batching_task: about to acquire cv")
with router.cv:
while router.queue.is_empty():
# print(f"batching_task cv: waiting")
router.cv.wait()
# print(f"batching_task: done waiting")
# loop until all batches in the queue are processed
next_batch = router.queue.next_batch()
while next_batch is not None:
batch, generate_requests = next_batch
# hack to break out of the cycle
if batch.requests[0].prompt == "stop":
assert router.queue.is_empty()
assert len(router.service.cache) == 0
return True
cached_batch = router.prefill(
batch=batch,
generate_requests=generate_requests
)
# loop until we do not reiceve any cached batch from the service (== until
# all requests have met their stopping criteria
while cached_batch is not None:
# print(f"batch_size = {len(cached_batch)}")
batches = [cached_batch]
# try to get a new batch and run prefill on this batch
next_batch = router.queue.next_batch()
if next_batch is not None:
new_batch, new_generate_requests = next_batch
new_cached_batch = router.prefill(
batch=new_batch,
generate_requests=new_generate_requests
)
if new_cached_batch is not None:
batches.append(new_cached_batch)
assert len(generate_requests.keys() & new_generate_requests.keys()) == 0
generate_requests.update(new_generate_requests)
# run decode
cached_batch = router.decode(
batches=batches,
generate_requests=generate_requests
)
next_batch = router.queue.next_batch()

View File

@ -7,7 +7,7 @@ from server.deepsparse.deepsparse_requests import (
Generation, CachedBatch
)
class BatchCache:
class Cache:
def __init__(self):
self.cache: Dict[int, DeepSparseCausalLMBatch] = {}
@ -37,7 +37,7 @@ class DeepSparseService:
model: DeepSparseCausalLM
):
self.model = model
self.cache = BatchCache()
self.cache = Cache()
def ClearCache(self):
self.cache.clear()
@ -46,6 +46,7 @@ class DeepSparseService:
self,
request: FilterBatchRequest
) -> CachedBatch:
ds_batch = self.cache.pop(request.batch_id)
assert ds_batch is not None, "Batch ID {request.batch_id} not found in cache."
filtered_batch = ds_batch.filter(request.request_ids)
@ -57,6 +58,7 @@ class DeepSparseService:
self,
request: PrefillRequest
) -> [Generation, CachedBatch]:
ds_batch = DeepSparseCausalLMBatch.from_batch(
batch=request.batch,
tokenizer=self.model.tokenizer
@ -88,4 +90,4 @@ class DeepSparseService:
generations, next_ds_batch = self.model.generate_token(ds_batch)
self.cache.set(next_ds_batch)
return generations, next_ds_batch.to_batch() if next_ds_batch else None
return generations, (next_ds_batch.to_batch() if next_ds_batch else None)